Move script lints to script_plugins

The plugins crate now just allows to hook into clippy from a single crate.
This commit is contained in:
Anthony Ramine 2017-02-16 09:18:02 +01:00
parent 84a44a4014
commit 3eed8a91a1
17 changed files with 79 additions and 61 deletions

View file

@ -15,5 +15,4 @@ version = "0.0.112"
optional = true
[features]
default = []
clippy = ["clippy_lints"]

View file

@ -1,24 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use syntax::ast::MetaItem;
use syntax::codemap::Span;
use syntax::ext::base::{Annotatable, ExtCtxt};
use syntax::ptr::P;
pub fn expand_dom_struct(cx: &mut ExtCtxt, sp: Span, _: &MetaItem, anno: Annotatable) -> Annotatable {
if let Annotatable::Item(item) = anno {
let mut item2 = (*item).clone();
item2.attrs.push(quote_attr!(cx, #[must_root]));
item2.attrs.push(quote_attr!(cx, #[repr(C)]));
item2.attrs.push(quote_attr!(cx, #[derive(JSTraceable)]));
item2.attrs.push(quote_attr!(cx, #[derive(HeapSizeOf)]));
item2.attrs.push(quote_attr!(cx, #[derive(DenyPublicFields)]));
item2.attrs.push(quote_attr!(cx, #[derive(DomObject)]));
Annotatable::Item(P(item2))
} else {
cx.span_err(sp, "#[dom_struct] applied to something other than a struct");
anno
}
}

View file

@ -2,58 +2,21 @@
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Servo's compiler plugin/macro crate
//!
//! Attributes this crate provides:
//!
//! - `#[derive(DenyPublicFields)]` : Forces all fields in a struct/enum to be private
//! - `#[derive(JSTraceable)]` : Auto-derives an implementation of `JSTraceable` for a struct in the script crate
//! - `#[must_root]` : Prevents data of the marked type from being used on the stack.
//! See the lints module for more details
//! - `#[dom_struct]` : Implies #[derive(JSTraceable, DenyPublicFields)]`, and `#[must_root]`.
//! Use this for structs that correspond to a DOM type
#![feature(box_syntax, plugin, plugin_registrar, quote, rustc_private, slice_patterns)]
//! Exists only to hook into clippy.
#![cfg_attr(feature = "clippy", feature(plugin, plugin_registrar, rustc_private))]
#![deny(unsafe_code)]
#[cfg(feature = "clippy")]
extern crate clippy_lints;
#[macro_use]
extern crate rustc;
#[cfg(feature = "clippy")]
extern crate rustc_plugin;
extern crate syntax;
use rustc_plugin::Registry;
use syntax::ext::base::*;
use syntax::feature_gate::AttributeType::Whitelisted;
use syntax::symbol::Symbol;
// Public for documentation to show up
/// Handles the auto-deriving for `#[derive(JSTraceable)]`
pub mod jstraceable;
pub mod lints;
/// Utilities for writing plugins
mod utils;
#[plugin_registrar]
pub fn plugin_registrar(reg: &mut Registry) {
reg.register_syntax_extension(
Symbol::intern("dom_struct"),
MultiModifier(box jstraceable::expand_dom_struct));
reg.register_late_lint_pass(box lints::unrooted_must_root::UnrootedPass::new());
reg.register_early_lint_pass(box lints::ban::BanPass);
reg.register_attribute("allow_unrooted_interior".to_string(), Whitelisted);
reg.register_attribute("must_root".to_string(), Whitelisted);
register_clippy(reg);
}
#[cfg(feature = "clippy")]
fn register_clippy(reg: &mut Registry) {
use rustc_plugin::Registry;
#[cfg(feature = "clippy")]
#[plugin_registrar]
pub fn plugin_registrar(reg: &mut Registry) {
::clippy_lints::register_plugins(reg);
}
#[cfg(not(feature = "clippy"))]
fn register_clippy(_reg: &mut Registry) {
}

