Move profiler code from util into a new crate profile.

- Most of util::memory has been moved into profile::mem, though the
  `SizeOf` trait and related things remain in util::memory. The
  `SystemMemoryReporter` code is now in a submodule
  profile::mem::system_reporter.

- util::time has been moved entirely into profile::time.
This commit is contained in:
Nicholas Nethercote 2015-03-23 16:48:54 -07:00
parent cad58b3bec
commit 52447ccd9b
36 changed files with 850 additions and 726 deletions

View file

@ -30,9 +30,6 @@ git = "https://github.com/servo/rust-geom"
[dependencies.layers]
git = "https://github.com/servo/rust-layers"
[dependencies.task_info]
path = "../../support/rust-task_info"
[dependencies.string_cache]
git = "https://github.com/servo/string-cache"
@ -46,8 +43,6 @@ git = "https://github.com/Kimundi/lazy-static.rs"
bitflags = "*"
libc = "*"
rand = "*"
regex = "0.1.14"
rustc-serialize = "0.3"
text_writer = "0.1.1"
time = "0.1.12"
url = "0.2.16"

View file

@ -12,7 +12,6 @@
#![feature(io)]
#![feature(old_io)]
#![feature(optin_builtin_traits)]
#![cfg_attr(target_os = "linux", feature(page_size, str_words))]
#![feature(path)]
#![feature(path_ext)]
#![feature(plugin)]
@ -27,7 +26,6 @@
extern crate alloc;
#[macro_use] extern crate bitflags;
extern crate collections;
extern crate cssparser;
extern crate geom;
extern crate getopts;
@ -35,19 +33,10 @@ extern crate layers;
extern crate libc;
#[no_link] #[macro_use] extern crate cssparser;
extern crate rand;
#[cfg(target_os="linux")]
extern crate regex;
extern crate "rustc-serialize" as rustc_serialize;
#[cfg(target_os="macos")]
extern crate task_info;
extern crate "time" as std_time;
extern crate text_writer;
extern crate selectors;
extern crate string_cache;
extern crate unicode;
extern crate url;
extern crate lazy_static;
pub use selectors::smallvec;
@ -70,7 +59,6 @@ pub mod resource_files;
pub mod str;
pub mod task;
pub mod tid;
pub mod time;
pub mod taskpool;
pub mod task_state;
pub mod vec;

View file

@ -2,23 +2,12 @@
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Memory profiling functions.
//! Data structure measurement.
use libc::{c_char,c_int,c_void,size_t};
use std::borrow::ToOwned;
use std::cmp::Ordering;
use std::collections::HashMap;
use libc::{c_void, size_t};
use std::collections::LinkedList;
use std::ffi::CString;
use std::old_io::timer::sleep;
use std::mem::{size_of, transmute};
use std::ptr::null_mut;
use std::mem::transmute;
use std::sync::Arc;
use std::sync::mpsc::{Sender, channel, Receiver};
use std::time::duration::Duration;
use task::spawn_named;
#[cfg(target_os="macos")]
use task_info::task_basic_info::{virtual_size,resident_size};
extern {
// Get the size of a heap block.
@ -170,638 +159,3 @@ impl<T> Drop for LinkedList2<T> {
fn drop(&mut self) {}
}
//---------------------------------------------------------------------------
#[derive(Clone)]
pub struct MemoryProfilerChan(pub Sender<MemoryProfilerMsg>);
impl MemoryProfilerChan {
pub fn send(&self, msg: MemoryProfilerMsg) {
let MemoryProfilerChan(ref c) = *self;
c.send(msg).unwrap();
}
}
/// An easy way to build a path for a report.
#[macro_export]
macro_rules! path {
($($x:expr),*) => {{ vec![$( $x.to_owned() ),*] }}
}
pub struct MemoryReport {
/// The identifying path for this report.
pub path: Vec<String>,
/// The size, in bytes.
pub size: u64,
}
/// A channel through which memory reports can be sent.
