mirror of
https://github.com/servo/servo.git
synced 2025-08-07 14:35:33 +01:00
style: Unify parallel and sequential traversal scheduling
Use in_place_scope_fifo to spawn work into the thread pool while doing work in the main thread. Differential Revision: https://phabricator.services.mozilla.com/D179492
This commit is contained in:
parent
7771cf25a8
commit
23d60c2195
5 changed files with 151 additions and 293 deletions
|
@ -11,7 +11,6 @@ use crate::context::{PerThreadTraversalStatistics, StyleContext};
|
|||
use crate::context::{ThreadLocalStyleContext, TraversalStatistics};
|
||||
use crate::dom::{SendNode, TElement, TNode};
|
||||
use crate::parallel;
|
||||
use crate::parallel::{work_unit_max, DispatchMode};
|
||||
use crate::scoped_tls::ScopedTLS;
|
||||
use crate::traversal::{DomTraversal, PerLevelTraversalData, PreTraverseToken};
|
||||
use rayon;
|
||||
|
@ -48,11 +47,23 @@ fn report_statistics(stats: &PerThreadTraversalStatistics) {
|
|||
gecko_stats.mStylesReused += stats.styles_reused;
|
||||
}
|
||||
|
||||
fn parallelism_threshold() -> usize {
|
||||
#[cfg(feature = "gecko")]
|
||||
return static_prefs::pref!("layout.css.stylo-parallelism-threshold") as usize;
|
||||
#[cfg(feature = "servo")]
|
||||
return 16;
|
||||
fn with_pool_in_place_scope<'scope, R>(
|
||||
work_unit_max: usize,
|
||||
pool: Option<&rayon::ThreadPool>,
|
||||
closure: impl FnOnce(Option<&rayon::ScopeFifo<'scope>>) -> R,
|
||||
) -> R {
|
||||
if work_unit_max == 0 || pool.is_none() {
|
||||
closure(None)
|
||||
} else {
|
||||
pool.unwrap().in_place_scope_fifo(|scope| {
|
||||
closure(Some(scope))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// See documentation of the pref for performance characteristics.
|
||||
fn work_unit_max() -> usize {
|
||||
static_prefs::pref!("layout.css.stylo-work-unit-size") as usize
|
||||
}
|
||||
|
||||
/// Do a DOM traversal for top-down and (optionally) bottom-up processing, generic over `D`.
|
||||
|
@ -95,87 +106,38 @@ where
|
|||
// ThreadLocalStyleContext on the main thread. If the main thread
|
||||
// ThreadLocalStyleContext has not released its TLS borrow by that point,
|
||||
// we'll panic on double-borrow.
|
||||
let mut tls_slots = None;
|
||||
let mut scoped_tls = pool.map(ScopedTLS::<ThreadLocalStyleContext<E>>::new);
|
||||
let mut tlc = ThreadLocalStyleContext::new();
|
||||
let mut context = StyleContext {
|
||||
shared: traversal.shared_context(),
|
||||
thread_local: &mut tlc,
|
||||
};
|
||||
|
||||
// Process the nodes breadth-first, just like the parallel traversal does.
|
||||
// This helps keep similar traversal characteristics for the style sharing
|
||||
// cache.
|
||||
// Process the nodes breadth-first. This helps keep similar traversal characteristics for the
|
||||
// style sharing cache.
