Make Restyle tracking more granular.

The primary idea of this patch is to ditch the rigid enum of Previous/Current
styles, and replace it with a series of indicators for the various types of
work that needs to be performed (expanding snapshots, rematching, recascading,
and damage processing). This loses us a little bit of sanity checking (since
the up-to-date-ness of our style is no longer baked into the type system), but
gives us a lot more flexibility that we'll need going forward (especially when
we separate matching from cascading). We also eliminate get_styling_mode in
favor of a method on the traversal.

This patch does a few other things as ridealongs:
* Temporarily eliminates the handling for transfering ownership of styles to the
  frame. We'll need this again at some point, but for now it's causing too much
  complexity for a half-implemented feature.
* Ditches TRestyleDamage, which is no longer necessary post-crate-merge, and is
  a constant source of compilation failures from either needing to be imported
  or being unnecessarily imported (which varies between gecko and servo).
* Expands Snapshots for the traversal root, which was missing before.
* Fixes up the skip_root stuff to avoid visiting the skipped root.
* Unifies parallel traversal and avoids spawning for a single work item.
* Adds an explicit pre_traverse step do any pre-processing and determine whether
  we need to traverse at all.

MozReview-Commit-ID: IKhLAkAigXE
This commit is contained in:
Bobby Holley 2016-11-30 19:36:08 -08:00
parent 4cb3404c09
commit 80460cc549
27 changed files with 502 additions and 474 deletions

View file

@ -7,14 +7,18 @@
use atomic_refcell::{AtomicRefCell, AtomicRefMut};
use bloom::StyleBloom;
use context::{LocalStyleContext, SharedStyleContext, StyleContext};
use data::{ElementData, RestyleData, StoredRestyleHint};
use dom::{OpaqueNode, StylingMode, TElement, TNode};
use data::{ElementData, StoredRestyleHint};
use dom::{OpaqueNode, TElement, TNode};
use matching::{MatchMethods, StyleSharingResult};
use restyle_hints::{RESTYLE_DESCENDANTS, RESTYLE_LATER_SIBLINGS, RESTYLE_SELF};
use restyle_hints::{RESTYLE_DESCENDANTS, RESTYLE_SELF};
use selector_parser::RestyleDamage;
use selectors::Element;
use selectors::matching::StyleRelations;
use std::borrow::Borrow;
use std::cell::RefCell;
use std::marker::PhantomData;
use std::mem;
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
use stylist::Stylist;
use util::opts;
/// Every time we do another layout, the old bloom filters are invalid. This is
@ -36,7 +40,7 @@ thread_local!(
pub fn take_thread_local_bloom_filter(context: &SharedStyleContext)
-> StyleBloom
{
debug!("{} taking bf", ::tid::tid());
trace!("{} taking bf", ::tid::tid());
STYLE_BLOOM.with(|style_bloom| {
style_bloom.borrow_mut().take()
@ -45,7 +49,7 @@ pub fn take_thread_local_bloom_filter(context: &SharedStyleContext)
}
pub fn put_thread_local_bloom_filter(bf: StyleBloom) {
debug!("[{}] putting bloom filter back", ::tid::tid());
trace!("[{}] putting bloom filter back", ::tid::tid());
STYLE_BLOOM.with(move |style_bloom| {
debug_assert!(style_bloom.borrow().is_none(),
@ -64,7 +68,7 @@ pub fn remove_from_bloom_filter<'a, E, C>(context: &C, root: OpaqueNode, element
where E: TElement,
C: StyleContext<'a>
{
debug!("[{}] remove_from_bloom_filter", ::tid::tid());
trace!("[{}] remove_from_bloom_filter", ::tid::tid());
// We may have arrived to `reconstruct_flows` without entering in style
// recalc at all due to our optimizations, nor that it's up to date, so we
@ -96,8 +100,25 @@ pub struct PerLevelTraversalData {
pub current_dom_depth: Option<usize>,
}
/// This structure exists to enforce that callers invoke pre_traverse, and also
/// to pass information from the pre-traversal into the primary traversal.
pub struct PreTraverseToken {
traverse: bool,
skip_root: bool,
}
impl PreTraverseToken {
pub fn should_traverse(&self) -> bool {
self.traverse
}
pub fn should_skip_root(&self) -> bool {
self.skip_root
}
}
pub trait DomTraversalContext<N: TNode> {
type SharedContext: Sync + 'static;
type SharedContext: Sync + 'static + Borrow<SharedStyleContext>;
fn new<'a>(&'a Self::SharedContext, OpaqueNode) -> Self;
@ -113,24 +134,113 @@ pub trait DomTraversalContext<N: TNode> {
/// performed.