#[derive(Clone)]
pub struct MemoryReportsChan(pub Sender<Vec<MemoryReport>>);
impl MemoryReportsChan {
pub fn send(&self, report: Vec<MemoryReport>) {
let MemoryReportsChan(ref c) = *self;
c.send(report).unwrap();
}
}
/// A memory reporter is capable of measuring some data structure of interest. Because it needs
/// to be passed to and registered with the MemoryProfiler, it's typically a "small" (i.e. easily
/// cloneable) value that provides access to a "large" data structure, e.g. a channel that can
/// inject a request for measurements into the event queue associated with the "large" data
/// structure.
pub trait MemoryReporter {
/// Collect one or more memory reports. Returns true on success, and false on failure.
fn collect_reports(&self, reports_chan: MemoryReportsChan) -> bool;
}
/// Messages that can be sent to the memory profiler thread.
pub enum MemoryProfilerMsg {
/// Register a MemoryReporter with the memory profiler. The String is only used to identify the
/// reporter so it can be unregistered later. The String must be distinct from that used by any
/// other registered reporter otherwise a panic will occur.
RegisterMemoryReporter(String, Box<MemoryReporter + Send>),
/// Unregister a MemoryReporter with the memory profiler. The String must match the name given
/// when the reporter was registered. If the String does not match the name of a registered
/// reporter a panic will occur.
UnregisterMemoryReporter(String),
/// Triggers printing of the memory profiling metrics.
Print,
/// Tells the memory profiler to shut down.
Exit,
}
pub struct MemoryProfiler {
/// The port through which messages are received.
pub port: Receiver<MemoryProfilerMsg>,
/// Registered memory reporters.
reporters: HashMap<String, Box<MemoryReporter + Send>>,
}
impl MemoryProfiler {
pub fn create(period: Option<f64>) -> MemoryProfilerChan {
let (chan, port) = channel();
// Create the timer thread if a period was provided.
if let Some(period) = period {
let period_ms = Duration::milliseconds((period * 1000f64) as i64);
let chan = chan.clone();
spawn_named("Memory profiler timer".to_owned(), move || {
loop {
sleep(period_ms);
if chan.send(MemoryProfilerMsg::Print).is_err() {
break;
}
}
});
}
// Always spawn the memory profiler. If there is no timer thread it won't receive regular
// `Print` events, but it will still receive the other events.
spawn_named("Memory profiler".to_owned(), move || {
let mut memory_profiler = MemoryProfiler::new(port);
memory_profiler.start();
});
let memory_profiler_chan = MemoryProfilerChan(chan);
// Register the system memory reporter, which will run on the memory profiler's own thread.
// It never needs to be unregistered, because as long as the memory profiler is running the
// system memory reporter can make measurements.
let system_reporter = Box::new(SystemMemoryReporter);
memory_profiler_chan.send(MemoryProfilerMsg::RegisterMemoryReporter("system".to_owned(),
system_reporter));
memory_profiler_chan
}
pub fn new(port: Receiver<MemoryProfilerMsg>) -> MemoryProfiler {
MemoryProfiler {
port: port,
reporters: HashMap::new(),
}
}
pub fn start(&mut self) {
loop {
match self.port.recv() {
Ok(msg) => {
if !self.handle_msg(msg) {
break
}
}
_ => break
}
}
}
fn handle_msg(&mut self, msg: MemoryProfilerMsg) -> bool {
match msg {
MemoryProfilerMsg::RegisterMemoryReporter(name, reporter) => {
// Panic if it has already been registered.
let name_clone = name.clone();
match self.reporters.insert(name, reporter) {
None => true,
Some(_) =>
panic!(format!("RegisterMemoryReporter: '{}' name is already in use",
name_clone)),
}
},
MemoryProfilerMsg::UnregisterMemoryReporter(name) => {
// Panic if it hasn't previously been registered.
match self.reporters.remove(&name) {
Some(_) => true,
None =>
panic!(format!("UnregisterMemoryReporter: '{}' name is unknown", &name)),
}
},
MemoryProfilerMsg::Print => {
self.handle_print_msg();
true
},
MemoryProfilerMsg::Exit => false
}
}
fn handle_print_msg(&self) {
println!("Begin memory reports");
println!("|");
// Collect reports from memory reporters.