|
||||
let work_unit_max = work_unit_max();
|
||||
let parallelism_threshold = parallelism_threshold();
|
||||
let mut discovered = VecDeque::<SendNode<E::ConcreteNode>>::with_capacity(work_unit_max * 2);
|
||||
let mut depth = root.depth();
|
||||
let mut nodes_remaining_at_current_depth = 1;
|
||||
with_pool_in_place_scope(work_unit_max, pool, |maybe_scope| {
|
||||
let mut discovered = VecDeque::with_capacity(work_unit_max * 2);
|
||||
discovered.push_back(unsafe { SendNode::new(root.as_node()) });
|
||||
while let Some(node) = discovered.pop_front() {
|
||||
let mut children_to_process = 0isize;
|
||||
let traversal_data = PerLevelTraversalData {
|
||||
current_dom_depth: depth,
|
||||
};
|
||||
traversal.process_preorder(&traversal_data, &mut context, *node, |n| {
|
||||
children_to_process += 1;
|
||||
discovered.push_back(unsafe { SendNode::new(n) });
|
||||
});
|
||||
|
||||
traversal.handle_postorder_traversal(
|
||||
parallel::style_trees(
|
||||
&mut context,
|
||||
discovered,
|
||||
root.as_node().opaque(),
|
||||
*node,
|
||||
children_to_process,
|
||||
);
|
||||
|
||||
nodes_remaining_at_current_depth -= 1;
|
||||
|
||||
// If there is enough work to parallelize over, and the caller allows parallelism, switch
|
||||
// to the parallel driver. We do this only when moving to the next level in the dom so that
|
||||
// we can pass the same depth for all the children.
|
||||
if nodes_remaining_at_current_depth != 0 {
|
||||
continue;
|
||||
}
|
||||
depth += 1;
|
||||
if pool.is_some() && discovered.len() > parallelism_threshold && parallelism_threshold > 0 {
|
||||
let pool = pool.unwrap();
|
||||
let tls = ScopedTLS::<ThreadLocalStyleContext<E>>::new(pool);
|
||||
let root_opaque = root.as_node().opaque();
|
||||
pool.scope_fifo(|scope| {
|
||||
// Enable a breadth-first rayon traversal. This causes the work
|
||||
// queue to be always FIFO, rather than FIFO for stealers and
|
||||
// FILO for the owner (which is what rayon does by default). This
|
||||
// ensures that we process all the elements at a given depth before
|
||||
// proceeding to the next depth, which is important for style sharing.
|
||||
#[cfg(feature = "gecko")]
|
||||
gecko_profiler_label!(Layout, StyleComputation);
|
||||
parallel::traverse_nodes(
|
||||
discovered.make_contiguous(),
|
||||
DispatchMode::TailCall,
|
||||
/* recursion_ok = */ true,
|
||||
root_opaque,
|
||||
PerLevelTraversalData {
|
||||
current_dom_depth: depth,
|
||||
},
|
||||
scope,
|
||||
pool,
|
||||
work_unit_max,
|
||||
static_prefs::pref!("layout.css.stylo-local-work-queue.in-main-thread") as usize,
|
||||
PerLevelTraversalData { current_dom_depth: root.depth() },
|
||||
maybe_scope,
|
||||
traversal,
|
||||
&tls,
|
||||
scoped_tls.as_ref(),
|
||||
);
|
||||
});
|
||||
|
||||
tls_slots = Some(tls.into_slots());
|
||||
break;
|
||||
}
|
||||
nodes_remaining_at_current_depth = discovered.len();
|
||||
}
|
||||
|
||||
// Collect statistics from thread-locals if requested.
|
||||
if dump_stats || report_stats {
|
||||
let mut aggregate = mem::replace(&mut context.thread_local.statistics, Default::default());
|
||||
let parallel = tls_slots.is_some();
|
||||
if let Some(ref mut tls) = tls_slots {
|
||||
for slot in tls.iter_mut() {
|
||||
let parallel = pool.is_some();
|
||||
if let Some(ref mut tls) = scoped_tls {
|
||||
for slot in tls.slots() {
|
||||
if let Some(cx) = slot.get_mut() {
|
||||
aggregate += cx.statistics.clone();
|
||||
}
|
||||
|
|
|
@ -123,28 +123,29 @@ fn stylo_threads_pref() -> i32 {
|
|||
static_prefs::pref!("layout.css.stylo-threads")
|
||||
}
|
||||
|
||||
/// The performance benefit of additional threads seems to level off at around six, so we cap it
|
||||
/// there on many-core machines (see bug 1431285 comment 14).
|
||||
pub(crate) const STYLO_MAX_THREADS: usize = 6;
|
||||
|
||||
lazy_static! {
|
||||
/// Global thread pool
|
||||
pub static ref STYLE_THREAD_POOL: std::sync::Mutex<StyleThreadPool> = {
|
||||
use std::cmp;
|
||||
// We always set this pref on startup, before layout or script have had a chance of
|
||||
// accessing (and thus creating) the thread-pool.
