Move selector matching to an external library, for use outside Servo.

This commit is contained in:
Simon Sapin 2015-02-21 20:58:11 +01:00
parent 2e1adb3fa6
commit 2a50755c8a
26 changed files with 136 additions and 2896 deletions

View file

@ -21,6 +21,9 @@ path = "../plugins"
[dependencies.cssparser]
git = "https://github.com/servo/rust-cssparser"
[dependencies.selectors]
git = "https://github.com/servo/rust-selectors"
[dependencies.geom]
git = "https://github.com/servo/rust-geom"

View file

@ -1,338 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Simple counting bloom filters.
use string_cache::{Atom, Namespace};
const KEY_SIZE: uint = 12;
const ARRAY_SIZE: uint = 1 << KEY_SIZE;
const KEY_MASK: u32 = (1 << KEY_SIZE) - 1;
const KEY_SHIFT: uint = 16;
/// A counting Bloom filter with 8-bit counters. For now we assume
/// that having two hash functions is enough, but we may revisit that
/// decision later.
///
/// The filter uses an array with 2**KeySize entries.
///
/// Assuming a well-distributed hash function, a Bloom filter with
/// array size M containing N elements and
/// using k hash function has expected false positive rate exactly
///
/// $ (1 - (1 - 1/M)^{kN})^k $
///
/// because each array slot has a
///
/// $ (1 - 1/M)^{kN} $
///
/// chance of being 0, and the expected false positive rate is the
/// probability that all of the k hash functions will hit a nonzero
/// slot.
///
/// For reasonable assumptions (M large, kN large, which should both
/// hold if we're worried about false positives) about M and kN this
/// becomes approximately
///
/// $$ (1 - \exp(-kN/M))^k $$
///
/// For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$,
/// or in other words
///
/// $$ N/M = -0.5 * \ln(1 - \sqrt(r)) $$
///
/// where r is the false positive rate. This can be used to compute
/// the desired KeySize for a given load N and false positive rate r.
///
/// If N/M is assumed small, then the false positive rate can
/// further be approximated as 4*N^2/M^2. So increasing KeySize by
/// 1, which doubles M, reduces the false positive rate by about a
/// factor of 4, and a false positive rate of 1% corresponds to
/// about M/N == 20.
///
/// What this means in practice is that for a few hundred keys using a
/// KeySize of 12 gives false positive rates on the order of 0.25-4%.
///
/// Similarly, using a KeySize of 10 would lead to a 4% false
/// positive rate for N == 100 and to quite bad false positive
/// rates for larger N.
pub struct BloomFilter {
counters: [u8; ARRAY_SIZE],
}
impl Clone for BloomFilter {
#[inline]
fn clone(&self) -> BloomFilter {
BloomFilter {
counters: self.counters,
}
}
}
impl BloomFilter {
/// Creates a new bloom filter.
#[inline]
pub fn new() -> BloomFilter {
BloomFilter {
counters: [0; ARRAY_SIZE],
}
}
#[inline]
fn first_slot(&self, hash: u32) -> &u8 {
&self.counters[hash1(hash) as uint]
}
#[inline]
fn first_mut_slot(&mut self, hash: u32) -> &mut u8 {
&mut self.counters[hash1(hash) as uint]
}
#[inline]
fn second_slot(&self, hash: u32) -> &u8 {
&self.counters[hash2(hash) as uint]
}
#[inline]
fn second_mut_slot(&mut self, hash: u32) -> &mut u8 {
&mut self.counters[hash2(hash) as uint]
}
#[inline]
pub fn clear(&mut self) {
self.counters = [0; ARRAY_SIZE]
}
#[inline]
fn insert_hash(&mut self, hash: u32) {
{
let slot1 = self.first_mut_slot(hash);
if !full(slot1) {
*slot1 += 1
}
}
{
