Move decompose and recompose functions to impl and implement interpolations

This commit is contained in:
Nazım Can Altınova 2016-09-07 01:23:00 +03:00
parent 10b631dfd1
commit 5ee93b28cb

View file

@ -21,7 +21,6 @@ use properties::longhands::z_index::computed_value::T as ZIndex;
use std::cmp;
use std::fmt;
use super::ComputedValues;
use values::CSSFloat;
use values::computed::{Angle, LengthOrPercentageOrAuto, LengthOrPercentageOrNone};
use values::computed::{BorderRadiusSize, LengthOrNone};
use values::computed::{CalcLengthOrPercentage, LengthOrPercentage};
@ -624,6 +623,8 @@ impl Interpolate for LengthOrNone {
use properties::longhands::transform::computed_value::ComputedMatrix;
use properties::longhands::transform::computed_value::ComputedOperation as TransformOperation;
use properties::longhands::transform::computed_value::T as TransformList;
use values::CSSFloat;
use values::specified::Angle as SpecifiedAngle;
/// Check if it's possible to do a direct numerical interpolation
/// between these two transform lists.
@ -702,8 +703,9 @@ impl Interpolate for LengthOrNone {
match (from, to) {
(&TransformOperation::Matrix(from),
&TransformOperation::Matrix(_to)) => {
// TODO(gw): Implement matrix decomposition and interpolation
result.push(TransformOperation::Matrix(from));
// TODO: It doesn't yet handle the case where one of the matrices are not 2D
let interpolated = from.interpolate(&_to, time).unwrap();
result.push(TransformOperation::Matrix(interpolated));
}
(&TransformOperation::Skew(fx, fy),
&TransformOperation::Skew(tx, ty)) => {
@ -735,14 +737,21 @@ impl Interpolate for LengthOrNone {
let ia = fa.interpolate(&ta, time).unwrap();
result.push(TransformOperation::Rotate(fx, fy, fz, ia));
} else {
// TODO(gw): Implement matrix decomposition and interpolation
result.push(TransformOperation::Rotate(fx, fy, fz, fa));
let matrix_f = rotate_to_matrix(fx, fy, fz, fa);
let matrix_t = rotate_to_matrix(tx, ty, tz, ta);
let interpolated = matrix_f.interpolate(&matrix_t, time).unwrap();
result.push(TransformOperation::Matrix(interpolated));
}
}
(&TransformOperation::Perspective(fd),
&TransformOperation::Perspective(_td)) => {
// TODO(gw): Implement matrix decomposition and interpolation
result.push(TransformOperation::Perspective(fd));
let mut fd_matrix = ComputedMatrix::identity();
let mut td_matrix = ComputedMatrix::identity();
fd_matrix.m43 = -1. / fd.to_f32_px();
td_matrix.m43 = -1. / _td.to_f32_px();
let interpolated = fd_matrix.interpolate(&td_matrix, time).unwrap();
result.push(TransformOperation::Matrix(interpolated));
}
_ => {
// This should be unreachable due to the can_interpolate_list() call.
@ -758,9 +767,38 @@ impl Interpolate for LengthOrNone {
TransformList(Some(result))
}
/// https://drafts.csswg.org/css-transforms/#Rotate3dDefined
fn rotate_to_matrix(x: f32, y: f32, z: f32, a: SpecifiedAngle) -> ComputedMatrix {
let rad = a.radians();
let sc = (rad / 2.0).sin() * (rad / 2.0).cos();
let sq = 1.0 / 2.0 * (1.0 - (rad).cos());
ComputedMatrix {
m11: 1.0 - 2.0 * (y * y + z * z) * sq,
m12: 2.0 * (x * y * sq - z * sc),
m13: 2.0 * (x * z * sq + y * sc),
m14: 0.0,
m21: 2.0 * (x * y * sq + z * sc),
m22: 1.0 - 2.0 * (x * x + z * z) * sq,
m23: 2.0 * (y * z * sq - x * sc),
m24: 0.0,
m31: 2.0 * (x * z * sq - y * sc),
m32: 2.0 * (y * z * sq + x * sc),
m33: 1.0 - 2.0 * (x * x + y * y) * sq,
m34: 0.0,
m41: 0.0,
m42: 0.0,
m43: 0.0,
m44: 1.0
}
}
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct DecomposedMatrix {
pub struct InnerMatrix2D {
pub m11: CSSFloat, pub m12: CSSFloat,
pub m21: CSSFloat, pub m22: CSSFloat,
}
@ -779,16 +817,16 @@ impl Interpolate for LengthOrNone {
pub translate: Translate2D,
pub scale: Scale2D,
pub angle: f32,
pub matrix: DecomposedMatrix,
pub matrix: InnerMatrix2D,
}
impl Interpolate for DecomposedMatrix {
impl Interpolate for InnerMatrix2D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(DecomposedMatrix {
m11: self.m11.interpolate(&other.m11, time).unwrap(),
m12: self.m12.interpolate(&other.m12, time).unwrap(),
m21: self.m21.interpolate(&other.m21, time).unwrap(),
m22: self.m22.interpolate(&other.m22, time).unwrap(),
Ok(InnerMatrix2D {
m11: try!(self.m11.interpolate(&other.m11, time)),
m12: try!(self.m12.interpolate(&other.m12, time)),
m21: try!(self.m21.interpolate(&other.m21, time)),
m22: try!(self.m22.interpolate(&other.m22, time)),
})
}
}
@ -796,8 +834,8 @@ impl Interpolate for LengthOrNone {
impl Interpolate for Translate2D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Translate2D(
self.0.interpolate(&other.0, time).unwrap(),
self.1.interpolate(&other.1, time).unwrap()
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time))
))
}
}
@ -805,8 +843,8 @@ impl Interpolate for LengthOrNone {
impl Interpolate for Scale2D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Scale2D(
self.0.interpolate(&other.0, time).unwrap(),
self.1.interpolate(&other.1, time).unwrap()
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time))
))
}
}
@ -816,9 +854,9 @@ impl Interpolate for LengthOrNone {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
// If x-axis of one is flipped, and y-axis of the other,
// convert to an unflipped rotation.