|
||||
let threads_pref: i32 = stylo_threads_pref();
|
||||
|
||||
let num_threads = if threads_pref >= 0 {
|
||||
threads_pref as usize
|
||||
} else {
|
||||
use num_cpus;
|
||||
use std::cmp;
|
||||
// The default heuristic is num_virtual_cores * .75. This gives us three threads on a
|
||||
// hyper-threaded dual core, and six threads on a hyper-threaded quad core.
|
||||
//
|
||||
// The performance benefit of additional threads seems to level off at around six, so
|
||||
// we cap it there on many-core machines (see bug 1431285 comment 14).
|
||||
let threads = cmp::min(cmp::max(num_cpus::get() * 3 / 4, 1), 6);
|
||||
let threads = cmp::max(num_cpus::get() * 3 / 4, 1);
|
||||
// There's no point in creating a thread pool if there's one thread.
|
||||
if threads == 1 { 0 } else { threads }
|
||||
};
|
||||
|
||||
let num_threads = cmp::min(num_threads, STYLO_MAX_THREADS);
|
||||
let (pool, num_threads) = if num_threads < 1 {
|
||||
(None, None)
|
||||
} else {
|
||||
|
|
|
@ -27,7 +27,7 @@ use crate::dom::{OpaqueNode, SendNode, TElement};
|
|||
use crate::scoped_tls::ScopedTLS;
|
||||
use crate::traversal::{DomTraversal, PerLevelTraversalData};
|
||||
use rayon;
|
||||
use smallvec::SmallVec;
|
||||
use std::collections::VecDeque;
|
||||
|
||||
/// The minimum stack size for a thread in the styling pool, in kilobytes.
|
||||
#[cfg(feature = "gecko")]
|
||||
|
@ -54,17 +54,8 @@ pub const STYLE_THREAD_STACK_SIZE_KB: usize = 512;
|
|||
///
|
||||
/// [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1395708#c15
|
||||
/// [2] See Gecko bug 1376883 for more discussion on the measurements.
|
||||
///
|
||||
pub const STACK_SAFETY_MARGIN_KB: usize = 168;
|
||||
|
||||
/// See documentation of the pref for performance characteristics.
|
||||
pub fn work_unit_max() -> usize {
|
||||
#[cfg(feature = "gecko")]
|
||||
return static_prefs::pref!("layout.css.stylo-work-unit-size") as usize;
|
||||
#[cfg(feature = "servo")]
|
||||
return 16;
|
||||
}
|
||||
|
||||
/// A callback to create our thread local context. This needs to be
|
||||
/// out of line so we don't allocate stack space for the entire struct
|
||||
/// in the caller.
|
||||
|
@ -76,223 +67,130 @@ where
|
|||
*slot = Some(ThreadLocalStyleContext::new());
|
||||
}
|
||||
|
||||
/// A parallel top-down DOM traversal.
|
||||
///
|
||||
/// This algorithm traverses the DOM in a breadth-first, top-down manner. The
|
||||
/// goals are:
|
||||
/// * Never process a child before its parent (since child style depends on
|
||||
/// parent style). If this were to happen, the styling algorithm would panic.
|
||||
/// * Prioritize discovering nodes as quickly as possible to maximize
|
||||
/// opportunities for parallelism. But this needs to be weighed against
|
||||
/// styling cousins on a single thread to improve sharing.
|
||||
/// * Style all the children of a given node (i.e. all sibling nodes) on
|
||||
/// a single thread (with an upper bound to handle nodes with an
|
||||
/// abnormally large number of children). This is important because we use
|
||||
/// a thread-local cache to share styles between siblings.
|
||||
#[inline(always)]
|
||||
#[allow(unsafe_code)]
|
||||
fn top_down_dom<'a, 'scope, E, D>(
|
||||
nodes: &'a [SendNode<E::ConcreteNode>],
|
||||
root: OpaqueNode,
|
||||
mut traversal_data: PerLevelTraversalData,
|
||||
// Sends one chunk of work to the thread-pool.