let slot2 = self.second_mut_slot(hash);
if !full(slot2) {
*slot2 += 1
}
}
}
/// Inserts an item into the bloom filter.
#[inline]
pub fn insert<T:BloomHash>(&mut self, elem: &T) {
self.insert_hash(elem.bloom_hash())
}
#[inline]
fn remove_hash(&mut self, hash: u32) {
{
let slot1 = self.first_mut_slot(hash);
if !full(slot1) {
*slot1 -= 1
}
}
{
let slot2 = self.second_mut_slot(hash);
if !full(slot2) {
*slot2 -= 1
}
}
}
/// Removes an item from the bloom filter.
#[inline]
pub fn remove<T:BloomHash>(&mut self, elem: &T) {
self.remove_hash(elem.bloom_hash())
}
#[inline]
fn might_contain_hash(&self, hash: u32) -> bool {
*self.first_slot(hash) != 0 && *self.second_slot(hash) != 0
}
/// Check whether the filter might contain an item. This can
/// sometimes return true even if the item is not in the filter,
/// but will never return false for items that are actually in the
/// filter.
#[inline]
pub fn might_contain<T:BloomHash>(&self, elem: &T) -> bool {
self.might_contain_hash(elem.bloom_hash())
}
}
pub trait BloomHash {
fn bloom_hash(&self) -> u32;
}
impl BloomHash for int {
#[allow(exceeding_bitshifts)]
#[inline]
fn bloom_hash(&self) -> u32 {
((*self >> 32) ^ *self) as u32
}
}
impl BloomHash for uint {
#[allow(exceeding_bitshifts)]
#[inline]
fn bloom_hash(&self) -> u32 {
((*self >> 32) ^ *self) as u32
}
}
impl BloomHash for Atom {
#[inline]
fn bloom_hash(&self) -> u32 {
((self.data >> 32) ^ self.data) as u32
}
}
impl BloomHash for Namespace {
#[inline]
fn bloom_hash(&self) -> u32 {
let Namespace(ref atom) = *self;
atom.bloom_hash()
}
}
#[inline]
fn full(slot: &u8) -> bool {
*slot == 0xff
}
#[inline]
fn hash1(hash: u32) -> u32 {
hash & KEY_MASK
}
#[inline]
fn hash2(hash: u32) -> u32 {
(hash >> KEY_SHIFT) & KEY_MASK
}
#[test]
fn create_and_insert_some_stuff() {
use std::iter::range;
let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
for i in range(0u, 1000) {
assert!(bf.might_contain(&i));
}
let false_positives =
range(1001u, 2000).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 10); // 1%.
for i in range(0u, 100) {
bf.remove(&i);
}
for i in range(100u, 1000) {
assert!(bf.might_contain(&i));
}
let false_positives = range(0u, 100).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 2); // 2%.
bf.clear();
for i in range(0u, 2000) {
assert!(!bf.might_contain(&i));
}
}
#[cfg(test)]
mod bench {
extern crate test;
use std::hash::{hash, SipHasher};
use std::iter;
use super::BloomFilter;
#[bench]
fn create_insert_1000_remove_100_lookup_100(b: &mut test::Bencher) {
b.iter(|| {
let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
}
for i in iter::range(0u, 100) {
bf.remove(&i);
}
for i in iter::range(100u, 200) {
test::black_box(bf.might_contain(&i));
}
});
}
#[bench]
fn might_contain(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
}
let mut i = 0u;
b.bench_n(1000, |b| {
b.iter(|| {
test::black_box(bf.might_contain(&i));
i += 1;
});
});
}
#[bench]
fn insert(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
b.bench_n(1000, |b| {
let mut i = 0u;
b.iter(|| {
test::black_box(bf.insert(&i));
i += 1;
});
});
}
#[bench]
fn remove(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
b.bench_n(1000, |b| {
let mut i = 0u;
b.iter(|| {
bf.remove(&i);
i += 1;
});
});
test::black_box(bf.might_contain(&0u));
}
#[bench]
fn hash_a_uint(b: &mut test::Bencher) {
let mut i = 0u;
b.iter(|| {
test::black_box(hash::<uint, SipHasher>(&i));
i += 1;
})
}
}