View file

@ -1,53 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use rustc::lint::{EarlyContext, LintPass, LintArray, EarlyLintPass, LintContext};
use syntax::ast::Ty;
use utils::match_ty_unwrap;
declare_lint!(BANNED_TYPE, Deny,
"Ban various unsafe type combinations");
/// Lint for banning various unsafe types
///
/// Banned types:
///
/// - `Cell<JSVal>`
/// - `Cell<JS<T>>`
pub struct BanPass;
impl LintPass for BanPass {
fn get_lints(&self) -> LintArray {
lint_array!(BANNED_TYPE)
}
}
impl EarlyLintPass for BanPass {
fn check_ty(&mut self, cx: &EarlyContext, ty: &Ty) {
if match_ty_unwrap(ty, &["std", "cell", "Cell"])
.and_then(|t| t.get(0))
.and_then(|t| match_ty_unwrap(&**t, &["dom", "bindings", "js", "JS"]))
.is_some() {
cx.span_lint(BANNED_TYPE, ty.span, "Banned type Cell<JS<T>> detected. Use MutJS<JS<T>> instead")
}
if match_ty_unwrap(ty, &["std", "cell", "Cell"])
.and_then(|t| t.get(0))
.and_then(|t| match_ty_unwrap(&**t, &["js", "jsval", "JSVal"]))
.is_some() {
cx.span_lint(BANNED_TYPE, ty.span, "Banned type Cell<JSVal> detected. Use MutJS<JSVal> instead")
}
if match_ty_unwrap(ty, &["dom", "bindings", "cell", "DOMRefCell"])
.and_then(|t| t.get(0))
.and_then(|t| match_ty_unwrap(&**t, &["dom", "bindings", "js", "JS"]))
.is_some() {
cx.span_lint(BANNED_TYPE, ty.span, "Banned type DOMRefCell<JS<T>> detected. Use MutJS<JS<T>> instead")
}
if match_ty_unwrap(ty, &["dom", "bindings", "cell", "DOMRefCell"])
.and_then(|t| t.get(0))
.and_then(|t| match_ty_unwrap(&**t, &["js", "jsapi", "Heap"]))
.is_some() {
cx.span_lint(BANNED_TYPE, ty.span, "Banned type DOMRefCell<Heap<T>> detected. Use Heap<T> directly instead")
}
}
}

View file

@ -1,6 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
pub mod ban;
pub mod unrooted_must_root;

