layout: Implement CSS transitions per CSS-TRANSITIONS § 2.

Transition events are not yet supported, and the only animatable
properties are `top`, `right`, `bottom`, and `left`. However, all other
features of transitions are supported. There are no automated tests at
present because I'm not sure how best to test it, but three manual tests
are included.
This commit is contained in:
Patrick Walton 2015-03-23 13:32:49 -07:00
parent c1cc31b9d6
commit 66dd8c8a6c
31 changed files with 1603 additions and 224 deletions

116
components/util/bezier.rs Normal file
View file

@ -0,0 +1,116 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Parametric Bézier curves.
//!
//! This is based on `WebCore/platform/graphics/UnitBezier.h` in WebKit.
use geom::point::Point2D;
use std::num::Float;
const NEWTON_METHOD_ITERATIONS: u8 = 8;
pub struct Bezier {
ax: f64,
bx: f64,
cx: f64,
ay: f64,
by: f64,
cy: f64,
}
impl Bezier {
#[inline]
pub fn new(p1: Point2D<f64>, p2: Point2D<f64>) -> Bezier {
let cx = 3.0 * p1.x;
let bx = 3.0 * (p2.x - p1.x) - cx;
let cy = 3.0 * p1.y;
let by = 3.0 * (p2.y - p1.y) - cy;
Bezier {
ax: 1.0 - cx - bx,
bx: bx,
cx: cx,
ay: 1.0 - cy - by,
by: by,
cy: cy,
}
}
#[inline]
fn sample_curve_x(&self, t: f64) -> f64 {
// ax * t^3 + bx * t^2 + cx * t
((self.ax * t + self.bx) * t + self.cx) * t
}
#[inline]
fn sample_curve_y(&self, t: f64) -> f64 {
((self.ay * t + self.by) * t + self.cy) * t
}
#[inline]
fn sample_curve_derivative_x(&self, t: f64) -> f64 {
(3.0 * self.ax * t + 2.0 * self.bx) * t + self.cx
}
#[inline]
fn solve_curve_x(&self, x: f64, epsilon: f64) -> f64 {
// Fast path: Use Newton's method.
let mut t = x;
for _ in range(0, NEWTON_METHOD_ITERATIONS) {
let x2 = self.sample_curve_x(t);
if x2.approx_eq(x, epsilon) {
return t
}
let dx = self.sample_curve_derivative_x(t);
if dx.approx_eq(0.0, 1e-6) {
break
}
t -= (x2 - x) / dx;
}
// Slow path: Use bisection.
let (mut lo, mut hi, mut t) = (0.0, 1.0, x);
if t < lo {
return lo
}
if t > hi {
return hi
}
while lo < hi {
let x2 = self.sample_curve_x(t);
if x2.approx_eq(x, epsilon) {
return t
}
if x > x2 {
lo = t
} else {
hi = t
}
t = (hi - lo) / 2.0 + lo
}
t
}
#[inline]
pub fn solve(&self, x: f64, epsilon: f64) -> f64 {
self.sample_curve_y(self.solve_curve_x(x, epsilon))
}
}
trait ApproxEq {
fn approx_eq(self, value: Self, epsilon: Self) -> bool;
}
impl ApproxEq for f64 {
#[inline]
fn approx_eq(self, value: f64, epsilon: f64) -> bool {
(self - value).abs() < epsilon
}
}

View file

@ -41,6 +41,7 @@ pub use selectors::smallvec;
use std::sync::Arc;
pub mod bezier;
pub mod cache;
pub mod cursor;
pub mod debug_utils;