View file

@ -37,6 +37,7 @@ extern crate "rustc-serialize" as rustc_serialize;
extern crate task_info;
extern crate "time" as std_time;
extern crate text_writer;
extern crate selectors;
extern crate string_cache;
extern crate unicode;
extern crate url;
@ -45,9 +46,10 @@ extern crate url;
extern crate string_cache_macros;
extern crate lazy_static;
pub use selectors::smallvec;
use std::sync::Arc;
pub mod bloom;
pub mod cache;
pub mod cursor;
pub mod debug_utils;
@ -62,8 +64,6 @@ pub mod opts;
pub mod persistent_list;
pub mod range;
pub mod resource_files;
pub mod smallvec;
pub mod sort;
pub mod str;
pub mod task;
pub mod tid;

View file

@ -1,585 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Small vectors in various sizes. These store a certain number of elements inline and fall back
//! to the heap for larger allocations.
use std::mem::zeroed as i;
use std::cmp;
use std::fmt;
use std::intrinsics;
use std::iter::FromIterator;
use std::marker::ContravariantLifetime;
use std::mem;
use std::ptr;
use std::raw::Slice;
use alloc::heap;
// Generic code for all small vectors
pub trait VecLike<T> {
fn vec_len(&self) -> uint;
fn vec_push(&mut self, value: T);
fn vec_slice_mut<'a>(&'a mut self, start: uint, end: uint) -> &'a mut [T];
#[inline]
fn vec_slice_from_mut<'a>(&'a mut self, start: uint) -> &'a mut [T] {
let len = self.vec_len();
self.vec_slice_mut(start, len)
}
}
impl<T> VecLike<T> for Vec<T> {
#[inline]
fn vec_len(&self) -> uint {
self.len()
}
#[inline]
fn vec_push(&mut self, value: T) {
self.push(value);
}
#[inline]
fn vec_slice_mut<'a>(&'a mut self, start: uint, end: uint) -> &'a mut [T] {
&mut self[start..end]
}
}
pub trait SmallVecPrivate<T> {
unsafe fn set_len(&mut self, new_len: uint);
unsafe fn set_cap(&mut self, new_cap: uint);
fn data(&self, index: uint) -> *const T;
fn mut_data(&mut self, index: uint) -> *mut T;
unsafe fn ptr(&self) -> *const T;
unsafe fn mut_ptr(&mut self) -> *mut T;
unsafe fn set_ptr(&mut self, new_ptr: *mut T);
}
pub trait SmallVec<T> : SmallVecPrivate<T> {
fn inline_size(&self) -> uint;
fn len(&self) -> uint;
fn is_empty(&self) -> bool;
fn cap(&self) -> uint;
fn spilled(&self) -> bool {
self.cap() > self.inline_size()
}
fn begin(&self) -> *const T {
unsafe {
if self.spilled() {
self.ptr()
} else {
self.data(0)
}
}
}
fn end(&self) -> *const T {
unsafe {
self.begin().offset(self.len() as int)
}
}
fn iter<'a>(&'a self) -> SmallVecIterator<'a,T> {
SmallVecIterator {
ptr: self.begin(),
end: self.end(),
lifetime: ContravariantLifetime::<'a>,
}
}
fn mut_iter<'a>(&'a mut self) -> SmallVecMutIterator<'a,T> {
unsafe {
SmallVecMutIterator {
ptr: mem::transmute(self.begin()),
end: mem::transmute(self.end()),
lifetime: ContravariantLifetime::<'a>,
}
}
}
/// NB: For efficiency reasons (avoiding making a second copy of the inline elements), this
/// actually clears out the original array instead of moving it.
fn into_iter<'a>(&'a mut self) -> SmallVecMoveIterator<'a,T> {
unsafe {
let iter = mem::transmute(self.iter());
let ptr_opt = if self.spilled() {
Some(mem::transmute(self.ptr()))
} else {
None
};
let cap = self.cap();
let inline_size = self.inline_size();
self.set_cap(inline_size);
self.set_len(0);
SmallVecMoveIterator {
allocation: ptr_opt,
cap: cap,
iter: iter,
lifetime: ContravariantLifetime::<'a>,
}
}
}
fn push(&mut self, value: T) {
let cap = self.cap();
if self.len() == cap {
self.grow(cmp::max(cap * 2, 1))
}
unsafe {
let end: &mut T = mem::transmute(self.end());
ptr::write(end, value);
let len = self.len();
self.set_len(len + 1)
}
}
fn push_all_move<V:SmallVec<T>>(&mut self, mut other: V) {
for value in other.into_iter() {
self.push(value)
}
}
fn pop(&mut self) -> Option<T> {
if self.len() == 0 {
return None
}
unsafe {
let mut value: T = mem::uninitialized();
let last_index = self.len() - 1;
if (last_index as int) < 0 {
panic!("overflow")
}
let end_ptr = self.begin().offset(last_index as int);
mem::swap(&mut value, mem::transmute::<*const T,&mut T>(end_ptr));
self.set_len(last_index);
Some(value)
}
}
