Bump euclid to 0.14.

This commit is contained in:
Nicolas Silva 2017-06-02 14:50:26 +02:00
parent 5dce166266
commit 8617320500
88 changed files with 349 additions and 381 deletions

View file

@ -14,25 +14,25 @@ use dom::dommatrix::DOMMatrix;
use dom::dompoint::DOMPoint;
use dom::globalscope::GlobalScope;
use dom_struct::dom_struct;
use euclid::{Matrix4D, Point4D, Radians};
use euclid::{Transform3D, Radians};
use std::cell::{Cell, Ref};
use std::f64;
#[dom_struct]
pub struct DOMMatrixReadOnly {
reflector_: Reflector,
matrix: DOMRefCell<Matrix4D<f64>>,
matrix: DOMRefCell<Transform3D<f64>>,
is2D: Cell<bool>,
}
impl DOMMatrixReadOnly {
#[allow(unrooted_must_root)]
pub fn new(global: &GlobalScope, is2D: bool, matrix: Matrix4D<f64>) -> Root<Self> {
pub fn new(global: &GlobalScope, is2D: bool, matrix: Transform3D<f64>) -> Root<Self> {
let dommatrix = Self::new_inherited(is2D, matrix);
reflect_dom_object(box dommatrix, global, Wrap)
}
pub fn new_inherited(is2D: bool, matrix: Matrix4D<f64>) -> Self {
pub fn new_inherited(is2D: bool, matrix: Transform3D<f64>) -> Self {
DOMMatrixReadOnly {
reflector_: Reflector::new(),
matrix: DOMRefCell::new(matrix),
@ -42,7 +42,7 @@ impl DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly
pub fn Constructor(global: &GlobalScope) -> Fallible<Root<Self>> {
Ok(Self::new(global, true, Matrix4D::identity()))
Ok(Self::new(global, true, Transform3D::identity()))
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
@ -61,7 +61,7 @@ impl DOMMatrixReadOnly {
})
}
pub fn matrix(&self) -> Ref<Matrix4D<f64>> {
pub fn matrix(&self) -> Ref<Transform3D<f64>> {
self.matrix.borrow()
}
@ -183,7 +183,7 @@ impl DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-translateself
pub fn translate_self(&self, tx: f64, ty: f64, tz: f64) {
// Step 1.
let translation = Matrix4D::create_translation(tx, ty, tz);
let translation = Transform3D::create_translation(tx, ty, tz);
let mut matrix = self.matrix.borrow_mut();
*matrix = translation.post_mul(&matrix);
// Step 2.
@ -202,7 +202,7 @@ impl DOMMatrixReadOnly {
let scaleY = scaleY.unwrap_or(scaleX);
// Step 3.
{
let scale3D = Matrix4D::create_scale(scaleX, scaleY, scaleZ);
let scale3D = Transform3D::create_scale(scaleX, scaleY, scaleZ);
let mut matrix = self.matrix.borrow_mut();
*matrix = scale3D.post_mul(&matrix);
}
@ -225,7 +225,7 @@ impl DOMMatrixReadOnly {
self.translate_self(originX, originY, originZ);
// Step 2.
{
let scale3D = Matrix4D::create_scale(scale, scale, scale);
let scale3D = Transform3D::create_scale(scale, scale, scale);
let mut matrix = self.matrix.borrow_mut();
*matrix = scale3D.post_mul(&matrix);
}
@ -256,19 +256,19 @@ impl DOMMatrixReadOnly {
}
if rotZ != 0.0 {
// Step 5.
let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, Radians::new(rotZ.to_radians()));
let rotation = Transform3D::create_rotation(0.0, 0.0, 1.0, Radians::new(rotZ.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
if rotY != 0.0 {
// Step 6.
let rotation = Matrix4D::create_rotation(0.0, 1.0, 0.0, Radians::new(rotY.to_radians()));
let rotation = Transform3D::create_rotation(0.0, 1.0, 0.0, Radians::new(rotY.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
if rotX != 0.0 {
// Step 7.
let rotation = Matrix4D::create_rotation(1.0, 0.0, 0.0, Radians::new(rotX.to_radians()));
let rotation = Transform3D::create_rotation(1.0, 0.0, 0.0, Radians::new(rotX.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
@ -281,7 +281,7 @@ impl DOMMatrixReadOnly {
if y != 0.0 || x < 0.0 {
// Step 1.
let rotZ = Radians::new(f64::atan2(y, x));
let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, rotZ);
let rotation = Transform3D::create_rotation(0.0, 0.0, 1.0, rotZ);
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
@ -292,7 +292,7 @@ impl DOMMatrixReadOnly {
pub fn rotate_axis_angle_self(&self, x: f64, y: f64, z: f64, angle: f64) {
// Step 1.
let (norm_x, norm_y, norm_z) = normalize_point(x, y, z);
let rotation = Matrix4D::create_rotation(norm_x, norm_y, norm_z, Radians::new(angle.to_radians()));
let rotation = Transform3D::create_rotation(norm_x, norm_y, norm_z, Radians::new(angle.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
// Step 2.
@ -305,7 +305,7 @@ impl DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewxself
pub fn skew_x_self(&self, sx: f64) {
// Step 1.
let skew = Matrix4D::create_skew(Radians::new(sx.to_radians()), Radians::new(0.0));
let skew = Transform3D::create_skew(Radians::new(sx.to_radians()), Radians::new(0.0));
let mut matrix = self.matrix.borrow_mut();
*matrix = skew.post_mul(&matrix);
// Step 2 in DOMMatrix.SkewXSelf
@ -314,7 +314,7 @@ impl DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewyself
pub fn skew_y_self(&self, sy: f64) {
// Step 1.
let skew = Matrix4D::create_skew(Radians::new(0.0), Radians::new(sy.to_radians()));
let skew = Transform3D::create_skew(Radians::new(0.0), Radians::new(sy.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = skew.post_mul(&matrix);
// Step 2 in DOMMatrix.SkewYSelf
@ -327,7 +327,7 @@ impl DOMMatrixReadOnly {
*matrix = matrix.inverse().unwrap_or_else(|| {
// Step 2.
self.is2D.set(false);
Matrix4D::row_major(f64::NAN, f64::NAN, f64::NAN, f64::NAN,
Transform3D::row_major(f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN)
@ -513,7 +513,7 @@ impl DOMMatrixReadOnlyMethods for DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipx
fn FlipX(&self) -> Root<DOMMatrix> {
let is2D = self.is2D.get();
let flip = Matrix4D::row_major(-1.0, 0.0, 0.0, 0.0,
let flip = Transform3D::row_major(-1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
@ -524,7 +524,7 @@ impl DOMMatrixReadOnlyMethods for DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipy
fn FlipY(&self) -> Root<DOMMatrix> {
let is2D = self.is2D.get();
let flip = Matrix4D::row_major(1.0, 0.0, 0.0, 0.0,
let flip = Transform3D::row_major(1.0, 0.0, 0.0, 0.0,
0.0, -1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
@ -539,21 +539,26 @@ impl DOMMatrixReadOnlyMethods for DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-transformpoint
fn TransformPoint(&self, point: &DOMPointInit) -> Root<DOMPoint> {
let matrix = self.matrix.borrow();
let result = matrix.transform_point4d(&Point4D::new(point.x, point.y, point.z, point.w));
DOMPoint::new(
&self.global(),
result.x as f64,
result.y as f64,
result.z as f64,
result.w as f64)
// Euclid always normalizes the homogeneous coordinate which is usually the right
// thing but may (?) not be compliant with the CSS matrix spec (or at least is
// probably not the behavior web authors will expect even if it is mathematically
// correct in the context of geometry computations).
// Since this is the only place where this is needed, better implement it here
// than in euclid (which does not have a notion of 4d points).
let mat = self.matrix.borrow();
let x = point.x * mat.m11 + point.y * mat.m21 + point.z * mat.m31 + point.w * mat.m41;
let y = point.x * mat.m12 + point.y * mat.m22 + point.z * mat.m32 + point.w * mat.m42;
let z = point.x * mat.m13 + point.y * mat.m23 + point.z * mat.m33 + point.w * mat.m43;
let w = point.x * mat.m14 + point.y * mat.m24 + point.z * mat.m34 + point.w * mat.m44;
DOMPoint::new(&self.global(), x, y, z, w)
}
}
// https://drafts.fxtf.org/geometry-1/#create-a-2d-matrix
fn create_2d_matrix(entries: &[f64]) -> Matrix4D<f64> {
Matrix4D::row_major(entries[0], entries[1], 0.0, 0.0,
fn create_2d_matrix(entries: &[f64]) -> Transform3D<f64> {
Transform3D::row_major(entries[0], entries[1], 0.0, 0.0,
entries[2], entries[3], 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
entries[4], entries[5], 0.0, 1.0)
@ -561,15 +566,15 @@ fn create_2d_matrix(entries: &[f64]) -> Matrix4D<f64> {
// https://drafts.fxtf.org/geometry-1/#create-a-3d-matrix
fn create_3d_matrix(entries: &[f64]) -> Matrix4D<f64> {
Matrix4D::row_major(entries[0], entries[1], entries[2], entries[3],
fn create_3d_matrix(entries: &[f64]) -> Transform3D<f64> {
Transform3D::row_major(entries[0], entries[1], entries[2], entries[3],
entries[4], entries[5], entries[6], entries[7],
entries[8], entries[9], entries[10], entries[11],
entries[12], entries[13], entries[14], entries[15])
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
pub fn entries_to_matrix(entries: &[f64]) -> Fallible<(bool, Matrix4D<f64>)> {
pub fn entries_to_matrix(entries: &[f64]) -> Fallible<(bool, Transform3D<f64>)> {
if entries.len() == 6 {
Ok((true, create_2d_matrix(&entries)))
} else if entries.len() == 16 {
@ -582,7 +587,7 @@ pub fn entries_to_matrix(entries: &[f64]) -> Fallible<(bool, Matrix4D<f64>)> {
// https://drafts.fxtf.org/geometry-1/#validate-and-fixup
pub fn dommatrixinit_to_matrix(dict: &DOMMatrixInit) -> Fallible<(bool, Matrix4D<f64>)> {
pub fn dommatrixinit_to_matrix(dict: &DOMMatrixInit) -> Fallible<(bool, Transform3D<f64>)> {
// Step 1.
if dict.a.is_some() && dict.m11.is_some() && dict.a.unwrap() != dict.m11.unwrap() ||
dict.b.is_some() && dict.m12.is_some() && dict.b.unwrap() != dict.m12.unwrap() ||
@ -621,7 +626,7 @@ pub fn dommatrixinit_to_matrix(dict: &DOMMatrixInit) -> Fallible<(bool, Matrix4D
if is2D.is_none() {
is2D = Some(true);
}
let matrix = Matrix4D::row_major(m11, m12, dict.m13, dict.m14,
let matrix = Transform3D::row_major(m11, m12, dict.m13, dict.m14,
m21, m22, dict.m23, dict.m24,
dict.m31, dict.m32, dict.m33, dict.m34,
m41, m42, dict.m43, dict.m44);