///
/// If it's false, then process_postorder has no effect at all.
fn needs_postorder_traversal(&self) -> bool { true }
fn needs_postorder_traversal() -> bool { true }
/// Returns true if traversal should visit the given child.
fn should_traverse_child(child: N) -> bool;
/// Must be invoked before traversing the root element to determine whether
/// a traversal is needed. Returns a token that allows the caller to prove
/// that the call happened.
///
/// The skip_root parameter is used in Gecko to style newly-appended children
/// without restyling the parent.
fn pre_traverse(root: N::ConcreteElement, stylist: &Stylist, skip_root: bool)
-> PreTraverseToken
{
// If we should skip the root, traverse unconditionally.
if skip_root {
return PreTraverseToken {
traverse: true,
skip_root: true,
};
}
// Expand the snapshot, if any. This is normally handled by the parent, so
// we need a special case for the root.
//
// Expanding snapshots here may create a LATER_SIBLINGS restyle hint, which
// we will drop on the floor. This is fine, because we don't traverse roots
// with siblings.
debug_assert!(root.next_sibling_element().is_none());
if let Some(mut data) = root.mutate_data() {
if let Some(r) = data.as_restyle_mut() {
let _later_siblings = r.expand_snapshot(root, stylist);
}
}
PreTraverseToken {
traverse: Self::node_needs_traversal(root.as_node()),
skip_root: false,
}
}
/// Returns true if traversal should visit a text node. The style system never
/// processes text nodes, but Servo overrides this to visit them for flow
/// construction when necessary.
fn text_node_needs_traversal(node: N) -> bool { debug_assert!(node.is_text_node()); false }
/// Returns true if traversal is needed for the given node and subtree.
fn node_needs_traversal(node: N) -> bool {
// Non-incremental layout visits every node.
if cfg!(feature = "servo") && opts::get().nonincremental_layout {
return true;
}
match node.as_element() {
None => Self::text_node_needs_traversal(node),
Some(el) => {
// If the dirty descendants bit is set, we need to traverse no
// matter what. Skip examining the ElementData.
if el.has_dirty_descendants() {
return true;
}
// Check the element data. If it doesn't exist, we need to visit
// the element.
let data = match el.borrow_data() {
Some(d) => d,
None => return true,
};
// Check what kind of element data we have. If it's Initial or Persistent,
// we're done.
let restyle = match *data {
ElementData::Initial(ref i) => return i.is_none(),
ElementData::Persistent(_) => return false,
ElementData::Restyle(ref r) => r,
};
// Check whether we have any selector matching or re-cascading to
// do in this subtree.
debug_assert!(restyle.snapshot.is_none(), "Snapshots should already be expanded");
if !restyle.hint.is_empty() || restyle.recascade {
return true;
}
// Servo uses the post-order traversal for flow construction, so
// we need to traverse any element with damage so that we can perform
// fixup / reconstruction on our way back up the tree.
if cfg!(feature = "servo") && restyle.damage != RestyleDamage::empty() {
return true;
}
false
},
}
}
/// Helper for the traversal implementations to select the children that
/// should be enqueued for processing.
fn traverse_children<F: FnMut(N)>(parent: N::ConcreteElement, mut f: F)
{
use dom::StylingMode::Restyle;
if parent.is_display_none() {
return;
}
for kid in parent.as_node().children() {
if Self::should_traverse_child(kid) {
if kid.as_element().map_or(false, |el| el.styling_mode() == Restyle) {
if Self::node_needs_traversal(kid) {
let el = kid.as_element();
if el.as_ref().and_then(|el| el.borrow_data())
.map_or(false, |d| d.is_restyle())
{
unsafe { parent.set_dirty_descendants(); }
}
f(kid);
@ -206,61 +316,75 @@ pub fn style_element_in_display_none_subtree<'a, E, C, F>(element: E,
#[inline]
#[allow(unsafe_code)]
pub fn recalc_style_at<'a, E, C, D>(context: &'a C,
data: &mut PerLevelTraversalData,
element: E)
traversal_data: &mut PerLevelTraversalData,
element: E,
mut data: &mut AtomicRefMut<ElementData>)
where E: TElement,
C: StyleContext<'a>,
D: DomTraversalContext<E::ConcreteNode>
{
let mode = element.styling_mode();
let should_compute = element.borrow_data().map_or(true, |d| d.get_current_styles().is_none());
debug!("recalc_style_at: {:?} (should_compute={:?} mode={:?}, data={:?})",
element, should_compute, mode, element.borrow_data());
debug_assert!(data.as_restyle().map_or(true, |r| r.snapshot.is_none()),
"Snapshots should be expanded by the caller");
let (computed_display_none, propagated_hint) = if should_compute {
compute_style::<_, _, D>(context, data, element)
} else {
(false, StoredRestyleHint::empty())
let compute_self = !data.has_current_styles();
let mut inherited_style_changed = false;
debug!("recalc_style_at: {:?} (compute_self={:?}, dirty_descendants={:?}, data={:?})",
element, compute_self, element.has_dirty_descendants(), data);
// Compute style for this element if necessary.
