Factors out DOM traversal, keeping the code in parallel free of traversal-specific logic.

DOM traversals and Flow traversals look very similar. This patch unifies them
with the preorder/postorder pattern. Hopefully, it also opens the door for writing
the traversal code only once, instead of the duplication we have today.
This commit is contained in:
Clark Gaebel 2014-10-10 14:27:38 -04:00
parent bfb81a5d10
commit 24bff2416b
5 changed files with 501 additions and 403 deletions

View file

@ -16,6 +16,7 @@ use flow_ref::FlowRef;
use layout_debug; use layout_debug;
use parallel::UnsafeFlow; use parallel::UnsafeFlow;
use parallel; use parallel;
use traversal;
use util::{LayoutDataAccess, LayoutDataWrapper, OpaqueNodeMethods, ToGfxColor}; use util::{LayoutDataAccess, LayoutDataWrapper, OpaqueNodeMethods, ToGfxColor};
use wrapper::{LayoutNode, TLayoutNode, ThreadSafeLayoutNode}; use wrapper::{LayoutNode, TLayoutNode, ThreadSafeLayoutNode};
@ -146,108 +147,6 @@ pub struct LayoutTask {
pub rw_data: Arc<Mutex<LayoutTaskData>>, pub rw_data: Arc<Mutex<LayoutTaskData>>,
} }
/// The flow tree verification traversal. This is only on in debug builds.
#[cfg(debug)]
struct FlowTreeVerificationTraversal;
#[cfg(debug)]
impl PreorderFlowTraversal for FlowTreeVerificationTraversal {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
let base = flow::base(flow);
if !base.flags.is_leaf() && !base.flags.is_nonleaf() {
println("flow tree verification failed: flow wasn't a leaf or a nonleaf!");
flow.dump();
fail!("flow tree verification failed")
}
true
}
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes preferred
/// and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizesTraversal<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizesTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.bubble_inline_sizes(self.layout_context);
true
}
// FIXME: We can't prune until we start reusing flows
/*
#[inline]
fn should_prune(&mut self, flow: &mut Flow) -> bool {
flow::mut_base(flow).restyle_damage.lacks(BubbleISizes)
}
*/
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
pub struct AssignISizesTraversal<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizesTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_inline_sizes(self.layout_context);
true
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of layout
/// computation. Determines the final block-sizes for all layout objects, computes positions, and
/// computes overflow regions. In Gecko this corresponds to `FinishAndStoreOverflow`.
pub struct AssignBSizesAndStoreOverflowTraversal<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizesAndStoreOverflowTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_block_size(self.layout_context);
// Skip store-overflow for absolutely positioned flows. That will be
// done in a separate traversal.
if !flow.is_store_overflow_delayed() {
flow.store_overflow(self.layout_context);
}
true
}
#[inline]
fn should_process(&mut self, flow: &mut Flow) -> bool {
!flow::base(flow).flags.impacted_by_floats()
}
}
/// The display list construction traversal.
pub struct BuildDisplayListTraversal<'a> {
layout_context: &'a LayoutContext<'a>,
}
impl<'a> BuildDisplayListTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) {
flow.compute_absolute_position();
for kid in flow::mut_base(flow).child_iter() {
if !kid.is_absolutely_positioned() {
self.process(kid)
}
}
for absolute_descendant_link in flow::mut_base(flow).abs_descendants.iter() {
self.process(absolute_descendant_link)
}
flow.build_display_list(self.layout_context)
}
}
struct LayoutImageResponder { struct LayoutImageResponder {
id: PipelineId, id: PipelineId,
script_chan: ScriptControlChan, script_chan: ScriptControlChan,
@ -617,7 +516,7 @@ impl LayoutTask {
let _scope = layout_debug_scope!("solve_constraints"); let _scope = layout_debug_scope!("solve_constraints");
if layout_context.shared.opts.bubble_inline_sizes_separately { if layout_context.shared.opts.bubble_inline_sizes_separately {
let mut traversal = BubbleISizesTraversal { let mut traversal = traversal::BubbleISizes {
layout_context: layout_context, layout_context: layout_context,
}; };
layout_root.traverse_postorder(&mut traversal); layout_root.traverse_postorder(&mut traversal);
@ -625,14 +524,14 @@ impl LayoutTask {
// FIXME(pcwalton): Prune these two passes. // FIXME(pcwalton): Prune these two passes.