let mut scale = self.scale.clone();
let mut angle = self.angle.clone();
let mut other_angle = other.angle.clone();
let mut scale = self.scale;
let mut angle = self.angle;
let mut other_angle = other.angle;
if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
scale.0 = -scale.0;
scale.1 = -scale.1;
@ -843,124 +881,138 @@ impl Interpolate for LengthOrNone {
}
// Interpolate all values.
let translate = self.translate.interpolate(&other.translate, time);
let scale = scale.interpolate(&other.scale, time);
let angle = angle.interpolate(&other_angle, time);
let matrix = self.matrix.interpolate(&other.matrix, time);
let translate = try!(self.translate.interpolate(&other.translate, time));
let scale = try!(scale.interpolate(&other.scale, time));
let angle = try!(angle.interpolate(&other_angle, time));
let matrix = try!(self.matrix.interpolate(&other.matrix, time));
Ok(MatrixDecomposed2D {
translate: translate.unwrap(),
scale: scale.unwrap(),
angle: angle.unwrap(),
matrix: matrix.unwrap(),
translate: translate,
scale: scale,
angle: angle,
matrix: matrix,
})
}
}
/// Decompose a matrix.
/// https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix
fn decompose_matrix(matrix: ComputedMatrix) -> MatrixDecomposed2D {
let mut row0x = matrix.m11;
let mut row0y = matrix.m12;
let mut row1x = matrix.m21;
let mut row1y = matrix.m22;
let translate = Translate2D(matrix.m41, matrix.m42);
let mut scale = Scale2D((row0x * row0x + row0y * row0y).sqrt(),
(row1x * row1x + row1y * row1y).sqrt());
// If determinant is negative, one axis was flipped.
let determinant = row0x * row1y - row0y * row1x;
if determinant < 0. {
if row0x < row1y {
scale.0 = -scale.0;
} else {
scale.1 = -scale.1;
}
}
// Renormalize matrix to remove scale.
if scale.0 != 0.0 {
row0x *= 1. / scale.0;
row0y *= 1. / scale.0;
}
if scale.1 != 0.0 {
row1x *= 1. / scale.1;
row1y *= 1. / scale.1;
}
// Compute rotation and renormalize matrix.
let mut angle = row0y.atan2(row0x);
if angle != 0.0 {
let sn = -row0y;
let cs = row0x;
let m11 = row0x;
let m12 = row0y;
let m21 = row1x;
let m22 = row1y;
row0x = cs * m11 + sn * m21;
row0y = cs * m12 + sn * m22;
row1x = -sn * m11 + cs * m21;
row1y = -sn * m12 + cs * m22;
}
let m = DecomposedMatrix {
m11: row0x, m12: row0y,
m21: row1x, m22: row1y,
};
// Convert into degrees because our rotation functions expect it.
angle = angle.to_degrees();
MatrixDecomposed2D {
translate: translate,
scale: scale,
angle: angle,
matrix: m,
impl Interpolate for ComputedMatrix {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
let decomposed_from = MatrixDecomposed2D::from(*self);
let decomposed_to = MatrixDecomposed2D::from(*other);
let interpolated = try!(decomposed_from.interpolate(&decomposed_to, time));
Ok(ComputedMatrix::from(interpolated))
}
}
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix
fn recompose_matrix(decomposed: MatrixDecomposed2D) -> ComputedMatrix {
let mut computed_matrix = ComputedMatrix::identity();
computed_matrix.m11 = decomposed.matrix.m11;
computed_matrix.m12 = decomposed.matrix.m12;
computed_matrix.m21 = decomposed.matrix.m21;
computed_matrix.m22 = decomposed.matrix.m22;
impl From<ComputedMatrix> for MatrixDecomposed2D {
/// Decompose a matrix.
