Use Gecko's simpler Bloom filter instead of one based on hash

stretching.

This preserves the usage of the Bloom filter throughout style recalc,
but the implementation is rewritten. Provides a 15% improvement on
Guardians of the Galaxy.
This commit is contained in:
Patrick Walton 2014-09-16 22:58:52 -07:00
parent 878ece58da
commit 2a790d06dd
10 changed files with 335 additions and 357 deletions

View file

@ -4,288 +4,230 @@
//! Simple counting bloom filters.
extern crate rand;
use string_cache::{Atom, Namespace};
use fnv::{FnvState, hash};
use rand::Rng;
use std::hash::Hash;
use std::iter;
use std::num;
use std::uint;
static KEY_SIZE: uint = 12;
static ARRAY_SIZE: uint = 1 << KEY_SIZE;
static KEY_MASK: u32 = (1 << KEY_SIZE) - 1;
static KEY_SHIFT: uint = 16;
// Just a quick and dirty xxhash embedding.
/// A counting bloom filter.
/// A counting Bloom filter with 8-bit counters. For now we assume
/// that having two hash functions is enough, but we may revisit that
/// decision later.
///
/// A bloom filter is a probabilistic data structure which allows you to add and
/// remove elements from a set, query the set for whether it may contain an
/// element or definitely exclude it, and uses much less ram than an equivalent
/// hashtable.
#[deriving(Clone)]
/// The filter uses an array with 2**KeySize entries.
///
/// Assuming a well-distributed hash function, a Bloom filter with
/// array size M containing N elements and
/// using k hash function has expected false positive rate exactly
///
/// $ (1 - (1 - 1/M)^{kN})^k $
///
/// because each array slot has a
///
/// $ (1 - 1/M)^{kN} $
///
/// chance of being 0, and the expected false positive rate is the
/// probability that all of the k hash functions will hit a nonzero
/// slot.
///
/// For reasonable assumptions (M large, kN large, which should both
/// hold if we're worried about false positives) about M and kN this
/// becomes approximately
///
/// $$ (1 - \exp(-kN/M))^k $$
///
/// For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$,
/// or in other words
///
/// $$ N/M = -0.5 * \ln(1 - \sqrt(r)) $$
///
/// where r is the false positive rate. This can be used to compute
/// the desired KeySize for a given load N and false positive rate r.
///
/// If N/M is assumed small, then the false positive rate can
/// further be approximated as 4*N^2/M^2. So increasing KeySize by
/// 1, which doubles M, reduces the false positive rate by about a
/// factor of 4, and a false positive rate of 1% corresponds to
/// about M/N == 20.
///
/// What this means in practice is that for a few hundred keys using a
/// KeySize of 12 gives false positive rates on the order of 0.25-4%.
///
/// Similarly, using a KeySize of 10 would lead to a 4% false
/// positive rate for N == 100 and to quite bad false positive
/// rates for larger N.
pub struct BloomFilter {
buf: Vec<uint>,
number_of_insertions: uint,
counters: [u8, ..ARRAY_SIZE],
}
// Here's where some of the magic numbers came from:
//
// m = number of elements in the filter
// n = size of the filter
// k = number of hash functions
//
// p = Pr[false positive] = 0.01 false positive rate
//
// if we have an estimation of the number of elements in the bloom filter, we
// know m.
//
// p = (1 - exp(-kn/m))^k
// k = (m/n)ln2
// lnp = -(m/n)(ln2)^2
// m = -nlnp/(ln2)^2
// => n = -m(ln2)^2/lnp
// ~= 10*m
//
// k = (m/n)ln2 = 10ln2 ~= 7
static NUMBER_OF_HASHES: uint = 7;
static BITS_PER_BUCKET: uint = 4;
static BUCKETS_PER_WORD: uint = uint::BITS / BITS_PER_BUCKET;
/// Returns a tuple of (array index, lsr shift amount) to get to the bits you
/// need. Don't forget to mask with 0xF!
fn bucket_index_to_array_index(bucket_index: uint) -> (uint, uint) {
let arr_index = bucket_index / BUCKETS_PER_WORD;
let shift_amount = (bucket_index % BUCKETS_PER_WORD) * BITS_PER_BUCKET;
(arr_index, shift_amount)
}
// Key Stretching
// ==============
//
// Siphash is expensive. Instead of running it `NUMBER_OF_HASHES`, which would
// be a pretty big hit on performance, we just use it to see a non-cryptographic
// random number generator. This stretches the hash to get us our
// `NUMBER_OF_HASHES` array indicies.
