Make rgba8_image_to_tex_image_data a free-standing function

This commit is contained in:
Anthony Ramine 2018-09-08 13:26:06 +02:00
parent a5f9d03229
commit 145086e150

View file

@ -481,206 +481,6 @@ impl WebGLRenderingContext {
}
}
// https://en.wikipedia.org/wiki/Relative_luminance
#[inline]
fn luminance(r: u8, g: u8, b: u8) -> u8 {
(0.2126 * (r as f32) +
0.7152 * (g as f32) +
0.0722 * (b as f32)) as u8
}
/// Translates an image in rgba8 (red in the first byte) format to
/// the format that was requested of TexImage.
///
/// From the WebGL 1.0 spec, 5.14.8:
///
/// "The source image data is conceptually first converted to
/// the data type and format specified by the format and type
/// arguments, and then transferred to the WebGL
/// implementation. If a packed pixel format is specified
/// which would imply loss of bits of precision from the image
/// data, this loss of precision must occur."
fn rgba8_image_to_tex_image_data(&self,
format: TexFormat,
data_type: TexDataType,
pixels: Vec<u8>) -> Vec<u8> {
// hint for vector allocation sizing.
let pixel_count = pixels.len() / 4;
match (format, data_type) {
(TexFormat::RGBA, TexDataType::UnsignedByte) => pixels,
(TexFormat::RGB, TexDataType::UnsignedByte) => {
// Remove alpha channel
let mut rgb8 = Vec::<u8>::with_capacity(pixel_count * 3);
for rgba8 in pixels.chunks(4) {
rgb8.push(rgba8[0]);
rgb8.push(rgba8[1]);
rgb8.push(rgba8[2]);
}
rgb8
},
(TexFormat::Alpha, TexDataType::UnsignedByte) => {
let mut alpha = Vec::<u8>::with_capacity(pixel_count);
for rgba8 in pixels.chunks(4) {
alpha.push(rgba8[3]);
}
alpha
},
(TexFormat::Luminance, TexDataType::UnsignedByte) => {
let mut luminance = Vec::<u8>::with_capacity(pixel_count);
for rgba8 in pixels.chunks(4) {
luminance.push(Self::luminance(rgba8[0], rgba8[1], rgba8[2]));
}
luminance
},
(TexFormat::LuminanceAlpha, TexDataType::UnsignedByte) => {
let mut data = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
data.push(Self::luminance(rgba8[0], rgba8[1], rgba8[2]));
data.push(rgba8[3]);
}
data
},
(TexFormat::RGBA, TexDataType::UnsignedShort4444) => {
let mut rgba4 = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
rgba4.write_u16::<NativeEndian>((rgba8[0] as u16 & 0xf0) << 8 |
(rgba8[1] as u16 & 0xf0) << 4 |
(rgba8[2] as u16 & 0xf0) |
(rgba8[3] as u16 & 0xf0) >> 4).unwrap();
}
rgba4
}
(TexFormat::RGBA, TexDataType::UnsignedShort5551) => {
let mut rgba5551 = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
rgba5551.write_u16::<NativeEndian>((rgba8[0] as u16 & 0xf8) << 8 |
(rgba8[1] as u16 & 0xf8) << 3 |
(rgba8[2] as u16 & 0xf8) >> 2 |
(rgba8[3] as u16) >> 7).unwrap();
}
rgba5551
}
(TexFormat::RGB, TexDataType::UnsignedShort565) => {
let mut rgb565 = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
rgb565.write_u16::<NativeEndian>((rgba8[0] as u16 & 0xf8) << 8 |
(rgba8[1] as u16 & 0xfc) << 3 |
(rgba8[2] as u16 & 0xf8) >> 3).unwrap();
}
rgb565
}
(TexFormat::RGBA, TexDataType::Float) => {
let mut rgbaf32 = Vec::<u8>::with_capacity(pixel_count * 16);
for rgba8 in pixels.chunks(4) {
rgbaf32.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[1] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[2] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[3] as f32).unwrap();
}
rgbaf32
}
(TexFormat::RGB, TexDataType::Float) => {
let mut rgbf32 = Vec::<u8>::with_capacity(pixel_count * 12);
for rgba8 in pixels.chunks(4) {
rgbf32.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
rgbf32.write_f32::<NativeEndian>(rgba8[1] as f32).unwrap();
rgbf32.write_f32::<NativeEndian>(rgba8[2] as f32).unwrap();
}
rgbf32
}
(TexFormat::Alpha, TexDataType::Float) => {
let mut alpha = Vec::<u8>::with_capacity(pixel_count * 4);
for rgba8 in pixels.chunks(4) {