//
// This serializes the report-gathering. It might be worth creating a new scoped thread for
// each reporter once we have enough of them.
//
// If anything goes wrong with a reporter, we just skip it.
let mut forest = ReportsForest::new();
for reporter in self.reporters.values() {
let (chan, port) = channel();
if reporter.collect_reports(MemoryReportsChan(chan)) {
if let Ok(reports) = port.recv() {
for report in reports.iter() {
forest.insert(&report.path, report.size);
}
}
}
}
forest.print();
println!("|");
println!("End memory reports");
println!("");
}
}
/// A collection of one or more reports with the same initial path segment. A ReportsTree
/// containing a single node is described as "degenerate".
struct ReportsTree {
/// For leaf nodes, this is the sum of the sizes of all reports that mapped to this location.
/// For interior nodes, this is the sum of the sizes of all its child nodes.
size: u64,
/// For leaf nodes, this is the count of all reports that mapped to this location.
/// For interor nodes, this is always zero.
count: u32,
/// The segment from the report path that maps to this node.
path_seg: String,
/// Child nodes.
children: Vec<ReportsTree>,
}
impl ReportsTree {
fn new(path_seg: String) -> ReportsTree {
ReportsTree {
size: 0,
count: 0,
path_seg: path_seg,
children: vec![]
}
}
// Searches the tree's children for a path_seg match, and returns the index if there is a
// match.
fn find_child(&self, path_seg: &String) -> Option<usize> {
for (i, child) in self.children.iter().enumerate() {
if child.path_seg == *path_seg {
return Some(i);
}
}
None
}
// Insert the path and size into the tree, adding any nodes as necessary.
fn insert(&mut self, path: &[String], size: u64) {
let mut t: &mut ReportsTree = self;
for path_seg in path.iter() {
let i = match t.find_child(&path_seg) {
Some(i) => i,
None => {
let new_t = ReportsTree::new(path_seg.clone());
t.children.push(new_t);
t.children.len() - 1
},
};
let tmp = t; // this temporary is needed to satisfy the borrow checker
t = &mut tmp.children[i];
}
t.size += size;
t.count += 1;
}
// Fill in sizes for interior nodes. Should only be done once all the reports have been
// inserted.
fn compute_interior_node_sizes(&mut self) -> u64 {
if !self.children.is_empty() {
// Interior node. Derive its size from its children.
if self.size != 0 {
// This will occur if e.g. we have paths ["a", "b"] and ["a", "b", "c"].
panic!("one report's path is a sub-path of another report's path");
}
for child in self.children.iter_mut() {
self.size += child.compute_interior_node_sizes();
}
}
self.size
}
fn print(&self, depth: i32) {
if !self.children.is_empty() {
assert_eq!(self.count, 0);
}
let mut indent_str = String::new();
for _ in range(0, depth) {
indent_str.push_str(" ");
}
let mebi = 1024f64 * 1024f64;
let count_str = if self.count > 1 { format!(" {}", self.count) } else { "".to_owned() };
println!("|{}{:8.2} MiB -- {}{}",
indent_str, (self.size as f64) / mebi, self.path_seg, count_str);
for child in self.children.iter() {
child.print(depth + 1);
}
}
}
/// A collection of ReportsTrees. It represents the data from multiple memory reports in a form
/// that's good to print.
struct ReportsForest {
trees: HashMap<String, ReportsTree>,
}
impl ReportsForest {
fn new() -> ReportsForest {
ReportsForest {
trees: HashMap::new(),
}
}
// Insert the path and size into the forest, adding any trees and nodes as necessary.
fn insert(&mut self, path: &[String], size: u64) {
// Get the right tree, creating it if necessary.