//
// A hash is a `u64` and comes from SipHash.
// A shash is a `uint` stretched hash which comes from the XorShiftRng.
fn to_rng(hash: u64) -> rand::XorShiftRng {
let bottom = (hash & 0xFFFFFFFF) as u32;
let top = ((hash >> 32) & 0xFFFFFFFF) as u32;
rand::SeedableRng::from_seed([ 0x97830e05, 0x113ba7bb, bottom, top ])
}
fn stretch<'a>(r: &'a mut rand::XorShiftRng)
-> iter::Take<rand::Generator<'a, uint, rand::XorShiftRng>> {
r.gen_iter().take(NUMBER_OF_HASHES)
impl Clone for BloomFilter {
#[inline]
fn clone(&self) -> BloomFilter {
BloomFilter {
counters: self.counters,
}
}
}
impl BloomFilter {
/// This bloom filter is tuned to have ~1% false positive rate. In exchange
/// for this guarantee, you need to have a reasonable upper bound on the
/// number of elements that will ever be inserted into it. If you guess too
/// low, your false positive rate will suffer. If you guess too high, you'll
/// use more memory than is really necessary.
pub fn new(expected_number_of_insertions: uint) -> BloomFilter {
let size_in_buckets = 10 * expected_number_of_insertions;
let size_in_words = size_in_buckets / BUCKETS_PER_WORD;
let nonzero_size = if size_in_words == 0 { 1 } else { size_in_words };
let num_words =
num::checked_next_power_of_two(nonzero_size)
.unwrap();
/// Creates a new bloom filter.
#[inline]
pub fn new() -> BloomFilter {
BloomFilter {
buf: Vec::from_elem(num_words, 0),
number_of_insertions: 0,
counters: [0, ..ARRAY_SIZE],
}
}
/// Since the array length must be a power of two, this will return a
/// bitmask that can be `&`ed with a number to bring it into the range of
/// the array.
fn mask(&self) -> uint {
(self.buf.len()*BUCKETS_PER_WORD) - 1 // guaranteed to be a power of two
#[inline]
fn first_slot(&self, hash: u32) -> &u8 {
&self.counters[hash1(hash) as uint]
}
/// Converts a stretched hash into a bucket index.
fn shash_to_bucket_index(&self, shash: uint) -> uint {
shash & self.mask()
#[inline]
fn first_mut_slot(&mut self, hash: u32) -> &mut u8 {
&mut self.counters[hash1(hash) as uint]
}
/// Converts a stretched hash into an array and bit index. See the comment
/// on `bucket_index_to_array_index` for details about the return value.
fn shash_to_array_index(&self, shash: uint) -> (uint, uint) {
bucket_index_to_array_index(self.shash_to_bucket_index(shash))
#[inline]
fn second_slot(&self, hash: u32) -> &u8 {
&self.counters[hash2(hash) as uint]
}
/// Gets the value at a given bucket.
fn bucket_get(&self, a_idx: uint, shift_amount: uint) -> uint {
let array_val = self.buf[a_idx];
(array_val >> shift_amount) & 0xF
#[inline]
fn second_mut_slot(&mut self, hash: u32) -> &mut u8 {
&mut self.counters[hash2(hash) as uint]
}
/// Sets the value at a given bucket. This will not bounds check, but that's
/// ok because you've called `bucket_get` first, anyhow.
fn bucket_set(&mut self, a_idx: uint, shift_amount: uint, new_val: uint) {
// We can avoid bounds checking here since in order to do a bucket_set
// we have to had done a `bucket_get` at the same index for it to make
// sense.
let old_val = self.buf.as_mut_slice().get_mut(a_idx).unwrap();
let mask = (1 << BITS_PER_BUCKET) - 1; // selects the right-most bucket
let select_in_bucket = mask << shift_amount; // selects the correct bucket
let select_out_of_bucket = !select_in_bucket; // selects everything except the correct bucket
let new_array_val = (new_val << shift_amount) // move the new_val into the right spot
| (*old_val & select_out_of_bucket); // mask out the old value, and or it with the new one
*old_val = new_array_val;
}
/// Insert a stretched hash into the bloom filter, remembering to saturate
/// the counter instead of overflowing.
fn insert_shash(&mut self, shash: uint) {
let (a_idx, shift_amount) = self.shash_to_array_index(shash);
let b_val = self.bucket_get(a_idx, shift_amount);
// saturate the count.