alpha.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
}
alpha
},
(TexFormat::Luminance, TexDataType::Float) => {
let mut luminance = Vec::<u8>::with_capacity(pixel_count * 4);
for rgba8 in pixels.chunks(4) {
let p = Self::luminance(rgba8[0], rgba8[1], rgba8[2]);
luminance.write_f32::<NativeEndian>(p as f32).unwrap();
}
luminance
},
(TexFormat::LuminanceAlpha, TexDataType::Float) => {
let mut data = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
let p = Self::luminance(rgba8[0], rgba8[1], rgba8[2]);
data.write_f32::<NativeEndian>(p as f32).unwrap();
data.write_f32::<NativeEndian>(rgba8[3] as f32).unwrap();
}
data
},
(TexFormat::RGBA, TexDataType::HalfFloat) => {
let mut rgbaf16 = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[0] as f32).as_bits()).unwrap();
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[1] as f32).as_bits()).unwrap();
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[2] as f32).as_bits()).unwrap();
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[3] as f32).as_bits()).unwrap();
}
rgbaf16
},
(TexFormat::RGB, TexDataType::HalfFloat) => {
let mut rgbf16 = Vec::<u8>::with_capacity(pixel_count * 6);
for rgba8 in pixels.chunks(4) {
rgbf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[0] as f32).as_bits()).unwrap();
rgbf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[1] as f32).as_bits()).unwrap();
rgbf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[2] as f32).as_bits()).unwrap();
}
rgbf16
},
(TexFormat::Alpha, TexDataType::HalfFloat) => {
let mut alpha = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
alpha.write_u16::<NativeEndian>(f16::from_f32(rgba8[3] as f32).as_bits()).unwrap();
}
alpha
},
(TexFormat::Luminance, TexDataType::HalfFloat) => {
let mut luminance = Vec::<u8>::with_capacity(pixel_count * 4);
for rgba8 in pixels.chunks(4) {
let p = Self::luminance(rgba8[0], rgba8[1], rgba8[2]);
luminance.write_u16::<NativeEndian>(f16::from_f32(p as f32).as_bits()).unwrap();
}
luminance
},
(TexFormat::LuminanceAlpha, TexDataType::HalfFloat) => {
let mut data = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
let p = Self::luminance(rgba8[0], rgba8[1], rgba8[2]);
data.write_u16::<NativeEndian>(f16::from_f32(p as f32).as_bits()).unwrap();
data.write_u16::<NativeEndian>(f16::from_f32(rgba8[3] as f32).as_bits()).unwrap();
}
data
},
// Validation should have ensured that we only hit the
// above cases, but we haven't turned the (format, type)
// into an enum yet so there's a default case here.
_ => unreachable!("Unsupported formats {:?} {:?}", format, data_type)
}
}
fn get_image_pixels(
&self,
source: ImageDataOrHTMLImageElementOrHTMLCanvasElementOrHTMLVideoElement,
@ -893,7 +693,7 @@ impl WebGLRenderingContext {
}
if source_from_image_or_canvas {
pixels = self.rgba8_image_to_tex_image_data(internal_format, data_type, pixels);
pixels = rgba8_image_to_tex_image_data(internal_format, data_type, pixels);
}
// FINISHME: Consider doing premultiply and flip in a single mutable Vec.
@ -4193,3 +3993,204 @@ fn remove_premultiplied_alpha(pixels: &mut [u8]) {
rgba[2] = (rgba[2] as f32 / a) as u8;
}
}
/// Translates an image in rgba8 (red in the first byte) format to
/// the format that was requested of TexImage.
///
/// From the WebGL 1.0 spec, 5.14.8:
///
/// "The source image data is conceptually first converted to
/// the data type and format specified by the format and type
/// arguments, and then transferred to the WebGL
/// implementation. If a packed pixel format is specified
/// which would imply loss of bits of precision from the image
/// data, this loss of precision must occur."
fn rgba8_image_to_tex_image_data(
format: TexFormat,
data_type: TexDataType,
pixels: Vec<u8>,
) -> Vec<u8> {
// hint for vector allocation sizing.