if compute_self {
inherited_style_changed = compute_style::<_, _, D>(context, &mut data, traversal_data, element);
}
// Now that matching and cascading is done, clear the bits corresponding to
// those operations and compute the propagated restyle hint.
let empty_hint = StoredRestyleHint::empty();
let propagated_hint = match data.as_restyle_mut() {
None => empty_hint,
Some(r) => {
r.recascade = false;
mem::replace(&mut r.hint, empty_hint).propagate()
},
};
debug_assert!(data.has_current_styles());
trace!("propagated_hint={:?}, inherited_style_changed={:?}", propagated_hint, inherited_style_changed);
// Preprocess children, computing restyle hints and handling sibling relationships.
//
// We don't need to do this if we're not traversing children, or if we're performing
// initial styling.
let will_traverse_children = !computed_display_none &&
(mode == StylingMode::Restyle ||
mode == StylingMode::Traverse);
if will_traverse_children {
preprocess_children::<_, _, D>(context, element, propagated_hint,
mode == StylingMode::Restyle);
// Preprocess children, propagating restyle hints and handling sibling relationships.
if !data.styles().is_display_none() &&
(element.has_dirty_descendants() || !propagated_hint.is_empty() || inherited_style_changed) {
preprocess_children::<_, _, D>(context, element, propagated_hint, inherited_style_changed);
}
}
// Computes style, returning true if the inherited styles changed for this
// element.
//
// FIXME(bholley): This should differentiate between matching and cascading,
// since we have separate bits for each now.
fn compute_style<'a, E, C, D>(context: &'a C,
data: &mut PerLevelTraversalData,
element: E) -> (bool, StoredRestyleHint)
mut data: &mut AtomicRefMut<ElementData>,
traversal_data: &mut PerLevelTraversalData,
element: E) -> bool
where E: TElement,
C: StyleContext<'a>,
D: DomTraversalContext<E::ConcreteNode>
D: DomTraversalContext<E::ConcreteNode>,
{
let shared_context = context.shared_context();
let mut bf = take_thread_local_bloom_filter(shared_context);
// Ensure the bloom filter is up to date.
let dom_depth = bf.insert_parents_recovering(element,
data.current_dom_depth,
traversal_data.current_dom_depth,
shared_context.generation);
// Update the dom depth with the up-to-date dom depth.
//
// Note that this is always the same than the pre-existing depth, but it can
// change from unknown to known at this step.
data.current_dom_depth = Some(dom_depth);
traversal_data.current_dom_depth = Some(dom_depth);
bf.assert_complete(element);
let mut data = unsafe { D::ensure_element_data(&element).borrow_mut() };
debug_assert!(!data.is_persistent());
// Check to see whether we can share a style with someone.
let style_sharing_candidate_cache =
&mut context.local_context().style_sharing_candidate_cache.borrow_mut();
@ -304,7 +428,7 @@ fn compute_style<'a, E, C, D>(context: &'a C,
// Add ourselves to the LRU cache.
if let Some(element) = shareable_element {
style_sharing_candidate_cache.insert_if_possible(&element,
&data.current_styles().primary.values,
&data.styles().primary.values,
relations);
}
}
@ -318,7 +442,7 @@ fn compute_style<'a, E, C, D>(context: &'a C,
// If we're restyling this element to display:none, throw away all style data
// in the subtree, notify the caller to early-return.
let display_none = data.current_styles().is_display_none();
let display_none = data.styles().is_display_none();
if display_none {
debug!("New element style is display:none - clearing data from descendants.");
clear_descendant_data(element, &|e| unsafe { D::clear_element_data(&e) });
@ -331,13 +455,16 @@ fn compute_style<'a, E, C, D>(context: &'a C,
// complexity.
put_thread_local_bloom_filter(bf);
(display_none, data.as_restyle().map_or(StoredRestyleHint::empty(), |r| r.hint.propagate()))
// FIXME(bholley): Compute this accurately from the call to CalcStyleDifference.
let inherited_styles_changed = true;
inherited_styles_changed
}
fn preprocess_children<'a, E, C, D>(context: &'a C,
element: E,
mut propagated_hint: StoredRestyleHint,
restyled_parent: bool)
parent_inherited_style_changed: bool)
where E: TElement,
C: StyleContext<'a>,
D: DomTraversalContext<E::ConcreteNode>
@ -350,41 +477,33 @@ fn preprocess_children<'a, E, C, D>(context: &'a C,
None => continue,
};
// Set up our lazy child restyle data.
let mut child_data = unsafe { LazyRestyleData::<E, D>::new(&child) };
let mut child_data = unsafe { D::ensure_element_data(&child).borrow_mut() };
if child_data.is_unstyled_initial() {
continue;
}
let mut restyle_data = match child_data.restyle() {
Some(d) => d,
None => continue,
};
// Propagate the parent and sibling restyle hint.
if !propagated_hint.is_empty() {
child_data.ensure().map(|d| d.hint.insert(&propagated_hint));
restyle_data.hint.insert(&propagated_hint);
}
// Handle element snashots.
if child_data.has_snapshot() {
// Compute the restyle hint.
let mut restyle_data = child_data.ensure().unwrap();
let mut hint = context.shared_context().stylist
.compute_restyle_hint(&child,
restyle_data.snapshot.as_ref().unwrap(),
child.get_state());
// If the hint includes a directive for later siblings, strip
// it out and modify the base hint for future siblings.
if hint.contains(RESTYLE_LATER_SIBLINGS) {
hint.remove(RESTYLE_LATER_SIBLINGS);
propagated_hint.insert(&(RESTYLE_SELF | RESTYLE_DESCENDANTS).into());
}
// Insert the hint.
if !hint.is_empty() {
restyle_data.hint.insert(&hint.into());
}
// Handle element snapshots.
let stylist = &context.shared_context().stylist;
let later_siblings = restyle_data.expand_snapshot(child, stylist);
if later_siblings {
propagated_hint.insert(&(RESTYLE_SELF | RESTYLE_DESCENDANTS).into());
}
// If we restyled this node, conservatively mark all our children as
// needing a re-cascade. Once we have the rule tree, we will be able
// to distinguish between re-matching and re-cascading.
if restyled_parent {
child_data.ensure();
// If properties that we inherited from the parent changed, we need to recascade.
//
// FIXME(bholley): Need to handle explicitly-inherited reset properties somewhere.
if parent_inherited_style_changed {
restyle_data.recascade = true;
}
}
}
@ -404,60 +523,3 @@ pub fn clear_descendant_data<E: TElement, F: Fn(E)>(el: E, clear_data: &F) {
unsafe { el.unset_dirty_descendants(); }
}
/// Various steps in the child preparation algorithm above may cause us to lazily
/// instantiate the ElementData on the child. Encapsulate that logic into a
/// convenient abstraction.
struct LazyRestyleData<'b, E: TElement + 'b, D: DomTraversalContext<E::ConcreteNode>> {
data: Option<AtomicRefMut<'b, ElementData>>,
element: &'b E,
phantom: PhantomData<D>,
}
impl<'b, E: TElement, D: DomTraversalContext<E::ConcreteNode>> LazyRestyleData<'b, E, D> {
/// This may lazily instantiate ElementData, and is therefore only safe to
/// call on an element for which we have exclusive access.
unsafe fn new(element: &'b E) -> Self {
LazyRestyleData {
data: None,
element: element,
phantom: PhantomData,
}
}
fn ensure(&mut self) -> Option<&mut RestyleData> {
if self.data.is_none() {
let mut d = unsafe { D::ensure_element_data(self.element).borrow_mut() };
d.restyle();
self.data = Some(d);
}
self.data.as_mut().unwrap().as_restyle_mut()
}
/// Checks for the existence of an element snapshot without lazily instantiating
/// anything. This allows the traversal to cheaply pass through already-styled
/// nodes when they don't need a restyle.
fn has_snapshot(&self) -> bool {
// If there's no element data, we're done.
let raw_data = self.element.get_data();
if raw_data.is_none() {
debug_assert!(self.data.is_none());
return false;
}
// If there is element data, we still may not have committed to processing
// the node. Carefully get a reference to the data.
let maybe_tmp_borrow;
let borrow_ref = match self.data {
Some(ref d) => d,
None => {
maybe_tmp_borrow = raw_data.unwrap().borrow_mut();
&maybe_tmp_borrow
}
};
// Check for a snapshot.
borrow_ref.as_restyle().map_or(false, |d| d.snapshot.is_some())
}
}