fn grow(&mut self, new_cap: uint) {
unsafe {
let new_alloc: *mut T = mem::transmute(heap::allocate(mem::size_of::<T>() *
new_cap,
mem::min_align_of::<T>()));
ptr::copy_nonoverlapping_memory(new_alloc, self.begin(), self.len());
if self.spilled() {
heap::deallocate(self.mut_ptr() as *mut u8,
mem::size_of::<T>() * self.cap(),
mem::min_align_of::<T>())
} else {
let mut_begin: *mut T = mem::transmute(self.begin());
intrinsics::set_memory(mut_begin, 0, self.len())
}
self.set_ptr(new_alloc);
self.set_cap(new_cap)
}
}
fn get<'a>(&'a self, index: uint) -> &'a T {
if index >= self.len() {
self.fail_bounds_check(index)
}
unsafe {
mem::transmute(self.begin().offset(index as int))
}
}
fn get_mut<'a>(&'a mut self, index: uint) -> &'a mut T {
if index >= self.len() {
self.fail_bounds_check(index)
}
unsafe {
mem::transmute(self.begin().offset(index as int))
}
}
fn slice<'a>(&'a self, start: uint, end: uint) -> &'a [T] {
assert!(start <= end);
assert!(end <= self.len());
unsafe {
mem::transmute(Slice {
data: self.begin().offset(start as int),
len: (end - start)
})
}
}
fn as_slice<'a>(&'a self) -> &'a [T] {
self.slice(0, self.len())
}
fn as_slice_mut<'a>(&'a mut self) -> &'a mut [T] {
let len = self.len();
self.slice_mut(0, len)
}
fn slice_mut<'a>(&'a mut self, start: uint, end: uint) -> &'a mut [T] {
assert!(start <= end);
assert!(end <= self.len());
unsafe {
mem::transmute(Slice {
data: self.begin().offset(start as int),
len: (end - start)
})
}
}
fn slice_from_mut<'a>(&'a mut self, start: uint) -> &'a mut [T] {
let len = self.len();
self.slice_mut(start, len)
}
fn fail_bounds_check(&self, index: uint) {
panic!("index {} beyond length ({})", index, self.len())
}
}
pub struct SmallVecIterator<'a,T> {
ptr: *const T,
end: *const T,
lifetime: ContravariantLifetime<'a>
}
impl<'a,T> Iterator for SmallVecIterator<'a,T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> {
unsafe {
if self.ptr == self.end {
return None
}
let old = self.ptr;
self.ptr = if mem::size_of::<T>() == 0 {
mem::transmute(self.ptr as uint + 1)
} else {
self.ptr.offset(1)
};
Some(mem::transmute(old))
}
}
}
pub struct SmallVecMutIterator<'a,T> {
ptr: *mut T,
end: *mut T,
lifetime: ContravariantLifetime<'a>,
}
impl<'a,T> Iterator for SmallVecMutIterator<'a,T> {
type Item = &'a mut T;
#[inline]
fn next(&mut self) -> Option<&'a mut T> {
unsafe {
if self.ptr == self.end {
return None
}
let old = self.ptr;
self.ptr = if mem::size_of::<T>() == 0 {
mem::transmute(self.ptr as uint + 1)
} else {
self.ptr.offset(1)
};
Some(mem::transmute(old))
}
}
}
pub struct SmallVecMoveIterator<'a,T> {
allocation: Option<*mut u8>,
cap: uint,
iter: SmallVecIterator<'a,T>,
lifetime: ContravariantLifetime<'a>,
}
impl<'a, T: 'a> Iterator for SmallVecMoveIterator<'a,T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
unsafe {
match self.iter.next() {
None => None,
Some(reference) => {
// Zero out the values as we go so they don't get double-freed.
let reference: &mut T = mem::transmute(reference);
Some(mem::replace(reference, mem::zeroed()))
}
}
}
}
}
#[unsafe_destructor]
impl<'a, T: 'a> Drop for SmallVecMoveIterator<'a,T> {
fn drop(&mut self) {
// Destroy the remaining elements.
for _ in self.by_ref() {}
match self.allocation {
None => {}
Some(allocation) => {
unsafe {
heap::deallocate(allocation as *mut u8,
mem::size_of::<T>() * self.cap,
mem::min_align_of::<T>())
}
}
}
}
}
// Concrete implementations
macro_rules! def_small_vector(
($name:ident, $size:expr) => (
pub struct $name<T> {
len: uint,
cap: uint,
ptr: *const T,
data: [T; $size],
}
impl<T> SmallVecPrivate<T> for $name<T> {
unsafe fn set_len(&mut self, new_len: uint) {
self.len = new_len
}
unsafe fn set_cap(&mut self, new_cap: uint) {
self.cap = new_cap
}
fn data(&self, index: uint) -> *const T {
let ptr: *const T = &self.data[index];
ptr
}
fn mut_data(&mut self, index: uint) -> *mut T {
let ptr: *mut T = &mut self.data[index];
ptr
}
unsafe fn ptr(&self) -> *const T {
self.ptr
}
unsafe fn mut_ptr(&mut self) -> *mut T {
mem::transmute(self.ptr)
}