{ {
let mut traversal = AssignISizesTraversal { let mut traversal = traversal::AssignISizes {
layout_context: layout_context, layout_context: layout_context,
}; };
layout_root.traverse_preorder(&mut traversal); layout_root.traverse_preorder(&mut traversal);
} }
{ {
let mut traversal = AssignBSizesAndStoreOverflowTraversal { let mut traversal = traversal::AssignBSizesAndStoreOverflow {
layout_context: layout_context, layout_context: layout_context,
}; };
layout_root.traverse_postorder(&mut traversal); layout_root.traverse_postorder(&mut traversal);
@ -650,7 +549,7 @@ impl LayoutTask {
layout_root: &mut FlowRef, layout_root: &mut FlowRef,
shared_layout_context: &SharedLayoutContext) { shared_layout_context: &SharedLayoutContext) {
if shared_layout_context.opts.bubble_inline_sizes_separately { if shared_layout_context.opts.bubble_inline_sizes_separately {
let mut traversal = BubbleISizesTraversal { let mut traversal = traversal::BubbleISizes {
layout_context: &LayoutContext::new(shared_layout_context), layout_context: &LayoutContext::new(shared_layout_context),
}; };
layout_root.get_mut().traverse_postorder(&mut traversal); layout_root.get_mut().traverse_postorder(&mut traversal);
@ -677,7 +576,7 @@ impl LayoutTask {
#[inline(never)] #[inline(never)]
#[cfg(debug)] #[cfg(debug)]
fn verify_flow_tree(&self, layout_root: &mut FlowRef) { fn verify_flow_tree(&self, layout_root: &mut FlowRef) {
let mut traversal = FlowTreeVerificationTraversal; let mut traversal = traversal::FlowTreeVerification;
layout_root.traverse_preorder(&mut traversal); layout_root.traverse_preorder(&mut traversal);
} }
@ -757,7 +656,7 @@ impl LayoutTask {
None) None)
} }
Some(ref mut traversal) => { Some(ref mut traversal) => {
parallel::recalc_style_for_subtree(node, &mut shared_layout_ctx, traversal) parallel::traverse_dom_preorder(*node, &mut shared_layout_ctx, traversal)
} }
} }
@ -807,7 +706,7 @@ impl LayoutTask {
match rw_data.parallel_traversal { match rw_data.parallel_traversal {
None => { None => {
let layout_ctx = LayoutContext::new(&shared_layout_ctx); let layout_ctx = LayoutContext::new(&shared_layout_ctx);
let mut traversal = BuildDisplayListTraversal { let mut traversal = traversal::BuildDisplayList {
layout_context: &layout_ctx, layout_context: &layout_ctx,
}; };
traversal.process(layout_root.get_mut()); traversal.process(layout_root.get_mut());

View file

@ -62,6 +62,7 @@ pub mod table_rowgroup;
pub mod table_row; pub mod table_row;
pub mod table_cell; pub mod table_cell;
pub mod text; pub mod text;
pub mod traversal;
pub mod util; pub mod util;
pub mod incremental; pub mod incremental;
pub mod wrapper; pub mod wrapper;

View file

@ -6,32 +6,24 @@
//! //!
//! This code is highly unsafe. Keep this file small and easy to audit. //! This code is highly unsafe. Keep this file small and easy to audit.
use css::node_style::StyledNode;
use css::matching::{ApplicableDeclarations, CannotShare, MatchMethods, StyleWasShared};
use construct::FlowConstructor;
use context::{LayoutContext, SharedLayoutContext}; use context::{LayoutContext, SharedLayoutContext};
use flow::{Flow, MutableFlowUtils, PreorderFlowTraversal, PostorderFlowTraversal}; use flow::{Flow, MutableFlowUtils, PreorderFlowTraversal, PostorderFlowTraversal};
use flow; use flow;
use flow_ref::FlowRef; use flow_ref::FlowRef;
use incremental::RestyleDamage; use traversal::{RecalcStyleForNode, ConstructFlows};
use layout_task::{AssignBSizesAndStoreOverflowTraversal, AssignISizesTraversal}; use traversal::{AssignBSizesAndStoreOverflow, AssignISizes, BubbleISizes};
use layout_task::{BubbleISizesTraversal};
use url::Url; use url::Url;
use util::{LayoutDataAccess, LayoutDataWrapper, OpaqueNodeMethods}; use util::{LayoutDataAccess, LayoutDataWrapper};
use wrapper::{layout_node_to_unsafe_layout_node, layout_node_from_unsafe_layout_node, LayoutNode}; use wrapper::{layout_node_to_unsafe_layout_node, layout_node_from_unsafe_layout_node, LayoutNode};
use wrapper::{PostorderNodeMutTraversal, ThreadSafeLayoutNode, UnsafeLayoutNode}; use wrapper::{PostorderNodeMutTraversal, UnsafeLayoutNode};
use wrapper::{PreorderDOMTraversal, PostorderDOMTraversal};
use gfx::display_list::OpaqueNode;
use servo_util::bloom::BloomFilter;
use servo_util::tid::tid;
use servo_util::time::{TimeProfilerChan, profile}; use servo_util::time::{TimeProfilerChan, profile};
use servo_util::time; use servo_util::time;
use servo_util::workqueue::{WorkQueue, WorkUnit, WorkerProxy}; use servo_util::workqueue::{WorkQueue, WorkUnit, WorkerProxy};
use std::mem; use std::mem;
use std::ptr; use std::ptr;
use std::sync::atomics::{AtomicInt, Relaxed, SeqCst}; use std::sync::atomics::{AtomicInt, Relaxed, SeqCst};
use style;
use style::TNode;
#[allow(dead_code)] #[allow(dead_code)]
fn static_assertion(node: UnsafeLayoutNode) { fn static_assertion(node: UnsafeLayoutNode) {
@ -85,6 +77,113 @@ impl DomParallelInfo {
} }
} }
/// A parallel top-down DOM traversal.
