Use f64 for Quaternion.

The unit of gfxQuaternion in Gecko is gfxFloat, which is "double", so
it's better to use f64 to match the precision of Gecko.
This commit is contained in:
Boris Chiou 2017-08-10 11:38:11 +08:00
parent a5433ad68a
commit 03e1794c12

View file

@ -1776,7 +1776,7 @@ pub struct Perspective(f32, f32, f32, f32);
/// A quaternion used to represent a rotation.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Quaternion(f32, f32, f32, f32);
pub struct Quaternion(f64, f64, f64, f64);
/// A decomposed 3d matrix.
#[derive(Clone, Copy, Debug)]
@ -1914,10 +1914,10 @@ fn decompose_3d_matrix(mut matrix: ComputedMatrix) -> Result<MatrixDecomposed3D,
// Now, get the rotations out
let mut quaternion = Quaternion (
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0)).sqrt()
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0) as f64).sqrt()
);
if row[2][1] > row[1][2] {
@ -2034,7 +2034,7 @@ impl Animatable for MatrixDecomposed3D {
// Determine the scale factor.
let mut theta = clamped_w.acos();
let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
theta *= self_portion as f32;
theta *= self_portion;
scale *= theta.sin();
// Scale the self matrix by self_portion.
@ -2068,12 +2068,12 @@ impl Animatable for MatrixDecomposed3D {
}
let theta = product.acos();
let w = (other_portion as f32 * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
let w = (other_portion * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
let mut a = *self;
let mut b = *other;
% for i in range(4):
a.quaternion.${i} *= (other_portion as f32 * theta).cos() - product * w;
a.quaternion.${i} *= (other_portion * theta).cos() - product * w;
b.quaternion.${i} *= w;
sum.quaternion.${i} = a.quaternion.${i} + b.quaternion.${i};
% endfor
@ -2110,15 +2110,15 @@ impl From<MatrixDecomposed3D> for ComputedMatrix {
// Construct a composite rotation matrix from the quaternion values
// rotationMatrix is a identity 4x4 matrix initially
let mut rotation_matrix = ComputedMatrix::identity();
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z);
rotation_matrix.m12 = 2.0 * (x * y + z * w);
rotation_matrix.m13 = 2.0 * (x * z - y * w);
rotation_matrix.m21 = 2.0 * (x * y - z * w);
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z);
rotation_matrix.m23 = 2.0 * (y * z + x * w);
rotation_matrix.m31 = 2.0 * (x * z + y * w);
rotation_matrix.m32 = 2.0 * (y * z - x * w);
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y);
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z) as f32;
rotation_matrix.m12 = 2.0 * (x * y + z * w) as f32;
rotation_matrix.m13 = 2.0 * (x * z - y * w) as f32;
rotation_matrix.m21 = 2.0 * (x * y - z * w) as f32;
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z) as f32;
rotation_matrix.m23 = 2.0 * (y * z + x * w) as f32;
rotation_matrix.m31 = 2.0 * (x * z + y * w) as f32;
rotation_matrix.m32 = 2.0 * (y * z - x * w) as f32;
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y) as f32;
matrix = multiply(rotation_matrix, matrix);