if !self.trees.contains_key(&path[0]) {
self.trees.insert(path[0].clone(), ReportsTree::new(path[0].clone()));
}
let t = self.trees.get_mut(&path[0]).unwrap();
// Use tail() because the 0th path segment was used to find the right tree in the forest.
t.insert(path.tail(), size);
}
fn print(&mut self) {
// Fill in sizes of interior nodes.
for (_, tree) in self.trees.iter_mut() {
tree.compute_interior_node_sizes();
}
// Put the trees into a sorted vector. Primary sort: degenerate trees (those containing a
// single node) come after non-degenerate trees. Secondary sort: alphabetical order of the
// root node's path_seg.
let mut v = vec![];
for (_, tree) in self.trees.iter() {
v.push(tree);
}
v.sort_by(|a, b| {
if a.children.is_empty() && !b.children.is_empty() {
Ordering::Greater
} else if !a.children.is_empty() && b.children.is_empty() {
Ordering::Less
} else {
a.path_seg.cmp(&b.path_seg)
}
});
// Print the forest.
for tree in v.iter() {
tree.print(0);
// Print a blank line after non-degenerate trees.
if !tree.children.is_empty() {
println!("|");
}
}
}
}
//---------------------------------------------------------------------------
/// Collects global measurements from the OS and heap allocators.
struct SystemMemoryReporter;
impl MemoryReporter for SystemMemoryReporter {
fn collect_reports(&self, reports_chan: MemoryReportsChan) -> bool {
let mut reports = vec![];
{
let mut report = |path, size| {
if let Some(size) = size {
reports.push(MemoryReport { path: path, size: size });
}
};
// Virtual and physical memory usage, as reported by the OS.
report(path!["vsize"], get_vsize());
report(path!["resident"], get_resident());
// Memory segments, as reported by the OS.
for seg in get_resident_segments().iter() {
report(path!["resident-according-to-smaps".to_owned(), seg.0.to_owned()],
Some(seg.1));
}
// Total number of bytes allocated by the application on the system
// heap.
report(path!["system-heap-allocated".to_owned()], get_system_heap_allocated());
// The descriptions of the following jemalloc measurements are taken
// directly from the jemalloc documentation.
// "Total number of bytes allocated by the application."
report(path!["jemalloc-heap-allocated".to_owned()],
get_jemalloc_stat("stats.allocated"));
// "Total number of bytes in active pages allocated by the application.
// This is a multiple of the page size, and greater than or equal to
// |stats.allocated|."
report(path!["jemalloc-heap-active"], get_jemalloc_stat("stats.active"));
// "Total number of bytes in chunks mapped on behalf of the application.
// This is a multiple of the chunk size, and is at least as large as
// |stats.active|. This does not include inactive chunks."
report(path!["jemalloc-heap-mapped"], get_jemalloc_stat("stats.mapped"));
}
reports_chan.send(reports);
true
}
}
#[cfg(target_os="linux")]
extern {
fn mallinfo() -> struct_mallinfo;
}
#[cfg(target_os="linux")]
#[repr(C)]
pub struct struct_mallinfo {
arena: c_int,
ordblks: c_int,
smblks: c_int,
hblks: c_int,
hblkhd: c_int,
usmblks: c_int,
fsmblks: c_int,
uordblks: c_int,
fordblks: c_int,
keepcost: c_int,
}
#[cfg(target_os="linux")]
fn get_system_heap_allocated() -> Option<u64> {
let mut info: struct_mallinfo;
unsafe {
info = mallinfo();
}
// The documentation in the glibc man page makes it sound like |uordblks|
// would suffice, but that only gets the small allocations that are put in
// the brk heap. We need |hblkhd| as well to get the larger allocations
// that are mmapped.