if b_val == 0xF {
return;
}
let new_val = b_val + 1;
self.bucket_set(a_idx, shift_amount, new_val);
}
/// Insert a hashed value into the bloom filter.
fn insert_hashed(&mut self, hash: u64) {
self.number_of_insertions += 1;
for h in stretch(&mut to_rng(hash)) {
self.insert_shash(h);
}
}
/// Inserts a value into the bloom filter. Note that the bloom filter isn't
/// parameterized over the values it holds. That's because it can hold
/// values of different types, as long as it can get a hash out of them.
pub fn insert<H: Hash<FnvState>>(&mut self, h: &H) {
self.insert_hashed(hash(h))
}
/// Removes a stretched hash from the bloom filter, taking care not to
/// decrememnt saturated counters.
///
/// It is an error to remove never-inserted elements.
fn remove_shash(&mut self, shash: uint) {
let (a_idx, shift_amount) = self.shash_to_array_index(shash);
let b_val = self.bucket_get(a_idx, shift_amount);
assert!(b_val != 0, "Removing an element that was never inserted.");
// can't do anything if the counter saturated.
if b_val == 0xF { return; }
self.bucket_set(a_idx, shift_amount, b_val - 1);
}
/// Removes a hashed value from the bloom filter.
fn remove_hashed(&mut self, hash: u64) {
self.number_of_insertions -= 1;
for h in stretch(&mut to_rng(hash)) {
self.remove_shash(h);
}
}
/// Removes a value from the bloom filter.
///
/// Be careful of adding and removing lots of elements, especially for
/// long-lived bloom filters. The counters in each bucket will saturate if
/// 16 or more elements hash to it, and then stick there. This will hurt
/// your false positive rate. To fix this, you might consider refreshing the
/// bloom filter by `clear`ing it, and then reinserting elements at regular,
/// long intervals.
///
/// It is an error to remove never-inserted elements.
pub fn remove<H: Hash<FnvState>>(&mut self, h: &H) {
self.remove_hashed(hash(h))
}
/// Returns `true` if the bloom filter cannot possibly contain the given
/// stretched hash.
fn definitely_excludes_shash(&self, shash: uint) -> bool {
let (a_idx, shift_amount) = self.shash_to_array_index(shash);
self.bucket_get(a_idx, shift_amount) == 0
}
/// A hash is definitely excluded iff none of the stretched hashes are in
/// the bloom filter.
fn definitely_excludes_hashed(&self, hash: u64) -> bool {
let mut ret = false;
// Doing `.any` is slower than this branch-free version.
for shash in stretch(&mut to_rng(hash)) {
ret |= self.definitely_excludes_shash(shash);
}
ret
}
/// A bloom filter can tell you whether or not a value has definitely never
/// been inserted. Note that bloom filters can give false positives.
pub fn definitely_excludes<H: Hash<FnvState>>(&self, h: &H) -> bool {
self.definitely_excludes_hashed(hash(h))
}
/// A bloom filter can tell you if an element /may/ be in it. It cannot be
/// certain. But, assuming correct usage, this query will have a low false
/// positive rate.
pub fn may_include<H: Hash<FnvState>>(&self, h: &H) -> bool {
!self.definitely_excludes(h)
}
/// Returns the number of elements ever inserted into the bloom filter - the
/// number of elements removed.
pub fn number_of_insertions(&self) -> uint {
self.number_of_insertions
}
/// Returns the number of bytes of memory the bloom filter uses.
pub fn size(&self) -> uint {
self.buf.len() * uint::BYTES
}
/// Removes all elements from the bloom filter. This is both more efficient
/// and has better false-positive properties than repeatedly calling `remove`
/// on every element.
#[inline]
pub fn clear(&mut self) {
self.number_of_insertions = 0;
for x in self.buf.as_mut_slice().iter_mut() {
*x = 0u;
self.counters = [0, ..ARRAY_SIZE]
}
#[inline]
fn insert_hash(&mut self, hash: u32) {
{
let slot1 = self.first_mut_slot(hash);
if !full(slot1) {
*slot1 += 1
}
}
{
let slot2 = self.second_mut_slot(hash);
if !full(slot2) {
*slot2 += 1
}
}
}
/// Inserts an item into the bloom filter.
#[inline]
pub fn insert<T:BloomHash>(&mut self, elem: &T) {
self.insert_hash(elem.bloom_hash())
}
#[inline]
fn remove_hash(&mut self, hash: u32) {
{
let slot1 = self.first_mut_slot(hash);
if !full(slot1) {
*slot1 -= 1
}
}
{
let slot2 = self.second_mut_slot(hash);
if !full(slot2) {
*slot2 -= 1
}
}
}
/// Removes an item from the bloom filter.