/// https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix
fn from(matrix: ComputedMatrix) -> MatrixDecomposed2D {
let mut row0x = matrix.m11;
let mut row0y = matrix.m12;
let mut row1x = matrix.m21;
let mut row1y = matrix.m22;
// Translate matrix.
computed_matrix.m41 = decomposed.translate.0 * decomposed.matrix.m11 +
decomposed.translate.1 * decomposed.matrix.m21;
computed_matrix.m42 = decomposed.translate.0 * decomposed.matrix.m11 +
decomposed.translate.1 * decomposed.matrix.m21;
let translate = Translate2D(matrix.m41, matrix.m42);
let mut scale = Scale2D((row0x * row0x + row0y * row0y).sqrt(),
(row1x * row1x + row1y * row1y).sqrt());
// Rotate matrix.
let angle = decomposed.angle.to_radians();
let cos_angle = angle.cos();
let sin_angle = angle.sin();
// If determinant is negative, one axis was flipped.
let determinant = row0x * row1y - row0y * row1x;
if determinant < 0. {
if row0x < row1y {
scale.0 = -scale.0;
} else {
scale.1 = -scale.1;
}
}
let mut rotate_matrix = ComputedMatrix::identity();
rotate_matrix.m11 = cos_angle;
rotate_matrix.m12 = sin_angle;
rotate_matrix.m21 = -sin_angle;
rotate_matrix.m22 = cos_angle;
// Renormalize matrix to remove scale.
if scale.0 != 0.0 {
row0x *= 1. / scale.0;
row0y *= 1. / scale.0;
}
if scale.1 != 0.0 {
row1x *= 1. / scale.1;
row1y *= 1. / scale.1;
}
let matrix_clone = computed_matrix.clone();
// Multiplication of computed_matrix and rotate_matrix
% for i in range(1, 5):
% for j in range(1, 5):
computed_matrix.m${i}${j} = (matrix_clone.m${i}1 * rotate_matrix.m1${j}) +
(matrix_clone.m${i}2 *rotate_matrix.m2${j}) +
(matrix_clone.m${i}3 * rotate_matrix.m3${j}) +
(matrix_clone.m${i}4 * rotate_matrix.m4${j});
// Compute rotation and renormalize matrix.
let mut angle = row0y.atan2(row0x);
if angle != 0.0 {
let sn = -row0y;
let cs = row0x;
let m11 = row0x;
let m12 = row0y;
let m21 = row1x;
let m22 = row1y;
row0x = cs * m11 + sn * m21;
row0y = cs * m12 + sn * m22;
row1x = -sn * m11 + cs * m21;
row1y = -sn * m12 + cs * m22;
}
let m = InnerMatrix2D {
m11: row0x, m12: row0y,
m21: row1x, m22: row1y,
};
// Convert into degrees because our rotation functions expect it.
angle = angle.to_degrees();
MatrixDecomposed2D {
translate: translate,
scale: scale,
angle: angle,
matrix: m,
}
}
}
impl From<MatrixDecomposed2D> for ComputedMatrix {
/// Recompose a matrix.
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix
fn from(decomposed: MatrixDecomposed2D) -> ComputedMatrix {
let mut computed_matrix = ComputedMatrix::identity();
computed_matrix.m11 = decomposed.matrix.m11;
computed_matrix.m12 = decomposed.matrix.m12;
computed_matrix.m21 = decomposed.matrix.m21;
computed_matrix.m22 = decomposed.matrix.m22;
// Translate matrix.
computed_matrix.m41 = decomposed.translate.0 * decomposed.matrix.m11 +
decomposed.translate.1 * decomposed.matrix.m21;
computed_matrix.m42 = decomposed.translate.0 * decomposed.matrix.m12 +
decomposed.translate.1 * decomposed.matrix.m22;
// Rotate matrix.
let angle = decomposed.angle.to_radians();
let cos_angle = angle.cos();
let sin_angle = angle.sin();
let mut rotate_matrix = ComputedMatrix::identity();
rotate_matrix.m11 = cos_angle;
rotate_matrix.m12 = sin_angle;
rotate_matrix.m21 = -sin_angle;
rotate_matrix.m22 = cos_angle;
let matrix_clone = computed_matrix;
// Multiplication of computed_matrix and rotate_matrix
% for i in range(1, 5):
% for j in range(1, 5):
computed_matrix.m${i}${j} = (matrix_clone.m${i}1 * rotate_matrix.m1${j}) +
(matrix_clone.m${i}2 * rotate_matrix.m2${j}) +
(matrix_clone.m${i}3 * rotate_matrix.m3${j}) +
(matrix_clone.m${i}4 * rotate_matrix.m4${j});
% endfor
% endfor
% endfor
// Scale matrix.
computed_matrix.m11 *= decomposed.scale.0;
computed_matrix.m12 *= decomposed.scale.0;
computed_matrix.m21 *= decomposed.scale.1;
computed_matrix.m22 *= decomposed.scale.1;
computed_matrix
// Scale matrix.
computed_matrix.m11 *= decomposed.scale.0;
computed_matrix.m12 *= decomposed.scale.0;
computed_matrix.m21 *= decomposed.scale.1;
computed_matrix.m22 *= decomposed.scale.1;
computed_matrix
}
}
/// https://drafts.csswg.org/css-transforms/#interpolation-of-transforms