Some((info.hblkhd + info.uordblks) as u64)
}
#[cfg(not(target_os="linux"))]
fn get_system_heap_allocated() -> Option<u64> {
None
}
extern {
fn je_mallctl(name: *const c_char, oldp: *mut c_void, oldlenp: *mut size_t,
newp: *mut c_void, newlen: size_t) -> c_int;
}
fn get_jemalloc_stat(value_name: &str) -> Option<u64> {
// Before we request the measurement of interest, we first send an "epoch"
// request. Without that jemalloc gives cached statistics(!) which can be
// highly inaccurate.
let epoch_name = "epoch";
let epoch_c_name = CString::new(epoch_name).unwrap();
let mut epoch: u64 = 0;
let epoch_ptr = &mut epoch as *mut _ as *mut c_void;
let mut epoch_len = size_of::<u64>() as size_t;
let value_c_name = CString::new(value_name).unwrap();
let mut value: size_t = 0;
let value_ptr = &mut value as *mut _ as *mut c_void;
let mut value_len = size_of::<size_t>() as size_t;
// Using the same values for the `old` and `new` parameters is enough
// to get the statistics updated.
let rv = unsafe {
je_mallctl(epoch_c_name.as_ptr(), epoch_ptr, &mut epoch_len, epoch_ptr,
epoch_len)
};
if rv != 0 {
return None;
}
let rv = unsafe {
je_mallctl(value_c_name.as_ptr(), value_ptr, &mut value_len,
null_mut(), 0)
};
if rv != 0 {
return None;
}
Some(value as u64)
}
// Like std::macros::try!, but for Option<>.
macro_rules! option_try(
($e:expr) => (match $e { Some(e) => e, None => return None })
);
#[cfg(target_os="linux")]
fn get_proc_self_statm_field(field: usize) -> Option<u64> {
use std::fs::File;
use std::io::Read;
let mut f = option_try!(File::open("/proc/self/statm").ok());
let mut contents = String::new();
option_try!(f.read_to_string(&mut contents).ok());
let s = option_try!(contents.words().nth(field));
let npages = option_try!(s.parse::<u64>().ok());
Some(npages * (::std::env::page_size() as u64))
}
#[cfg(target_os="linux")]
fn get_vsize() -> Option<u64> {
get_proc_self_statm_field(0)
}
#[cfg(target_os="linux")]
fn get_resident() -> Option<u64> {
get_proc_self_statm_field(1)
}
#[cfg(target_os="macos")]
fn get_vsize() -> Option<u64> {
virtual_size()
}
#[cfg(target_os="macos")]
fn get_resident() -> Option<u64> {
resident_size()
}
#[cfg(not(any(target_os="linux", target_os = "macos")))]
fn get_vsize() -> Option<u64> {
None
}
#[cfg(not(any(target_os="linux", target_os = "macos")))]
fn get_resident() -> Option<u64> {
None
}
#[cfg(target_os="linux")]
fn get_resident_segments() -> Vec<(String, u64)> {
use regex::Regex;
use std::collections::HashMap;
use std::collections::hash_map::Entry;
use std::fs::File;
use std::io::{BufReader, BufReadExt};
// The first line of an entry in /proc/<pid>/smaps looks just like an entry
// in /proc/<pid>/maps:
//
// address perms offset dev inode pathname
// 02366000-025d8000 rw-p 00000000 00:00 0 [heap]
//
// Each of the following lines contains a key and a value, separated
// by ": ", where the key does not contain either of those characters.
// For example:
//
// Rss: 132 kB
let f = match File::open("/proc/self/smaps") {
Ok(f) => BufReader::new(f),
Err(_) => return vec![],
};
let seg_re = Regex::new(
r"^[:xdigit:]+-[:xdigit:]+ (....) [:xdigit:]+ [:xdigit:]+:[:xdigit:]+ \d+ +(.*)").unwrap();
let rss_re = Regex::new(r"^Rss: +(\d+) kB").unwrap();
// We record each segment's resident size.
let mut seg_map: HashMap<String, u64> = HashMap::new();
#[derive(PartialEq)]
enum LookingFor { Segment, Rss }
let mut looking_for = LookingFor::Segment;
let mut curr_seg_name = String::new();
// Parse the file.