pub trait ParallelPreorderDOMTraversal : PreorderDOMTraversal {
fn run_parallel(&mut self,
node: UnsafeLayoutNode,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeLayoutNode>);
#[inline(always)]
fn run_parallel_helper(&mut self,
unsafe_node: UnsafeLayoutNode,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeLayoutNode>,
top_down_func: extern "Rust" fn(UnsafeFlow,
&mut WorkerProxy<*const SharedLayoutContext,
UnsafeLayoutNode>),
bottom_up_func: extern "Rust" fn(UnsafeFlow,
&mut WorkerProxy<*const SharedLayoutContext,
UnsafeFlow>)) {
// Get a real layout node.
let node: LayoutNode = unsafe {
layout_node_from_unsafe_layout_node(&unsafe_node)
};
// Perform the appropriate traversal.
self.process(node);
// NB: O(n).
let child_count = node.children().count();
// Reset the count of children.
{
let mut layout_data_ref = node.mutate_layout_data();
let layout_data = layout_data_ref.as_mut().expect("no layout data");
layout_data.data.parallel.children_count.store(child_count as int, Relaxed);
}
// Possibly enqueue the children.
if child_count != 0 {
for kid in node.children() {
proxy.push(WorkUnit {
fun: top_down_func,
data: layout_node_to_unsafe_layout_node(&kid),
});
}
} else {
// If there were no more children, start walking back up.
bottom_up_func(unsafe_node, proxy)
}
}
}
/// A parallel bottom-up DOM traversal.
trait ParallelPostorderDOMTraversal : PostorderDOMTraversal {
/// Process current node and potentially traverse its ancestors.
///
/// If we are the last child that finished processing, recursively process
/// our parent. Else, stop. Also, stop at the root.
///
/// Thus, if we start with all the leaves of a tree, we end up traversing
/// the whole tree bottom-up because each parent will be processed exactly
/// once (by the last child that finishes processing).
///
/// The only communication between siblings is that they both
/// fetch-and-subtract the parent's children count.
fn run_parallel(&mut self,
mut unsafe_node: UnsafeLayoutNode,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeLayoutNode>) {
loop {
// Get a real layout node.
let node: LayoutNode = unsafe {
layout_node_from_unsafe_layout_node(&unsafe_node)
};
// Perform the appropriate traversal.
self.process(node);
let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context);
let parent =
match node.layout_parent_node(layout_context.shared) {
None => break,
Some(parent) => parent,
};
unsafe {
let parent_layout_data =
(*parent.borrow_layout_data_unchecked())
.as_ref()
.expect("no layout data");
unsafe_node = layout_node_to_unsafe_layout_node(&parent);
let parent_layout_data: &mut LayoutDataWrapper = mem::transmute(parent_layout_data);
if parent_layout_data
.data
.parallel
.children_count
.fetch_sub(1, SeqCst) == 1 {
// We were the last child of our parent. Construct flows for our parent.
} else {
// Get out of here and find another node to work on.
break
}
}
}
}
}
/// Information that we need stored in each flow. /// Information that we need stored in each flow.
pub struct FlowParallelInfo { pub struct FlowParallelInfo {
/// The number of children that still need work done. /// The number of children that still need work done.
@ -131,6 +230,7 @@ trait ParallelPostorderFlowTraversal : PostorderFlowTraversal {
self.process(flow.get_mut()); self.process(flow.get_mut());
} }
let base = flow::mut_base(flow.get_mut()); let base = flow::mut_base(flow.get_mut());
// Reset the count of children for the next layout traversal. // Reset the count of children for the next layout traversal.