|
||||
fn distribute_one_chunk<'a, 'scope, E, D>(
|
||||
items: VecDeque<SendNode<E::ConcreteNode>>,
|
||||
traversal_root: OpaqueNode,
|
||||
work_unit_max: usize,
|
||||
traversal_data: PerLevelTraversalData,
|
||||
scope: &'a rayon::ScopeFifo<'scope>,
|
||||
pool: &'scope rayon::ThreadPool,
|
||||
traversal: &'scope D,
|
||||
tls: &'scope ScopedTLS<'scope, ThreadLocalStyleContext<E>>,
|
||||
) where
|
||||
E: TElement + 'scope,
|
||||
D: DomTraversal<E>,
|
||||
{
|
||||
let work_unit_max = work_unit_max();
|
||||
debug_assert!(nodes.len() <= work_unit_max);
|
||||
|
||||
// We set this below, when we have a borrow of the thread-local-context
|
||||
// available.
|
||||
let recursion_ok;
|
||||
|
||||
// Collect all the children of the elements in our work unit. This will
|
||||
// contain the combined children of up to work_unit_max nodes, which may
|
||||
// be numerous. As such, we store it in a large SmallVec to minimize heap-
|
||||
// spilling, and never move it.
|
||||
let mut discovered_child_nodes = SmallVec::<[SendNode<E::ConcreteNode>; 128]>::new();
|
||||
{
|
||||
// Scope the borrow of the TLS so that the borrow is dropped before
|
||||
// a potential recursive call when we pass TailCall.
|
||||
let mut tlc = tls.ensure(|slot: &mut Option<ThreadLocalStyleContext<E>>| {
|
||||
create_thread_local_context(slot)
|
||||
});
|
||||
|
||||
// Check that we're not in danger of running out of stack.
|
||||
recursion_ok = !tlc.stack_limit_checker.limit_exceeded();
|
||||
|
||||
scope.spawn_fifo(move |scope| {
|
||||
gecko_profiler_label!(Layout, StyleComputation);
|
||||
let mut tlc = tls.ensure(create_thread_local_context);
|
||||
let mut context = StyleContext {
|
||||
shared: traversal.shared_context(),
|
||||
thread_local: &mut *tlc,
|
||||
};
|
||||
|
||||
for n in nodes {
|
||||
// If the last node we processed produced children, we may want to
|
||||
// spawn them off into a work item. We do this at the beginning of
|
||||
// the loop (rather than at the end) so that we can traverse our
|
||||
// last bits of work directly on this thread without a spawn call.
|
||||
//
|
||||
// This has the important effect of removing the allocation and
|
||||
// context-switching overhead of the parallel traversal for perfectly
|
||||
// linear regions of the DOM, i.e.:
|
||||
//
|
||||
// <russian><doll><tag><nesting></nesting></tag></doll></russian>
|
||||
//
|
||||
// which are not at all uncommon.
|
||||
//
|
||||
// There's a tension here between spawning off a work item as soon
|
||||
// as discovered_child_nodes is nonempty and waiting until we have a
|
||||
// full work item to do so. The former optimizes for speed of
|
||||
// discovery (we'll start discovering the kids of the things in
|
||||
// "nodes" ASAP). The latter gives us better sharing (e.g. we can
|
||||
// share between cousins much better, because we don't hand them off
|
||||
// as separate work items, which are likely to end up on separate
|
||||
// threads) and gives us a chance to just handle everything on this
|
||||
// thread for small DOM subtrees, as in the linear example above.
|
||||
//
|
||||
// There are performance and "number of ComputedValues"
|
||||
// measurements for various testcases in
|
||||
// https://bugzilla.mozilla.org/show_bug.cgi?id=1385982#c10 and
|
||||
// following.
|
||||
//
|
||||
// The worst case behavior for waiting until we have a full work
|
||||
// item is a deep tree which has work_unit_max "linear" branches,
|
||||
// hence work_unit_max elements at each level. Such a tree would
|
||||
// end up getting processed entirely sequentially, because we would
|
||||
// process each level one at a time as a single work unit, whether
|
||||
// via our end-of-loop tail call or not. If we kicked off a
|
||||
// traversal as soon as we discovered kids, we would instead
|
||||
// process such a tree more or less with a thread-per-branch,
|
||||
// multiplexed across our actual threadpool.