for line in f.lines() {
let line = match line {
Ok(line) => line,
Err(_) => continue,
};
if looking_for == LookingFor::Segment {
// Look for a segment info line.
let cap = match seg_re.captures(line.as_slice()) {
Some(cap) => cap,
None => continue,
};
let perms = cap.at(1).unwrap();
let pathname = cap.at(2).unwrap();
// Construct the segment name from its pathname and permissions.
curr_seg_name.clear();
if pathname == "" || pathname.starts_with("[stack:") {
// Anonymous memory. Entries marked with "[stack:nnn]"
// look like thread stacks but they may include other
// anonymous mappings, so we can't trust them and just
// treat them as entirely anonymous.
curr_seg_name.push_str("anonymous");
} else {
curr_seg_name.push_str(pathname);
}
curr_seg_name.push_str(" (");
curr_seg_name.push_str(perms);
curr_seg_name.push_str(")");
looking_for = LookingFor::Rss;
} else {
// Look for an "Rss:" line.
let cap = match rss_re.captures(line.as_slice()) {
Some(cap) => cap,
None => continue,
};
let rss = cap.at(1).unwrap().parse::<u64>().unwrap() * 1024;
if rss > 0 {
// Aggregate small segments into "other".
let seg_name = if rss < 512 * 1024 {
"other".to_owned()
} else {
curr_seg_name.clone()
};
match seg_map.entry(seg_name) {
Entry::Vacant(entry) => { entry.insert(rss); },
Entry::Occupied(mut entry) => *entry.get_mut() += rss,
}
}
looking_for = LookingFor::Segment;
}
}
let mut segs: Vec<(String, u64)> = seg_map.into_iter().collect();
// Note that the sum of all these segments' RSS values differs from the "resident" measurement
// obtained via /proc/<pid>/statm in get_resident(). It's unclear why this difference occurs;
// for some processes the measurements match, but for Servo they do not.
segs.sort_by(|&(_, rss1), &(_, rss2)| rss2.cmp(&rss1));
segs
}
#[cfg(not(target_os="linux"))]
fn get_resident_segments() -> Vec<(String, u64)> {
vec![]
}

View file

@ -1,303 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Timing functions.
use collections::BTreeMap;
use std::borrow::ToOwned;
use std::cmp::Ordering;
use std::f64;
use std::old_io::timer::sleep;
use std::iter::AdditiveIterator;
use std::num::Float;
use std::sync::mpsc::{Sender, channel, Receiver};
use std::time::duration::Duration;
use std_time::precise_time_ns;
use task::{spawn_named};
use url::Url;
// front-end representation of the profiler used to communicate with the profiler
#[derive(Clone)]
pub struct TimeProfilerChan(pub Sender<TimeProfilerMsg>);
impl TimeProfilerChan {
pub fn send(&self, msg: TimeProfilerMsg) {
let TimeProfilerChan(ref c) = *self;
c.send(msg).unwrap();
}
}
#[derive(PartialEq, Clone, PartialOrd, Eq, Ord)]
pub struct TimerMetadata {
url: String,
iframe: bool,
incremental: bool,
}
pub trait Formatable {
fn format(&self) -> String;
}
impl Formatable for Option<TimerMetadata> {
fn format(&self) -> String {
match self {
// TODO(cgaebel): Center-align in the format strings as soon as rustc supports it.
&Some(ref meta) => {
let url = &*meta.url;
let url = if url.len() > 30 {
&url[..30]
} else {
url
};
let incremental = if meta.incremental { " yes" } else { " no " };
let iframe = if meta.iframe { " yes" } else { " no " };
format!(" {:14} {:9} {:30}", incremental, iframe, url)
},
&None =>
format!(" {:14} {:9} {:30}", " N/A", " N/A", " N/A")
}
}
}
#[derive(Clone)]
pub enum TimeProfilerMsg {
/// Normal message used for reporting time
Time((TimeProfilerCategory, Option<TimerMetadata>), f64),
/// Message used to force print the profiling metrics
Print,
/// Tells the profiler to shut down.