@ -204,9 +304,9 @@ trait ParallelPreorderFlowTraversal : PreorderFlowTraversal {
} }
} }
impl<'a> ParallelPostorderFlowTraversal for BubbleISizesTraversal<'a> {} impl<'a> ParallelPostorderFlowTraversal for BubbleISizes<'a> {}
impl<'a> ParallelPreorderFlowTraversal for AssignISizesTraversal<'a> { impl<'a> ParallelPreorderFlowTraversal for AssignISizes<'a> {
fn run_parallel(&mut self, fn run_parallel(&mut self,
unsafe_flow: UnsafeFlow, unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) { proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
@ -217,291 +317,46 @@ impl<'a> ParallelPreorderFlowTraversal for AssignISizesTraversal<'a> {
} }
} }
impl<'a> ParallelPostorderFlowTraversal for AssignBSizesAndStoreOverflowTraversal<'a> {} impl<'a> ParallelPostorderFlowTraversal for AssignBSizesAndStoreOverflow<'a> {}
/// Every time we do another layout, the old bloom filters are invalid. This is impl<'a> ParallelPostorderDOMTraversal for ConstructFlows<'a> {}
/// detected by ticking a generation number every layout.
type Generation = uint;
/// A pair of the bloom filter used for css selector matching, and the node to impl <'a> ParallelPreorderDOMTraversal for RecalcStyleForNode<'a> {
/// which it applies. This is used to efficiently do `Descendant` selector fn run_parallel(&mut self,
/// matches. Thanks to the bloom filter, we can avoid walking up the tree unsafe_node: UnsafeLayoutNode,
/// looking for ancestors that aren't there in the majority of cases. proxy: &mut WorkerProxy<*const SharedLayoutContext, UnsafeLayoutNode>) {
/// self.run_parallel_helper(unsafe_node,
/// As we walk down the DOM tree a task-local bloom filter is built of all the proxy,
/// CSS `SimpleSelector`s which are part of a `Descendant` compound selector recalc_style,
/// (i.e. paired with a `Descendant` combinator, in the `next` field of a construct_flows)
/// `CompoundSelector`.
///
/// Before a `Descendant` selector match is tried, it's compared against the
/// bloom filter. If the bloom filter can exclude it, the selector is quickly
/// rejected.
///
/// When done styling a node, all selectors previously inserted into the filter
/// are removed.
///
/// Since a work-stealing queue is used for styling, sometimes, the bloom filter
/// will no longer be the for the parent of the node we're currently on. When
/// this happens, the task local bloom filter will be thrown away and rebuilt.
local_data_key!(style_bloom: (BloomFilter, UnsafeLayoutNode, Generation))
/// Returns the task local bloom filter.
///
/// If one does not exist, a new one will be made for you. If it is out of date,
/// it will be thrown out and a new one will be made for you.
fn take_task_local_bloom_filter(
parent_node: Option<LayoutNode>,
layout_context: &LayoutContext)
-> BloomFilter {
let new_bloom =
|p: Option<LayoutNode>| -> BloomFilter {
let mut bf = BloomFilter::new(style::RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE);
p.map(|p| insert_ancestors_into_bloom_filter(&mut bf, p, layout_context));
if p.is_none() {
debug!("[{}] No parent, but new bloom filter!", tid());
}
bf
};
match (parent_node, style_bloom.replace(None)) {
// Root node. Needs new bloom filter.
(None, _ ) => new_bloom(None),
// No bloom filter for this thread yet.
(Some(p), None) => new_bloom(Some(p)),
// Found cached bloom filter.
(Some(p), Some((bf, old_node, old_generation))) => {
// Hey, the cached parent is our parent! We can reuse the bloom filter.
if old_node == layout_node_to_unsafe_layout_node(&p) &&
old_generation == layout_context.shared.generation {
debug!("[{}] Parent matches (={}). Reusing bloom filter.", tid(), old_node.val0());
bf
// Oh no. the cached parent is stale. I guess we need a new one...
} else {
new_bloom(Some(p))
}
},
} }
} }
fn put_task_local_bloom_filter(bf: BloomFilter, unsafe_node: &UnsafeLayoutNode, layout_context: &LayoutContext) { fn recalc_style(unsafe_node: UnsafeLayoutNode,
match style_bloom.replace(Some((bf, *unsafe_node, layout_context.shared.generation))) { proxy: &mut WorkerProxy<*const SharedLayoutContext, UnsafeLayoutNode>) {
None => {},
Some(_) => fail!("Putting into a never-taken task-local bloom filter"),
}
}
/// "Ancestors" in this context is inclusive of ourselves.
fn insert_ancestors_into_bloom_filter(
bf: &mut BloomFilter, mut n: LayoutNode, layout_context: &LayoutContext) {
debug!("[{}] Inserting ancestors.", tid());
let mut ancestors = 0u;
loop {
ancestors += 1;
n.insert_into_bloom_filter(bf);
n = match n.layout_parent_node(layout_context.shared) {
None => break,
Some(p) => p,
};
}
debug!("[{}] Inserted {} ancestors.", tid(), ancestors);
}
fn recalc_style_for_node(mut unsafe_layout_node: UnsafeLayoutNode,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeLayoutNode>) {
let shared_layout_context = unsafe { &**proxy.user_data() }; let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context); let layout_context = LayoutContext::new(shared_layout_context);
let mut recalc_style_for_node_traversal = RecalcStyleForNode {
// Get a real layout node. layout_context: &layout_context,
let node: LayoutNode = unsafe {
layout_node_from_unsafe_layout_node(&unsafe_layout_node)
}; };
recalc_style_for_node_traversal.run_parallel(unsafe_node, proxy)
// Initialize layout data.