let pixel_count = pixels.len() / 4;
match (format, data_type) {
(TexFormat::RGBA, TexDataType::UnsignedByte) => pixels,
(TexFormat::RGB, TexDataType::UnsignedByte) => {
// Remove alpha channel
let mut rgb8 = Vec::<u8>::with_capacity(pixel_count * 3);
for rgba8 in pixels.chunks(4) {
rgb8.push(rgba8[0]);
rgb8.push(rgba8[1]);
rgb8.push(rgba8[2]);
}
rgb8
},
(TexFormat::Alpha, TexDataType::UnsignedByte) => {
let mut alpha = Vec::<u8>::with_capacity(pixel_count);
for rgba8 in pixels.chunks(4) {
alpha.push(rgba8[3]);
}
alpha
},
(TexFormat::Luminance, TexDataType::UnsignedByte) => {
let mut lum = Vec::<u8>::with_capacity(pixel_count);
for rgba8 in pixels.chunks(4) {
lum.push(luminance(rgba8[0], rgba8[1], rgba8[2]));
}
lum
},
(TexFormat::LuminanceAlpha, TexDataType::UnsignedByte) => {
let mut data = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
data.push(luminance(rgba8[0], rgba8[1], rgba8[2]));
data.push(rgba8[3]);
}
data
},
(TexFormat::RGBA, TexDataType::UnsignedShort4444) => {
let mut rgba4 = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
rgba4.write_u16::<NativeEndian>((rgba8[0] as u16 & 0xf0) << 8 |
(rgba8[1] as u16 & 0xf0) << 4 |
(rgba8[2] as u16 & 0xf0) |
(rgba8[3] as u16 & 0xf0) >> 4).unwrap();
}
rgba4
}
(TexFormat::RGBA, TexDataType::UnsignedShort5551) => {
let mut rgba5551 = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
rgba5551.write_u16::<NativeEndian>((rgba8[0] as u16 & 0xf8) << 8 |
(rgba8[1] as u16 & 0xf8) << 3 |
(rgba8[2] as u16 & 0xf8) >> 2 |
(rgba8[3] as u16) >> 7).unwrap();
}
rgba5551
}
(TexFormat::RGB, TexDataType::UnsignedShort565) => {
let mut rgb565 = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
rgb565.write_u16::<NativeEndian>((rgba8[0] as u16 & 0xf8) << 8 |
(rgba8[1] as u16 & 0xfc) << 3 |
(rgba8[2] as u16 & 0xf8) >> 3).unwrap();
}
rgb565
}
(TexFormat::RGBA, TexDataType::Float) => {
let mut rgbaf32 = Vec::<u8>::with_capacity(pixel_count * 16);
for rgba8 in pixels.chunks(4) {
rgbaf32.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[1] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[2] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[3] as f32).unwrap();
}
rgbaf32
}
(TexFormat::RGB, TexDataType::Float) => {
let mut rgbf32 = Vec::<u8>::with_capacity(pixel_count * 12);
for rgba8 in pixels.chunks(4) {
rgbf32.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
rgbf32.write_f32::<NativeEndian>(rgba8[1] as f32).unwrap();
rgbf32.write_f32::<NativeEndian>(rgba8[2] as f32).unwrap();
}
rgbf32
}
(TexFormat::Alpha, TexDataType::Float) => {
let mut alpha = Vec::<u8>::with_capacity(pixel_count * 4);
for rgba8 in pixels.chunks(4) {
alpha.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
}
alpha
},
(TexFormat::Luminance, TexDataType::Float) => {
let mut lum = Vec::<u8>::with_capacity(pixel_count * 4);
for rgba8 in pixels.chunks(4) {
let p = luminance(rgba8[0], rgba8[1], rgba8[2]);
luminance.write_f32::<NativeEndian>(p as f32).unwrap();
}
luminance
},
(TexFormat::LuminanceAlpha, TexDataType::Float) => {
let mut data = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
let p = luminance(rgba8[0], rgba8[1], rgba8[2]);
data.write_f32::<NativeEndian>(p as f32).unwrap();
data.write_f32::<NativeEndian>(rgba8[3] as f32).unwrap();
}
data
},
(TexFormat::RGBA, TexDataType::HalfFloat) => {
let mut rgbaf16 = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[0] as f32).as_bits()).unwrap();
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[1] as f32).as_bits()).unwrap();
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[2] as f32).as_bits()).unwrap();
rgbaf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[3] as f32).as_bits()).unwrap();
}
rgbaf16
},
(TexFormat::RGB, TexDataType::HalfFloat) => {
let mut rgbf16 = Vec::<u8>::with_capacity(pixel_count * 6);
for rgba8 in pixels.chunks(4) {
rgbf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[0] as f32).as_bits()).unwrap();
rgbf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[1] as f32).as_bits()).unwrap();
rgbf16.write_u16::<NativeEndian>(f16::from_f32(rgba8[2] as f32).as_bits()).unwrap();
}
rgbf16
},
(TexFormat::Alpha, TexDataType::HalfFloat) => {
let mut alpha = Vec::<u8>::with_capacity(pixel_count * 2);
for rgba8 in pixels.chunks(4) {
alpha.write_u16::<NativeEndian>(f16::from_f32(rgba8[3] as f32).as_bits()).unwrap();
}
alpha
},
(TexFormat::Luminance, TexDataType::HalfFloat) => {
let mut lum = Vec::<u8>::with_capacity(pixel_count * 4);
for rgba8 in pixels.chunks(4) {
let p = luminance(rgba8[0], rgba8[1], rgba8[2]);
lum.write_u16::<NativeEndian>(f16::from_f32(p as f32).as_bits()).unwrap();
}
lum
},
(TexFormat::LuminanceAlpha, TexDataType::HalfFloat) => {
let mut data = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
let p = luminance(rgba8[0], rgba8[1], rgba8[2]);
data.write_u16::<NativeEndian>(f16::from_f32(p as f32).as_bits()).unwrap();
data.write_u16::<NativeEndian>(f16::from_f32(rgba8[3] as f32).as_bits()).unwrap();
}
data
},
// Validation should have ensured that we only hit the
// above cases, but we haven't turned the (format, type)
// into an enum yet so there's a default case here.
_ => unreachable!("Unsupported formats {:?} {:?}", format, data_type)
}
}
// https://en.wikipedia.org/wiki/Relative_luminance
#[inline]
fn luminance(r: u8, g: u8, b: u8) -> u8 {
(0.2126 * (r as f32) +
0.7152 * (g as f32) +
0.0722 * (b as f32)) as u8
}