Exit,
}
#[repr(u32)]
#[derive(PartialEq, Clone, PartialOrd, Eq, Ord)]
pub enum TimeProfilerCategory {
Compositing,
LayoutPerform,
LayoutStyleRecalc,
LayoutRestyleDamagePropagation,
LayoutNonIncrementalReset,
LayoutSelectorMatch,
LayoutTreeBuilder,
LayoutDamagePropagate,
LayoutGeneratedContent,
LayoutMain,
LayoutParallelWarmup,
LayoutShaping,
LayoutDispListBuild,
PaintingPerTile,
PaintingPrepBuff,
Painting,
ImageDecoding,
}
impl Formatable for TimeProfilerCategory {
// some categories are subcategories of LayoutPerformCategory
// and should be printed to indicate this
fn format(&self) -> String {
let padding = match *self {
TimeProfilerCategory::LayoutStyleRecalc |
TimeProfilerCategory::LayoutRestyleDamagePropagation |
TimeProfilerCategory::LayoutNonIncrementalReset |
TimeProfilerCategory::LayoutGeneratedContent |
TimeProfilerCategory::LayoutMain |
TimeProfilerCategory::LayoutDispListBuild |
TimeProfilerCategory::LayoutShaping |
TimeProfilerCategory::LayoutDamagePropagate |
TimeProfilerCategory::PaintingPerTile |
TimeProfilerCategory::PaintingPrepBuff => "+ ",
TimeProfilerCategory::LayoutParallelWarmup |
TimeProfilerCategory::LayoutSelectorMatch |
TimeProfilerCategory::LayoutTreeBuilder => "| + ",
_ => ""
};
let name = match *self {
TimeProfilerCategory::Compositing => "Compositing",
TimeProfilerCategory::LayoutPerform => "Layout",
TimeProfilerCategory::LayoutStyleRecalc => "Style Recalc",
TimeProfilerCategory::LayoutRestyleDamagePropagation => "Restyle Damage Propagation",
TimeProfilerCategory::LayoutNonIncrementalReset => "Non-incremental reset (temporary)",
TimeProfilerCategory::LayoutSelectorMatch => "Selector Matching",
TimeProfilerCategory::LayoutTreeBuilder => "Tree Building",
TimeProfilerCategory::LayoutDamagePropagate => "Damage Propagation",
TimeProfilerCategory::LayoutGeneratedContent => "Generated Content Resolution",
TimeProfilerCategory::LayoutMain => "Primary Layout Pass",
TimeProfilerCategory::LayoutParallelWarmup => "Parallel Warmup",
TimeProfilerCategory::LayoutShaping => "Shaping",
TimeProfilerCategory::LayoutDispListBuild => "Display List Construction",
TimeProfilerCategory::PaintingPerTile => "Painting Per Tile",
TimeProfilerCategory::PaintingPrepBuff => "Buffer Prep",
TimeProfilerCategory::Painting => "Painting",
TimeProfilerCategory::ImageDecoding => "Image Decoding",
};
format!("{}{}", padding, name)
}
}
type TimeProfilerBuckets = BTreeMap<(TimeProfilerCategory, Option<TimerMetadata>), Vec<f64>>;
// back end of the profiler that handles data aggregation and performance metrics
pub struct TimeProfiler {
pub port: Receiver<TimeProfilerMsg>,
buckets: TimeProfilerBuckets,
pub last_msg: Option<TimeProfilerMsg>,
}
impl TimeProfiler {
pub fn create(period: Option<f64>) -> TimeProfilerChan {
let (chan, port) = channel();
match period {
Some(period) => {
let period = Duration::milliseconds((period * 1000f64) as i64);
let chan = chan.clone();
spawn_named("Time profiler timer".to_owned(), move || {
loop {
sleep(period);
if chan.send(TimeProfilerMsg::Print).is_err() {
break;
}
}
});
// Spawn the time profiler.
spawn_named("Time profiler".to_owned(), move || {
let mut profiler = TimeProfiler::new(port);
profiler.start();
});
}
None => {
// No-op to handle messages when the time profiler is inactive.