|
||||
if discovered_child_nodes.len() >= work_unit_max {
|
||||
let mut traversal_data_copy = traversal_data.clone();
|
||||
traversal_data_copy.current_dom_depth += 1;
|
||||
traverse_nodes(
|
||||
&discovered_child_nodes,
|
||||
DispatchMode::NotTailCall,
|
||||
recursion_ok,
|
||||
root,
|
||||
traversal_data_copy,
|
||||
scope,
|
||||
pool,
|
||||
traversal,
|
||||
tls,
|
||||
);
|
||||
discovered_child_nodes.clear();
|
||||
}
|
||||
|
||||
let node = **n;
|
||||
let mut children_to_process = 0isize;
|
||||
traversal.process_preorder(&traversal_data, &mut context, node, |n| {
|
||||
children_to_process += 1;
|
||||
let send_n = unsafe { SendNode::new(n) };
|
||||
discovered_child_nodes.push(send_n);
|
||||
});
|
||||
|
||||
traversal.handle_postorder_traversal(&mut context, root, node, children_to_process);
|
||||
}
|
||||
}
|
||||
|
||||
// Handle whatever elements we have queued up but not kicked off traversals
|
||||
// for yet. If any exist, we can process them (or at least one work unit's
|
||||
// worth of them) directly on this thread by passing TailCall.
|
||||
if !discovered_child_nodes.is_empty() {
|
||||
traversal_data.current_dom_depth += 1;
|
||||
traverse_nodes(
|
||||
&discovered_child_nodes,
|
||||
DispatchMode::TailCall,
|
||||
recursion_ok,
|
||||
root,
|
||||
style_trees(
|
||||
&mut context,
|
||||
items,
|
||||
traversal_root,
|
||||
work_unit_max,
|
||||
static_prefs::pref!("layout.css.stylo-local-work-queue.in-worker") as usize,
|
||||
traversal_data,
|
||||
scope,
|
||||
pool,
|
||||
Some(scope),
|
||||
traversal,
|
||||
tls,
|
||||
Some(tls),
|
||||
);
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Controls whether traverse_nodes may make a recursive call to continue
|
||||
/// doing work, or whether it should always dispatch work asynchronously.
|
||||
#[derive(Clone, Copy, PartialEq)]
|
||||
pub enum DispatchMode {
|
||||
/// This is the last operation by the caller.
|
||||
TailCall,
|
||||
/// This is not the last operation by the caller.
|
||||
NotTailCall,
|
||||
}
|
||||
|
||||
impl DispatchMode {
|
||||
fn is_tail_call(&self) -> bool {
|
||||
matches!(*self, DispatchMode::TailCall)
|
||||
}
|
||||
}
|
||||
|
||||
/// Enqueues |nodes| for processing, possibly on this thread if the tail call
|
||||
/// conditions are met.
|
||||
#[inline]
|
||||
pub fn traverse_nodes<'a, 'scope, E, D>(
|
||||
nodes: &[SendNode<E::ConcreteNode>],
|
||||
mode: DispatchMode,
|
||||
recursion_ok: bool,
|
||||
root: OpaqueNode,
|
||||
/// Distributes all items into the thread pool, in `work_unit_max` chunks.
|
||||
fn distribute_work<'a, 'scope, E, D>(
|
||||
mut items: VecDeque<SendNode<E::ConcreteNode>>,
|
||||
traversal_root: OpaqueNode,
|
||||
work_unit_max: usize,
|
||||
traversal_data: PerLevelTraversalData,
|
||||
scope: &'a rayon::ScopeFifo<'scope>,
|
||||
pool: &'scope rayon::ThreadPool,
|
||||
traversal: &'scope D,
|
||||
tls: &'scope ScopedTLS<'scope, ThreadLocalStyleContext<E>>,
|
||||
) where
|
||||
E: TElement + 'scope,
|
||||
D: DomTraversal<E>,
|
||||
{
|
||||
debug_assert_ne!(nodes.len(), 0);
|
||||
|
||||
// This is a tail call from the perspective of the caller. However, we only
|
||||
// want to actually dispatch the job as a tail call if there's nothing left
|
||||
// in our local queue. Otherwise we need to return to it to maintain proper
|
||||
// breadth-first ordering. We also need to take care to avoid stack
|
||||
// overflow due to excessive tail recursion. The stack overflow avoidance
|
||||
// isn't observable to content -- we're still completely correct, just not
|
||||
// using tail recursion any more. See Gecko bugs 1368302 and 1376883.