View file

@ -1,231 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use rustc::hir;
use rustc::hir::intravisit as visit;
use rustc::hir::map as ast_map;
use rustc::lint::{LateContext, LintPass, LintArray, LateLintPass, LintContext};
use rustc::ty;
use syntax::{ast, codemap};
use utils::{match_def_path, in_derive_expn};
declare_lint!(UNROOTED_MUST_ROOT, Deny,
"Warn and report usage of unrooted jsmanaged objects");
/// Lint for ensuring safe usage of unrooted pointers
///
/// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that `#[must_root]`
/// values are used correctly.
///
/// "Incorrect" usage includes:
///
/// - Not being used in a struct/enum field which is not `#[must_root]` itself
/// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`)
/// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement.
///
/// This helps catch most situations where pointers like `JS<T>` are used in a way that they can be invalidated by a
/// GC pass.
///
/// Structs which have their own mechanism of rooting their unrooted contents (e.g. `ScriptThread`)
/// can be marked as `#[allow(unrooted_must_root)]`. Smart pointers which root their interior type
/// can be marked as `#[allow_unrooted_interior]`
pub struct UnrootedPass;
impl UnrootedPass {
pub fn new() -> UnrootedPass {
UnrootedPass
}
}
/// Checks if a type is unrooted or contains any owned unrooted types
fn is_unrooted_ty(cx: &LateContext, ty: &ty::TyS, in_new_function: bool) -> bool {
let mut ret = false;
ty.maybe_walk(|t| {
match t.sty {
ty::TyAdt(did, _) => {
if cx.tcx.has_attr(did.did, "must_root") {
ret = true;
false
} else if cx.tcx.has_attr(did.did, "allow_unrooted_interior") {
false
} else if match_def_path(cx, did.did, &["core", "cell", "Ref"])
|| match_def_path(cx, did.did, &["core", "cell", "RefMut"])
|| match_def_path(cx, did.did, &["core", "slice", "Iter"])
|| match_def_path(cx, did.did, &["std", "collections", "hash", "map", "OccupiedEntry"])
|| match_def_path(cx, did.did, &["std", "collections", "hash", "map", "VacantEntry"]) {
// Structures which are semantically similar to an &ptr.
false
} else if did.is_box() && in_new_function {
// box in new() is okay
false
} else {
true
}
},
ty::TyRef(..) => false, // don't recurse down &ptrs
ty::TyRawPtr(..) => false, // don't recurse down *ptrs
ty::TyFnDef(..) | ty::TyFnPtr(_) => false,
_ => true
}
});
ret
}
impl LintPass for UnrootedPass {
fn get_lints(&self) -> LintArray {
lint_array!(UNROOTED_MUST_ROOT)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnrootedPass {
/// All structs containing #[must_root] types must be #[must_root] themselves
fn check_struct_def(&mut self,
cx: &LateContext,
def: &hir::VariantData,
_n: ast::Name,
_gen: &hir::Generics,
id: ast::NodeId) {
let item = match cx.tcx.hir.get(id) {
ast_map::Node::NodeItem(item) => item,
_ => cx.tcx.hir.expect_item(cx.tcx.hir.get_parent(id)),
};
if item.attrs.iter().all(|a| !a.check_name("must_root")) {
for ref field in def.fields() {
let def_id = cx.tcx.hir.local_def_id(field.id);
if is_unrooted_ty(cx, cx.tcx.item_type(def_id), false) {
cx.span_lint(UNROOTED_MUST_ROOT, field.span,
"Type must be rooted, use #[must_root] on the struct definition to propagate")
}
}
}
}
/// All enums containing #[must_root] types must be #[must_root] themselves
fn check_variant(&mut self, cx: &LateContext, var: &hir::Variant, _gen: &hir::Generics) {
let ref map = cx.tcx.hir;
if map.expect_item(map.get_parent(var.node.data.id())).attrs.iter().all(|a| !a.check_name("must_root")) {
match var.node.data {
hir::VariantData::Tuple(ref fields, _) => {
for ref field in fields {
let def_id = cx.tcx.hir.local_def_id(field.id);
if is_unrooted_ty(cx, cx.tcx.item_type(def_id), false) {
cx.span_lint(UNROOTED_MUST_ROOT, field.ty.span,
"Type must be rooted, use #[must_root] on \
the enum definition to propagate")
}
}
}
_ => () // Struct variants already caught by check_struct_def
}
}
}
/// Function arguments that are #[must_root] types are not allowed
fn check_fn(&mut self,
cx: &LateContext<'a, 'tcx>,
kind: visit::FnKind,
decl: &'tcx hir::FnDecl,
body: &'tcx hir::Body,
span: codemap::Span,
id: ast::NodeId) {
let in_new_function = match kind {
visit::FnKind::ItemFn(n, _, _, _, _, _, _) |
visit::FnKind::Method(n, _, _, _) => {
&*n.as_str() == "new" || n.as_str().starts_with("new_")
}
visit::FnKind::Closure(_) => return,
};
if !in_derive_expn(cx, span) {
let def_id = cx.tcx.hir.local_def_id(id);
let ty = cx.tcx.item_type(def_id);
for (arg, ty) in decl.inputs.iter().zip(ty.fn_args().0.iter()) {
if is_unrooted_ty(cx, ty, false) {
cx.span_lint(UNROOTED_MUST_ROOT, arg.span, "Type must be rooted")
}
}
if !in_new_function {
if is_unrooted_ty(cx, ty.fn_ret().0, false) {
cx.span_lint(UNROOTED_MUST_ROOT, decl.output.span(), "Type must be rooted")
}
}
}
let mut visitor = FnDefVisitor {
cx: cx,
in_new_function: in_new_function,
};
visit::walk_expr(&mut visitor, &body.value);
}
}
struct FnDefVisitor<'a, 'b: 'a, 'tcx: 'a+'b> {
cx: &'a LateContext<'b, 'tcx>,
in_new_function: bool,
}
impl<'a, 'b, 'tcx> visit::Visitor<'tcx> for FnDefVisitor<'a, 'b, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
let cx = self.cx;
fn require_rooted(cx: &LateContext, in_new_function: bool, subexpr: &hir::Expr) {
let ty = cx.tables.expr_ty(&subexpr);
if is_unrooted_ty(cx, ty, in_new_function) {
cx.span_lint(UNROOTED_MUST_ROOT,
subexpr.span,
&format!("Expression of type {:?} must be rooted", ty))
}
}
match expr.node {
/// Trait casts from #[must_root] types are not allowed
hir::ExprCast(ref subexpr, _) => require_rooted(cx, self.in_new_function, &*subexpr),
// This catches assignments... the main point of this would be to catch mutable
// references to `JS<T>`.
// FIXME: Enable this? Triggers on certain kinds of uses of DOMRefCell.
// hir::ExprAssign(_, ref rhs) => require_rooted(cx, self.in_new_function, &*rhs),
// This catches calls; basically, this enforces the constraint that only constructors
// can call other constructors.
// FIXME: Enable this? Currently triggers with constructs involving DOMRefCell, and
// constructs like Vec<JS<T>> and RootedVec<JS<T>>.
// hir::ExprCall(..) if !self.in_new_function => {
// require_rooted(cx, self.in_new_function, expr);
// }
_ => {
// TODO(pcwalton): Check generics with a whitelist of allowed generics.
}
}
visit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
let cx = self.cx;
if let hir::PatKind::Binding(hir::BindingMode::BindByValue(_), _, _, _) = pat.node {
let ty = cx.tables.pat_ty(pat);
if is_unrooted_ty(cx, ty, self.in_new_function) {
cx.span_lint(UNROOTED_MUST_ROOT,
pat.span,
&format!("Expression of type {:?} must be rooted", ty))
}
}
visit::walk_pat(self, pat);
}
fn visit_fn(&mut self, kind: visit::FnKind<'tcx>, decl: &'tcx hir::FnDecl,
body: hir::BodyId, span: codemap::Span, id: ast::NodeId) {
if let visit::FnKind::Closure(_) = kind {
visit::walk_fn(self, kind, decl, body, span, id);
}
}
fn visit_foreign_item(&mut self, _: &'tcx hir::ForeignItem) {}
fn visit_ty(&mut self, _: &'tcx hir::Ty) { }
fn nested_visit_map<'this>(&'this mut self) -> hir::intravisit::NestedVisitorMap<'this, 'tcx> {
hir::intravisit::NestedVisitorMap::OnlyBodies(&self.cx.tcx.hir)
}
}