spawn_named("Time profiler".to_owned(), move || {
loop {
match port.recv() {
Err(_) | Ok(TimeProfilerMsg::Exit) => break,
_ => {}
}
}
});
}
}
TimeProfilerChan(chan)
}
pub fn new(port: Receiver<TimeProfilerMsg>) -> TimeProfiler {
TimeProfiler {
port: port,
buckets: BTreeMap::new(),
last_msg: None,
}
}
pub fn start(&mut self) {
loop {
let msg = self.port.recv();
match msg {
Ok(msg) => {
if !self.handle_msg(msg) {
break
}
}
_ => break
}
}
}
fn find_or_insert(&mut self, k: (TimeProfilerCategory, Option<TimerMetadata>), t: f64) {
match self.buckets.get_mut(&k) {
None => {},
Some(v) => { v.push(t); return; },
}
self.buckets.insert(k, vec!(t));
}
fn handle_msg(&mut self, msg: TimeProfilerMsg) -> bool {
match msg.clone() {
TimeProfilerMsg::Time(k, t) => self.find_or_insert(k, t),
TimeProfilerMsg::Print => match self.last_msg {
// only print if more data has arrived since the last printout
Some(TimeProfilerMsg::Time(..)) => self.print_buckets(),
_ => ()
},
TimeProfilerMsg::Exit => return false,
};
self.last_msg = Some(msg);
true
}
fn print_buckets(&mut self) {
println!("{:35} {:14} {:9} {:30} {:15} {:15} {:-15} {:-15} {:-15}",
"_category_", "_incremental?_", "_iframe?_",
" _url_", " _mean (ms)_", " _median (ms)_",
" _min (ms)_", " _max (ms)_", " _events_");
for (&(ref category, ref meta), ref mut data) in self.buckets.iter_mut() {
data.sort_by(|a, b| {
if a < b {
Ordering::Less
} else {
Ordering::Greater
}
});
let data_len = data.len();
if data_len > 0 {
let (mean, median, min, max) =
(data.iter().map(|&x|x).sum() / (data_len as f64),
data[data_len / 2],
data.iter().fold(f64::INFINITY, |a, &b| a.min(b)),
data.iter().fold(-f64::INFINITY, |a, &b| a.max(b)));
println!("{:-35}{} {:15.4} {:15.4} {:15.4} {:15.4} {:15}",
category.format(), meta.format(), mean, median, min, max, data_len);
}
}
println!("");
}
}
#[derive(Eq, PartialEq)]
pub enum TimerMetadataFrameType {
RootWindow,
IFrame,
}
#[derive(Eq, PartialEq)]
pub enum TimerMetadataReflowType {
Incremental,
FirstReflow,
}
pub type ProfilerMetadata<'a> = Option<(&'a Url, TimerMetadataFrameType, TimerMetadataReflowType)>;
pub fn profile<T, F>(category: TimeProfilerCategory,
meta: ProfilerMetadata,
time_profiler_chan: TimeProfilerChan,
callback: F)
-> T
where F: FnOnce() -> T
{
let start_time = precise_time_ns();
let val = callback();
let end_time = precise_time_ns();
let ms = (end_time - start_time) as f64 / 1000000f64;
let meta = meta.map(|(url, iframe, reflow_type)|
TimerMetadata {
url: url.serialize(),
iframe: iframe == TimerMetadataFrameType::IFrame,
incremental: reflow_type == TimerMetadataReflowType::Incremental,
});
time_profiler_chan.send(TimeProfilerMsg::Time((category, meta), ms));
return val;
}
pub fn time<T, F>(msg: &str, callback: F) -> T
where F: Fn() -> T
{
let start_time = precise_time_ns();
let val = callback();
let end_time = precise_time_ns();
let ms = (end_time - start_time) as f64 / 1000000f64;
if ms >= 5f64 {
debug!("{} took {} ms", msg, ms);
}
return val;
}