|
||||
let may_dispatch_tail =
|
||||
mode.is_tail_call() && recursion_ok && !pool.current_thread_has_pending_tasks().unwrap();
|
||||
|
||||
let work_unit_max = work_unit_max();
|
||||
// In the common case, our children fit within a single work unit, in which case we can pass
|
||||
// the nodes directly and avoid extra allocation.
|
||||
if nodes.len() <= work_unit_max {
|
||||
if may_dispatch_tail {
|
||||
top_down_dom(&nodes, root, traversal_data, scope, pool, traversal, tls);
|
||||
} else {
|
||||
let work = nodes.to_vec();
|
||||
scope.spawn_fifo(move |scope| {
|
||||
#[cfg(feature = "gecko")]
|
||||
gecko_profiler_label!(Layout, StyleComputation);
|
||||
top_down_dom(&work, root, traversal_data, scope, pool, traversal, tls);
|
||||
});
|
||||
}
|
||||
} else {
|
||||
for chunk in nodes.chunks(work_unit_max) {
|
||||
let work = chunk.to_vec();
|
||||
let traversal_data_copy = traversal_data.clone();
|
||||
scope.spawn_fifo(move |scope| {
|
||||
#[cfg(feature = "gecko")]
|
||||
gecko_profiler_label!(Layout, StyleComputation);
|
||||
let work = work;
|
||||
top_down_dom(
|
||||
&work,
|
||||
root,
|
||||
traversal_data_copy,
|
||||
while items.len() > work_unit_max {
|
||||
let rest = items.split_off(work_unit_max);
|
||||
distribute_one_chunk(
|
||||
items,
|
||||
traversal_root,
|
||||
work_unit_max,
|
||||
traversal_data,
|
||||
scope,
|
||||
pool,
|
||||
traversal,
|
||||
tls,
|
||||
)
|
||||
);
|
||||
items = rest;
|
||||
}
|
||||
distribute_one_chunk(
|
||||
items,
|
||||
traversal_root,
|
||||
work_unit_max,
|
||||
traversal_data,
|
||||
scope,
|
||||
traversal,
|
||||
tls,
|
||||
);
|
||||
}
|
||||
|
||||
/// Processes `discovered` items, possibly spawning work in other threads as needed.
|
||||
#[inline]
|
||||
pub fn style_trees<'a, 'scope, E, D>(
|
||||
context: &mut StyleContext<E>,
|
||||
mut discovered: VecDeque<SendNode<E::ConcreteNode>>,
|
||||
traversal_root: OpaqueNode,
|
||||
work_unit_max: usize,
|
||||
local_queue_size: usize,
|
||||
mut traversal_data: PerLevelTraversalData,
|
||||
scope: Option<&'a rayon::ScopeFifo<'scope>>,
|
||||
traversal: &'scope D,
|
||||
tls: Option<&'scope ScopedTLS<'scope, ThreadLocalStyleContext<E>>>,
|
||||
) where
|
||||
E: TElement + 'scope,
|
||||
D: DomTraversal<E>,
|
||||
{
|
||||
let mut nodes_remaining_at_current_depth = discovered.len();
|
||||
while let Some(node) = discovered.pop_front() {
|
||||
let mut children_to_process = 0isize;
|
||||
traversal.process_preorder(&traversal_data, context, *node, |n| {
|
||||
children_to_process += 1;
|
||||
discovered.push_back(unsafe { SendNode::new(n) });
|
||||
});
|
||||
|
||||
traversal.handle_postorder_traversal(context, traversal_root, *node, children_to_process);
|
||||
|
||||
nodes_remaining_at_current_depth -= 1;
|
||||
|
||||
// If we have enough children at the next depth in the DOM, spawn them to a different job
|
||||
// relatively soon, while keeping always at least `local_queue_size` worth of work for
|
||||
// ourselves.