#[inline]
pub fn remove<T:BloomHash>(&mut self, elem: &T) {
self.remove_hash(elem.bloom_hash())
}
#[inline]
fn might_contain_hash(&self, hash: u32) -> bool {
*self.first_slot(hash) != 0 && *self.second_slot(hash) != 0
}
/// Check whether the filter might contain an item. This can
/// sometimes return true even if the item is not in the filter,
/// but will never return false for items that are actually in the
/// filter.
#[inline]
pub fn might_contain<T:BloomHash>(&self, elem: &T) -> bool {
self.might_contain_hash(elem.bloom_hash())
}
}
pub trait BloomHash {
fn bloom_hash(&self) -> u32;
}
impl BloomHash for int {
#[inline]
fn bloom_hash(&self) -> u32 {
((*self >> 32) ^ *self) as u32
}
}
impl BloomHash for uint {
#[inline]
fn bloom_hash(&self) -> u32 {
((*self >> 32) ^ *self) as u32
}
}
impl BloomHash for Atom {
#[inline]
fn bloom_hash(&self) -> u32 {
((self.data >> 32) ^ self.data) as u32
}
}
impl BloomHash for Namespace {
#[inline]
fn bloom_hash(&self) -> u32 {
let Namespace(ref atom) = *self;
atom.bloom_hash()
}
}
#[inline]
fn full(slot: &u8) -> bool {
*slot == 0xff
}
#[inline]
fn hash1(hash: u32) -> u32 {
hash & KEY_MASK
}
#[inline]
fn hash2(hash: u32) -> u32 {
(hash >> KEY_SHIFT) & KEY_MASK
}
#[test]
fn create_and_insert_some_stuff() {
use std::iter::range;
let mut bf = BloomFilter::new(1000);
let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
assert_eq!(bf.number_of_insertions(), 1000);
for i in range(0u, 1000) {
assert!(bf.may_include(&i));
assert!(bf.might_contain(&i));
}
let false_positives =
range(1001u, 2000).filter(|i| bf.may_include(&i)).count();
range(1001u, 2000).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 10) // 1%.
@ -293,22 +235,18 @@ fn create_and_insert_some_stuff() {
bf.remove(&i);
}
assert_eq!(bf.number_of_insertions(), 900);
for i in range(100u, 1000) {
assert!(bf.may_include(&i));
assert!(bf.might_contain(&i));
}
let false_positives = range(0u, 100).filter(|i| bf.may_include(&i)).count();
let false_positives = range(0u, 100).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 2); // 2%.
bf.clear();
assert_eq!(bf.number_of_insertions(), 0);
for i in range(0u, 2000) {
assert!(bf.definitely_excludes(&i));
assert!(!bf.might_contain(&i));
}
}
@ -323,7 +261,7 @@ mod bench {
#[bench]
fn create_insert_1000_remove_100_lookup_100(b: &mut test::Bencher) {
b.iter(|| {
let mut bf = BloomFilter::new(1000);
let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
}
@ -331,14 +269,14 @@ mod bench {
bf.remove(&i);
}
for i in iter::range(100u, 200) {
test::black_box(bf.may_include(&i));
test::black_box(bf.might_contain(&i));
}
});
}
#[bench]
fn may_include(b: &mut test::Bencher) {
let mut bf = BloomFilter::new(1000);
fn might_contain(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
@ -348,7 +286,7 @@ mod bench {
b.bench_n(1000, |b| {
b.iter(|| {
test::black_box(bf.may_include(&i));
test::black_box(bf.might_contain(&i));
i += 1;
});
});
@ -356,7 +294,7 @@ mod bench {
#[bench]
fn insert(b: &mut test::Bencher) {
let mut bf = BloomFilter::new(1000);
let mut bf = BloomFilter::new();
b.bench_n(1000, |b| {
let mut i = 0u;
@ -370,7 +308,7 @@ mod bench {
#[bench]
fn remove(b: &mut test::Bencher) {
let mut bf = BloomFilter::new(1000);
let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
@ -384,7 +322,7 @@ mod bench {
});
});
test::black_box(bf.may_include(&0u));
test::black_box(bf.might_contain(&0u));
}
#[bench]
@ -396,3 +334,4 @@ mod bench {
})
}
}