unsafe fn set_ptr(&mut self, new_ptr: *mut T) {
self.ptr = mem::transmute(new_ptr)
}
}
impl<T> SmallVec<T> for $name<T> {
fn inline_size(&self) -> uint {
$size
}
fn len(&self) -> uint {
self.len
}
fn is_empty(&self) -> bool {
self.len == 0
}
fn cap(&self) -> uint {
self.cap
}
}
impl<T> VecLike<T> for $name<T> {
#[inline]
fn vec_len(&self) -> uint {
self.len()
}
#[inline]
fn vec_push(&mut self, value: T) {
self.push(value);
}
#[inline]
fn vec_slice_mut<'a>(&'a mut self, start: uint, end: uint) -> &'a mut [T] {
self.slice_mut(start, end)
}
}
impl<T> FromIterator<T> for $name<T> {
fn from_iter<I: Iterator<Item=T>>(iter: I) -> $name<T> {
let mut v = $name::new();
let (lower_size_bound, _) = iter.size_hint();
if lower_size_bound > v.cap() {
v.grow(lower_size_bound);
}
for elem in iter {
v.push(elem);
}
v
}
}
impl<T> $name<T> {
pub fn extend<I: Iterator<Item=T>>(&mut self, iter: I) {
let (lower_size_bound, _) = iter.size_hint();
let target_len = self.len() + lower_size_bound;
if target_len > self.cap() {
self.grow(target_len);
}
for elem in iter {
self.push(elem);
}
}
}
impl<T: fmt::Debug> fmt::Debug for $name<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.as_slice())
}
}
impl<T> $name<T> {
#[inline]
pub fn new() -> $name<T> {
unsafe {
$name {
len: 0,
cap: $size,
ptr: ptr::null(),
data: mem::zeroed(),
}
}
}
}
)
);
def_small_vector!(SmallVec1, 1);
def_small_vector!(SmallVec2, 2);
def_small_vector!(SmallVec4, 4);
def_small_vector!(SmallVec8, 8);
def_small_vector!(SmallVec16, 16);
def_small_vector!(SmallVec24, 24);
def_small_vector!(SmallVec32, 32);
macro_rules! def_small_vector_drop_impl(
($name:ident, $size:expr) => (
#[unsafe_destructor]
impl<T> Drop for $name<T> {
fn drop(&mut self) {
if !self.spilled() {
return
}
unsafe {
let ptr = self.mut_ptr();
for i in range(0, self.len()) {
*ptr.offset(i as int) = mem::uninitialized();
}
heap::deallocate(self.mut_ptr() as *mut u8,
mem::size_of::<T>() * self.cap(),
mem::min_align_of::<T>())
}
}
}
)
);
def_small_vector_drop_impl!(SmallVec1, 1);
def_small_vector_drop_impl!(SmallVec2, 2);
def_small_vector_drop_impl!(SmallVec4, 4);
def_small_vector_drop_impl!(SmallVec8, 8);
def_small_vector_drop_impl!(SmallVec16, 16);
def_small_vector_drop_impl!(SmallVec24, 24);
def_small_vector_drop_impl!(SmallVec32, 32);
macro_rules! def_small_vector_clone_impl(
($name:ident) => (
impl<T: Clone> Clone for $name<T> {
fn clone(&self) -> $name<T> {
let mut new_vector = $name::new();
for element in self.iter() {
new_vector.push((*element).clone())
}
new_vector
}
}
)
);
def_small_vector_clone_impl!(SmallVec1);
def_small_vector_clone_impl!(SmallVec2);
def_small_vector_clone_impl!(SmallVec4);
def_small_vector_clone_impl!(SmallVec8);
def_small_vector_clone_impl!(SmallVec16);
def_small_vector_clone_impl!(SmallVec24);
def_small_vector_clone_impl!(SmallVec32);
#[cfg(test)]
pub mod tests {
use smallvec::{SmallVec, SmallVec2, SmallVec16};
use std::borrow::ToOwned;
// We heap allocate all these strings so that double frees will show up under valgrind.
#[test]
pub fn test_inline() {
let mut v = SmallVec16::new();
v.push("hello".to_owned());
v.push("there".to_owned());
assert_eq!(v.as_slice(), vec![
"hello".to_owned(),
"there".to_owned(),
].as_slice());
}
#[test]
pub fn test_spill() {
let mut v = SmallVec2::new();
v.push("hello".to_owned());
v.push("there".to_owned());
v.push("burma".to_owned());
v.push("shave".to_owned());
assert_eq!(v.as_slice(), vec![
"hello".to_owned(),
"there".to_owned(),
"burma".to_owned(),
"shave".to_owned(),
].as_slice());
}
#[test]
pub fn test_double_spill() {
let mut v = SmallVec2::new();
v.push("hello".to_owned());
v.push("there".to_owned());
v.push("burma".to_owned());
v.push("shave".to_owned());
v.push("hello".to_owned());
v.push("there".to_owned());
v.push("burma".to_owned());
v.push("shave".to_owned());
assert_eq!(v.as_slice(), vec![
"hello".to_owned(),
"there".to_owned(),
"burma".to_owned(),
"shave".to_owned(),
"hello".to_owned(),
"there".to_owned(),
"burma".to_owned(),
"shave".to_owned(),
].as_slice());
}
}