View file

@ -1,73 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use rustc::hir::def_id::DefId;
use rustc::lint::{LateContext, LintContext};
use syntax::ast;
use syntax::codemap::{ExpnFormat, Span};
use syntax::ptr::P;
/// Matches a type with a provided string, and returns its type parameters if successful
pub fn match_ty_unwrap<'a>(ty: &'a ast::Ty, segments: &[&str]) -> Option<&'a [P<ast::Ty>]> {
match ty.node {
ast::TyKind::Path(_, ast::Path { segments: ref seg, .. }) => {
// So hir::Path isn't the full path, just the tokens that were provided.
// I could muck around with the maps and find the full path
// however the more efficient way is to simply reverse the iterators and zip them
// which will compare them in reverse until one of them runs out of segments
if seg.iter().rev().zip(segments.iter().rev()).all(|(a, b)| &*a.identifier.name.as_str() == *b) {
match seg.last() {
Some(&ast::PathSegment { parameters: Some(ref params), .. }) => {
match **params {
ast::PathParameters::AngleBracketed(ref a) => Some(&a.types),
// `Foo(A,B) -> C`
ast::PathParameters::Parenthesized(_) => None,
}
}
Some(&ast::PathSegment { parameters: None, .. }) => Some(&[]),
None => None,
}
} else {
None
}
},
_ => None
}
}
/// check if a DefId's path matches the given absolute type path
/// usage e.g. with
/// `match_def_path(cx, id, &["core", "option", "Option"])`
pub fn match_def_path(cx: &LateContext, def_id: DefId, path: &[&str]) -> bool {
let krate = &cx.tcx.crate_name(def_id.krate);
if krate != &path[0] {
return false;
}
let path = &path[1..];
let other = cx.tcx.def_path(def_id).data;
if other.len() != path.len() {
return false;
}
other.into_iter()
.map(|e| e.data)
.zip(path)
.all(|(nm, p)| &*nm.as_interned_str() == *p)
}
pub fn in_derive_expn(cx: &LateContext, span: Span) -> bool {
cx.sess().codemap().with_expn_info(span.expn_id,
|info| {
if let Some(i) = info {
if let ExpnFormat::MacroAttribute(n) = i.callee.format {
if n.as_str().contains("derive") {
true
} else { false }
} else { false }
} else { false }
})
}