//
// FIXME(pcwalton): Stop allocating here. Ideally this should just be done by the HTML
// parser.
node.initialize_layout_data(layout_context.shared.layout_chan.clone());
// Get the parent node.
let parent_opt = node.layout_parent_node(layout_context.shared);
// Get the style bloom filter.
let bf = take_task_local_bloom_filter(parent_opt, &layout_context);
// Just needs to be wrapped in an option for `match_node`.
let some_bf = Some(bf);
if node.is_dirty() {
// First, check to see whether we can share a style with someone.
let style_sharing_candidate_cache = layout_context.style_sharing_candidate_cache();
let sharing_result = unsafe {
node.share_style_if_possible(style_sharing_candidate_cache,
parent_opt.clone())
};
// Otherwise, match and cascade selectors.
match sharing_result {
CannotShare(mut shareable) => {
let mut applicable_declarations = ApplicableDeclarations::new();
if node.is_element() {
// Perform the CSS selector matching.
let stylist = unsafe { &*layout_context.shared.stylist };
node.match_node(stylist, &some_bf, &mut applicable_declarations, &mut shareable);
}
// Perform the CSS cascade.
unsafe {
node.cascade_node(parent_opt,
&applicable_declarations,
layout_context.applicable_declarations_cache());
}
// Add ourselves to the LRU cache.
if shareable {
style_sharing_candidate_cache.insert_if_possible(&node);
}
}
StyleWasShared(index) => style_sharing_candidate_cache.touch(index),
}
}
// Prepare for flow construction by counting the node's children and storing that count.
let mut child_count = 0u;
for _ in node.children() {
child_count += 1;
}
if child_count != 0 {
let mut layout_data_ref = node.mutate_layout_data();
match &mut *layout_data_ref {
&Some(ref mut layout_data) => {
layout_data.data.parallel.children_count.store(child_count as int, Relaxed)
}
&None => fail!("no layout data"),
}
}
// It can be `None` now.
let mut bf = some_bf;
// Before running the children, we need to insert our nodes into the bloom
// filter.
debug!("[{}] + {:X}", tid(), unsafe_layout_node.val0());
bf.as_mut().map(|bf| node.insert_into_bloom_filter(bf));
// It's *very* important that this block is in a separate scope to the block above,
// to avoid a data race that can occur (github issue #2308). The block above issues
// a borrow on the node layout data. That borrow must be dropped before the child
// nodes are actually pushed into the work queue. Otherwise, it's possible for a child
// node to get into construct_flows() and move up it's parent hierarchy, which can call
// borrow on the layout data before it is dropped from the block above.
if child_count != 0 {
// Enqueue kids.
for kid in node.children() {
proxy.push(WorkUnit {
fun: recalc_style_for_node,
data: layout_node_to_unsafe_layout_node(&kid),
});
}
} else {
// If we got here, we're a leaf. Start construction of flows for this node.
construct_flows(&mut unsafe_layout_node, &mut bf, &layout_context);
}
bf.map(|bf| put_task_local_bloom_filter(bf, &unsafe_layout_node, &layout_context));
} }
fn construct_flows<'a>(unsafe_layout_node: &mut UnsafeLayoutNode, fn construct_flows(unsafe_node: UnsafeLayoutNode,
parent_bf: &mut Option<BloomFilter>, proxy: &mut WorkerProxy<*const SharedLayoutContext, UnsafeLayoutNode>) {
layout_context: &'a LayoutContext<'a>) { let shared_layout_context = unsafe { &**proxy.user_data() };
loop { let layout_context = LayoutContext::new(shared_layout_context);
// Get a real layout node. let mut construct_flows_traversal = ConstructFlows {
let node: LayoutNode = unsafe { layout_context: &layout_context,
layout_node_from_unsafe_layout_node(&*unsafe_layout_node)
}; };
construct_flows_traversal.run_parallel(unsafe_node, proxy)
// Construct flows for this node.
{
let node = ThreadSafeLayoutNode::new(&node);
let mut flow_constructor = FlowConstructor::new(layout_context);
flow_constructor.process(&node);
// Reset the layout damage in this node. It's been propagated to the
// flow by the flow constructor.
node.set_restyle_damage(RestyleDamage::empty());
}
unsafe {
node.set_dirty(false);
node.set_dirty_descendants(false);
}
// Reset the count of children for the next traversal.
//
// FIXME(pcwalton): Use children().len() when the implementation of that is efficient.
let mut child_count = 0u;
for _ in node.children() {
child_count += 1
}
{
let mut layout_data_ref = node.mutate_layout_data();
match &mut *layout_data_ref {
&Some(ref mut layout_data) => {
layout_data.data.parallel.children_count.store(child_count as int, Relaxed)
}
&None => fail!("no layout data"),
}
}
// If this is the reflow root, we're done.
let opaque_node: OpaqueNode = OpaqueNodeMethods::from_layout_node(&node);
if layout_context.shared.reflow_root == opaque_node {
debug!("[{}] - {:X}, and deleting BF.", tid(), unsafe_layout_node.val0());
*parent_bf = None;
break;
} else {
debug!("[{}] - {:X}", tid(), unsafe_layout_node.val0());
parent_bf.as_mut().map(|parent_bf| node.remove_from_bloom_filter(parent_bf));
}
// Otherwise, enqueue the parent.
match node.parent_node() {
Some(parent) => {
// No, we're not at the root yet. Then are we the last sibling of our parent?
// If so, we can continue on with our parent; otherwise, we've gotta wait.
unsafe {
match *parent.borrow_layout_data_unchecked() {
Some(ref parent_layout_data) => {
*unsafe_layout_node = layout_node_to_unsafe_layout_node(&parent);
let parent_layout_data: &mut LayoutDataWrapper = mem::transmute(parent_layout_data);
if parent_layout_data.data
.parallel
.children_count
.fetch_sub(1, SeqCst) == 1 {
// We were the last child of our parent. Construct flows for our
// parent.
} else {
// Get out of here and find another node to work on.
break
}
}
None => fail!("no layout data for parent?!"),
}
}
}
None => fail!("no parent and weren't at reflow root?!"),
}
}
} }
fn assign_inline_sizes(unsafe_flow: UnsafeFlow, fn assign_inline_sizes(unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) { proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
let shared_layout_context = unsafe { &**proxy.user_data() }; let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context); let layout_context = LayoutContext::new(shared_layout_context);
let mut assign_inline_sizes_traversal = AssignISizesTraversal { let mut assign_inline_sizes_traversal = AssignISizes {
layout_context: &layout_context, layout_context: &layout_context,
}; };
assign_inline_sizes_traversal.run_parallel(unsafe_flow, proxy) assign_inline_sizes_traversal.run_parallel(unsafe_flow, proxy)
@ -511,7 +366,7 @@ fn assign_block_sizes_and_store_overflow(unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) { proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
let shared_layout_context = unsafe { &**proxy.user_data() }; let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context); let layout_context = LayoutContext::new(shared_layout_context);
let mut assign_block_sizes_traversal = AssignBSizesAndStoreOverflowTraversal { let mut assign_block_sizes_traversal = AssignBSizesAndStoreOverflow {
layout_context: &layout_context, layout_context: &layout_context,
}; };
assign_block_sizes_traversal.run_parallel(unsafe_flow, proxy) assign_block_sizes_traversal.run_parallel(unsafe_flow, proxy)
@ -629,21 +484,19 @@ fn build_display_list(mut unsafe_flow: UnsafeFlow,
} }
} }
pub fn recalc_style_for_subtree(root_node: &LayoutNode, pub fn traverse_dom_preorder(root: LayoutNode,
shared_layout_context: &SharedLayoutContext, shared_layout_context: &SharedLayoutContext,
queue: &mut WorkQueue<*const SharedLayoutContext,UnsafeLayoutNode>) { queue: &mut WorkQueue<*const SharedLayoutContext, UnsafeLayoutNode>) {
debug!("[{}] Style Recalc START", tid());
queue.data = shared_layout_context as *const _; queue.data = shared_layout_context as *const _;
// Enqueue the root node.
queue.push(WorkUnit { queue.push(WorkUnit {
fun: recalc_style_for_node, fun: recalc_style,
data: layout_node_to_unsafe_layout_node(root_node), data: layout_node_to_unsafe_layout_node(&root),
}); });
queue.run(); queue.run();
queue.data = ptr::null() queue.data = ptr::null();
} }
pub fn traverse_flow_tree_preorder(root: &mut FlowRef, pub fn traverse_flow_tree_preorder(root: &mut FlowRef,

View file

@ -0,0 +1,333 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversals over the DOM and flow trees, running the layout computations.
use css::node_style::StyledNode;
use css::matching::{ApplicableDeclarations, CannotShare, MatchMethods, StyleWasShared};
use construct::FlowConstructor;
use context::LayoutContext;
use flow::{Flow, MutableFlowUtils, PreorderFlowTraversal, PostorderFlowTraversal};
use flow;
use incremental::RestyleDamage;
use wrapper::{layout_node_to_unsafe_layout_node, LayoutNode};
use wrapper::{PostorderNodeMutTraversal, ThreadSafeLayoutNode, UnsafeLayoutNode};
use wrapper::{PreorderDOMTraversal, PostorderDOMTraversal};
use servo_util::bloom::BloomFilter;
use servo_util::tid::tid;
use style;
use style::TNode;
/// Every time we do another layout, the old bloom filters are invalid. This is
/// detected by ticking a generation number every layout.
type Generation = uint;
/// A pair of the bloom filter used for css selector matching, and the node to
/// which it applies. This is used to efficiently do `Descendant` selector
/// matches. Thanks to the bloom filter, we can avoid walking up the tree
/// looking for ancestors that aren't there in the majority of cases.
///
/// As we walk down the DOM tree a task-local bloom filter is built of all the
/// CSS `SimpleSelector`s which are part of a `Descendant` compound selector
/// (i.e. paired with a `Descendant` combinator, in the `next` field of a
/// `CompoundSelector`.
///
/// Before a `Descendant` selector match is tried, it's compared against the
/// bloom filter. If the bloom filter can exclude it, the selector is quickly
/// rejected.
///
/// When done styling a node, all selectors previously inserted into the filter
/// are removed.
///
/// Since a work-stealing queue is used for styling, sometimes, the bloom filter
/// will no longer be the for the parent of the node we're currently on. When
/// this happens, the task local bloom filter will be thrown away and rebuilt.
local_data_key!(style_bloom: (BloomFilter, UnsafeLayoutNode, Generation))
/// Returns the task local bloom filter.
///
/// If one does not exist, a new one will be made for you. If it is out of date,
/// it will be thrown out and a new one will be made for you.
fn take_task_local_bloom_filter(
parent_node: Option<LayoutNode>,
layout_context: &LayoutContext)
-> BloomFilter {
let new_bloom =
|p: Option<LayoutNode>| -> BloomFilter {
let mut bf = BloomFilter::new(style::RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE);
p.map(|p| insert_ancestors_into_bloom_filter(&mut bf, p, layout_context));
if p.is_none() {
debug!("[{}] No parent, but new bloom filter!", tid());
}
bf
};
match (parent_node, style_bloom.replace(None)) {
// Root node. Needs new bloom filter.
(None, _ ) => new_bloom(None),
// No bloom filter for this thread yet.
(Some(p), None) => new_bloom(Some(p)),
// Found cached bloom filter.
(Some(p), Some((bf, old_node, old_generation))) => {
// Hey, the cached parent is our parent! We can reuse the bloom filter.
if old_node == layout_node_to_unsafe_layout_node(&p) &&
old_generation == layout_context.shared.generation {
debug!("[{}] Parent matches (={}). Reusing bloom filter.", tid(), old_node.val0());
bf
// Oh no. the cached parent is stale. I guess we need a new one...
} else {
new_bloom(Some(p))
}
},
}
}
fn put_task_local_bloom_filter(bf: BloomFilter, unsafe_node: &UnsafeLayoutNode, layout_context: &LayoutContext) {
match style_bloom.replace(Some((bf, *unsafe_node, layout_context.shared.generation))) {
None => {},
Some(_) => fail!("Putting into a never-taken task-local bloom filter"),
}
}
/// "Ancestors" in this context is inclusive of ourselves.
fn insert_ancestors_into_bloom_filter(
bf: &mut BloomFilter, mut n: LayoutNode, layout_context: &LayoutContext) {
debug!("[{}] Inserting ancestors.", tid());
let mut ancestors = 0u;
loop {
ancestors += 1;
n.insert_into_bloom_filter(bf);
n = match n.layout_parent_node(layout_context.shared) {
None => break,
Some(p) => p,
};
}
debug!("[{}] Inserted {} ancestors.", tid(), ancestors);
}
/// The recalc-style-for-node traversal, which styles each node and must run before
/// layout computation. This computes the styles applied to each node.
pub struct RecalcStyleForNode<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderDOMTraversal for RecalcStyleForNode<'a> {
#[inline]
fn process(&self, node: LayoutNode) {
// Initialize layout data.
//
// FIXME(pcwalton): Stop allocating here. Ideally this should just be done by the HTML
// parser.
node.initialize_layout_data(self.layout_context.shared.layout_chan.clone());
// Get the parent node.
let parent_opt = node.layout_parent_node(self.layout_context.shared);
// Get the style bloom filter.
let bf = take_task_local_bloom_filter(parent_opt, self.layout_context);
// Just needs to be wrapped in an option for `match_node`.
let some_bf = Some(bf);
if node.is_dirty() {
// First, check to see whether we can share a style with someone.
let style_sharing_candidate_cache = self.layout_context.style_sharing_candidate_cache();
let sharing_result = unsafe {
node.share_style_if_possible(style_sharing_candidate_cache,
parent_opt.clone())
};
// Otherwise, match and cascade selectors.
match sharing_result {
CannotShare(mut shareable) => {
let mut applicable_declarations = ApplicableDeclarations::new();
if node.is_element() {
// Perform the CSS selector matching.
let stylist = unsafe { &*self.layout_context.shared.stylist };
node.match_node(stylist, &some_bf, &mut applicable_declarations, &mut shareable);
}
// Perform the CSS cascade.
unsafe {
node.cascade_node(parent_opt,
&applicable_declarations,
self.layout_context.applicable_declarations_cache());
}
// Add ourselves to the LRU cache.
if shareable {
style_sharing_candidate_cache.insert_if_possible(&node);
}
}
StyleWasShared(index) => style_sharing_candidate_cache.touch(index),
}
}
let mut bf = some_bf.unwrap();
let unsafe_layout_node = layout_node_to_unsafe_layout_node(&node);
// Before running the children, we need to insert our nodes into the bloom
// filter.
debug!("[{}] + {:X}", tid(), unsafe_layout_node.val0());
node.insert_into_bloom_filter(&mut bf);
// NB: flow construction updates the bloom filter on the way up.
put_task_local_bloom_filter(bf, &unsafe_layout_node, self.layout_context);
}
}
/// The flow construction traversal, which builds flows for styled nodes.
pub struct ConstructFlows<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderDOMTraversal for ConstructFlows<'a> {
#[inline]
fn process(&self, node: LayoutNode) {
// Construct flows for this node.
{
let node = ThreadSafeLayoutNode::new(&node);
let mut flow_constructor = FlowConstructor::new(self.layout_context);
flow_constructor.process(&node);
// Reset the layout damage in this node. It's been propagated to the
// flow by the flow constructor.
node.set_restyle_damage(RestyleDamage::empty());
}
unsafe {
node.set_dirty(false);
node.set_dirty_descendants(false);
}
let unsafe_layout_node = layout_node_to_unsafe_layout_node(&node);
let (mut bf, old_node, old_generation) =
style_bloom
.replace(None)
.expect("The bloom filter should have been set by style recalc.");
assert_eq!(old_node, unsafe_layout_node);
assert_eq!(old_generation, self.layout_context.shared.generation);
match node.layout_parent_node(self.layout_context.shared) {
None => {
debug!("[{}] - {:X}, and deleting BF.", tid(), unsafe_layout_node.val0());
// If this is the reflow root, eat the task-local bloom filter.
}
Some(parent) => {
// Otherwise, put it back, but remove this node.
node.remove_from_bloom_filter(&mut bf);
let unsafe_parent = layout_node_to_unsafe_layout_node(&parent);
put_task_local_bloom_filter(bf, &unsafe_parent, self.layout_context);
},
};
}
}
/// The flow tree verification traversal. This is only on in debug builds.
#[cfg(debug)]
struct FlowTreeVerification;
#[cfg(debug)]
impl PreorderFlow for FlowTreeVerification {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
let base = flow::base(flow);
if !base.flags.is_leaf() && !base.flags.is_nonleaf() {
println("flow tree verification failed: flow wasn't a leaf or a nonleaf!");
flow.dump();
fail!("flow tree verification failed")
}
true
}
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes preferred
/// and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizes<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.bubble_inline_sizes(self.layout_context);
true
}
// FIXME: We can't prune until we start reusing flows
/*
#[inline]
fn should_prune(&mut self, flow: &mut Flow) -> bool {
flow::mut_base(flow).restyle_damage.lacks(BubbleISizes)
}
*/
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
pub struct AssignISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizes<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_inline_sizes(self.layout_context);
true
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of layout
/// computation. Determines the final block-sizes for all layout objects, computes positions, and
/// computes overflow regions. In Gecko this corresponds to `FinishAndStoreOverflow`.
pub struct AssignBSizesAndStoreOverflow<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizesAndStoreOverflow<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_block_size(self.layout_context);
// Skip store-overflow for absolutely positioned flows. That will be
// done in a separate traversal.
if !flow.is_store_overflow_delayed() {
flow.store_overflow(self.layout_context);
}
true
}
#[inline]
fn should_process(&mut self, flow: &mut Flow) -> bool {
!flow::base(flow).flags.impacted_by_floats()
}
}
/// The display list construction traversal.
pub struct BuildDisplayList<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> BuildDisplayList<'a> {
#[inline]
pub fn process(&mut self, flow: &mut Flow) {
flow.compute_absolute_position();
for kid in flow::mut_base(flow).child_iter() {
if !kid.is_absolutely_positioned() {
self.process(kid)
}
}
for absolute_descendant_link in flow::mut_base(flow).abs_descendants.iter() {
self.process(absolute_descendant_link)
}
flow.build_display_list(self.layout_context)
}
}

View file

@ -888,3 +888,15 @@ pub unsafe fn layout_node_from_unsafe_layout_node(node: &UnsafeLayoutNode) -> La
let (node, _) = *node; let (node, _) = *node;
mem::transmute(node) mem::transmute(node)
} }
/// A top-down traversal.
pub trait PreorderDOMTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, _node: LayoutNode);
}
/// A bottom-up traversal, with a optional in-order pass.
pub trait PostorderDOMTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, _node: LayoutNode);
}