View file

@ -1,104 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! In-place sorting.
use std::cmp::Ordering;
fn quicksort_helper<T>(arr: &mut [T], left: int, right: int, compare: fn(&T, &T) -> Ordering) {
if right <= left {
return
}
let mut i: int = left - 1;
let mut j: int = right;
let mut p: int = i;
let mut q: int = j;
unsafe {
let v: *mut T = &mut arr[right as uint];
loop {
i += 1;
while compare(&arr[i as uint], &*v) == Ordering::Less {
i += 1
}
j -= 1;
while compare(&*v, &arr[j as uint]) == Ordering::Less {
if j == left {
break
}
j -= 1;
}
if i >= j {
break
}
arr.swap(i as uint, j as uint);
if compare(&arr[i as uint], &*v) == Ordering::Equal {
p += 1;
arr.swap(p as uint, i as uint)
}
if compare(&*v, &arr[j as uint]) == Ordering::Equal {
q -= 1;
arr.swap(j as uint, q as uint)
}
}
}
arr.swap(i as uint, right as uint);
j = i - 1;
i += 1;
let mut k: int = left;
while k < p {
arr.swap(k as uint, j as uint);
k += 1;
j -= 1;
assert!(k < arr.len() as int);
}
k = right - 1;
while k > q {
arr.swap(i as uint, k as uint);
k -= 1;
i += 1;
assert!(k != 0);
}
quicksort_helper(arr, left, j, compare);
quicksort_helper(arr, i, right, compare);
}
/// An in-place quicksort.
///
/// The algorithm is from Sedgewick and Bentley, "Quicksort is Optimal":
/// http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
pub fn quicksort_by<T>(arr: &mut [T], compare: fn(&T, &T) -> Ordering) {
if arr.len() <= 1 {
return
}
let len = arr.len();
quicksort_helper(arr, 0, (len - 1) as int, compare);
}
#[cfg(test)]
pub mod test {
use std::cmp::Ordering;
use std::rand;
use std::rand::Rng;
use sort;
#[test]
pub fn random() {
let mut rng = rand::thread_rng();
for _ in range(0u32, 50000u32) {
let len: uint = rng.gen();
let mut v: Vec<int> = rng.gen_iter::<int>().take((len % 32) + 1).collect();
fn compare_ints(a: &int, b: &int) -> Ordering { a.cmp(b) }
sort::quicksort_by(v.as_mut_slice(), compare_ints);
for i in range(0, v.len() - 1) {
assert!(v[i] <= v[i + 1])
}
}
}
}