|
||||
let discovered_children = discovered.len() - nodes_remaining_at_current_depth;
|
||||
if discovered_children >= work_unit_max &&
|
||||
discovered.len() >= local_queue_size + work_unit_max &&
|
||||
scope.is_some()
|
||||
{
|
||||
let kept_work = std::cmp::max(nodes_remaining_at_current_depth, local_queue_size);
|
||||
let mut traversal_data_copy = traversal_data.clone();
|
||||
traversal_data_copy.current_dom_depth += 1;
|
||||
distribute_work(
|
||||
discovered.split_off(kept_work),
|
||||
traversal_root,
|
||||
work_unit_max,
|
||||
traversal_data_copy,
|
||||
scope.unwrap(),
|
||||
traversal,
|
||||
tls.unwrap(),
|
||||
);
|
||||
}
|
||||
|
||||
if nodes_remaining_at_current_depth == 0 {
|
||||
traversal_data.current_dom_depth += 1;
|
||||
nodes_remaining_at_current_depth = discovered.len();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
#![allow(unsafe_code)]
|
||||
#![deny(missing_docs)]
|
||||
|
||||
use crate::global_style_data::STYLO_MAX_THREADS;
|
||||
use rayon;
|
||||
use std::cell::{Ref, RefCell, RefMut};
|
||||
use std::ops::DerefMut;
|
||||
|
@ -20,7 +21,7 @@ use std::ops::DerefMut;
|
|||
/// the Send bound.
|
||||
pub struct ScopedTLS<'scope, T: Send> {
|
||||
pool: &'scope rayon::ThreadPool,
|
||||
slots: Box<[RefCell<Option<T>>]>,
|
||||
slots: [RefCell<Option<T>>; STYLO_MAX_THREADS],
|
||||
}
|
||||
|
||||
/// The scoped TLS is `Sync` because no more than one worker thread can access a
|
||||
|
@ -30,16 +31,11 @@ unsafe impl<'scope, T: Send> Sync for ScopedTLS<'scope, T> {}
|
|||
impl<'scope, T: Send> ScopedTLS<'scope, T> {
|
||||
/// Create a new scoped TLS that will last as long as this rayon threadpool
|
||||
/// reference.
|
||||
pub fn new(p: &'scope rayon::ThreadPool) -> Self {
|
||||
let count = p.current_num_threads();
|
||||
let mut v = Vec::with_capacity(count);
|
||||
for _ in 0..count {
|
||||
v.push(RefCell::new(None));
|
||||
}
|
||||
|
||||
pub fn new(pool: &'scope rayon::ThreadPool) -> Self {
|
||||
debug_assert!(pool.current_num_threads() <= STYLO_MAX_THREADS);
|
||||
ScopedTLS {
|
||||
pool: p,
|
||||
slots: v.into_boxed_slice(),
|
||||
pool,
|
||||
slots: Default::default(),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -71,8 +67,9 @@ impl<'scope, T: Send> ScopedTLS<'scope, T> {
|
|||
RefMut::map(opt, |x| x.as_mut().unwrap())
|
||||
}
|
||||
|
||||
/// Returns the slots, consuming the scope.
|
||||
pub fn into_slots(self) -> Box<[RefCell<Option<T>>]> {
|
||||
self.slots
|
||||
/// Returns the slots. Safe because if we have a mut reference the tls can't be referenced by
|
||||
/// any other thread.
|
||||
pub fn slots(&mut self) -> &mut [RefCell<Option<T>>] {
|
||||
&mut self.slots
|
||||
}
|
||||
}
|
||||
|
|
|
@ -26,7 +26,7 @@ pub type UndisplayedStyleCache =
|
|||
/// currently only holds the dom depth for the bloom filter.
|
||||
///
|
||||
/// NB: Keep this as small as possible, please!
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct PerLevelTraversalData {
|
||||
/// The current dom depth.
|
||||
///
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue