Recursively sort memory report sub-trees.

This puts the larger sub-trees first. E.g. this:
```
|       1.04 MiB -- url(http://en.wikipedia.org/wiki/Main_Page)
|          0.26 MiB -- display-list
|          0.78 MiB -- paint-task       # new output line
|             0.78 MiB -- buffer-map    # new output line
```
becomes this:
```
|       1.04 MiB -- url(http://en.wikipedia.org/wiki/Main_Page)
|          0.78 MiB -- paint-task       # new output line
|             0.78 MiB -- buffer-map    # new output line
|          0.26 MiB -- display-list
```
This matches how Firefox's about:memory works.

Now that this is done for all sub-trees, the ad hoc sorting done for
Linux segments is no longer necessary, and has been removed.
This commit is contained in:
Nicholas Nethercote 2015-05-27 18:57:13 -07:00
parent 2ce7b78907
commit 640e68bbbd

View file

@ -195,9 +195,9 @@ impl ReportsTree {
t.count += 1; t.count += 1;
} }
// Fill in sizes for interior nodes. Should only be done once all the reports have been // Fill in sizes for interior nodes and sort sub-trees accordingly. Should only be done once
// inserted. // all the reports have been inserted.
fn compute_interior_node_sizes(&mut self) -> usize { fn compute_interior_node_sizes_and_sort(&mut self) -> usize {
if !self.children.is_empty() { if !self.children.is_empty() {
// Interior node. Derive its size from its children. // Interior node. Derive its size from its children.
if self.size != 0 { if self.size != 0 {
@ -205,8 +205,10 @@ impl ReportsTree {
panic!("one report's path is a sub-path of another report's path"); panic!("one report's path is a sub-path of another report's path");
} }
for child in self.children.iter_mut() { for child in self.children.iter_mut() {
self.size += child.compute_interior_node_sizes(); self.size += child.compute_interior_node_sizes_and_sort();
} }
// Now that child sizes have been computed, we can sort the children.
self.children.sort_by(|t1, t2| t2.size.cmp(&t1.size));
} }
self.size self.size
} }
@ -258,9 +260,9 @@ impl ReportsForest {
} }
fn print(&mut self) { fn print(&mut self) {
// Fill in sizes of interior nodes. // Fill in sizes of interior nodes, and recursively sort the sub-trees.
for (_, tree) in self.trees.iter_mut() { for (_, tree) in self.trees.iter_mut() {
tree.compute_interior_node_sizes(); tree.compute_interior_node_sizes_and_sort();
} }
// Put the trees into a sorted vector. Primary sort: degenerate trees (those containing a // Put the trees into a sorted vector. Primary sort: degenerate trees (those containing a
@ -351,7 +353,6 @@ mod system_reporter {
} }
} }
#[cfg(target_os="linux")] #[cfg(target_os="linux")]
extern { extern {
fn mallinfo() -> struct_mallinfo; fn mallinfo() -> struct_mallinfo;
@ -572,13 +573,10 @@ mod system_reporter {
} }
} }
let mut segs: Vec<(String, usize)> = seg_map.into_iter().collect(); // Note that the sum of all these segments' RSS values differs from the "resident"
// measurement obtained via /proc/<pid>/statm in get_resident(). It's unclear why this
// Note that the sum of all these segments' RSS values differs from the "resident" measurement // difference occurs; for some processes the measurements match, but for Servo they do not.
// obtained via /proc/<pid>/statm in get_resident(). It's unclear why this difference occurs; let segs: Vec<(String, usize)> = seg_map.into_iter().collect();
// for some processes the measurements match, but for Servo they do not.
segs.sort_by(|&(_, rss1), &(_, rss2)| rss2.cmp(&rss1));
segs segs
} }