Use generics for transition-timing-function 📈

This commit is contained in:
Anthony Ramine 2017-06-05 14:56:04 +02:00
parent 63be9d7af2
commit 874885e235
8 changed files with 300 additions and 412 deletions

View file

@ -16,14 +16,14 @@ use properties::animated_properties::{AnimatedProperty, TransitionProperty};
use properties::longhands::animation_direction::computed_value::single_value::T as AnimationDirection;
use properties::longhands::animation_iteration_count::single_value::computed_value::T as AnimationIterationCount;
use properties::longhands::animation_play_state::computed_value::single_value::T as AnimationPlayState;
use properties::longhands::transition_timing_function::single_value::computed_value::StartEnd;
use properties::longhands::transition_timing_function::single_value::computed_value::T as TransitionTimingFunction;
use rule_tree::CascadeLevel;
use std::sync::mpsc::Sender;
use stylearc::Arc;
use stylesheets::keyframes_rule::{KeyframesStep, KeyframesStepValue};
use timer::Timer;
use values::computed::Time;
use values::computed::transform::TimingFunction;
use values::generics::transform::{StepPosition, TimingFunction as GenericTimingFunction};
/// This structure represents a keyframes animation current iteration state.
///
@ -258,7 +258,7 @@ pub struct AnimationFrame {
#[derive(Debug, Clone)]
pub struct PropertyAnimation {
property: AnimatedProperty,
timing_function: TransitionTimingFunction,
timing_function: TimingFunction,
duration: Time, // TODO: isn't this just repeated?
}
@ -323,7 +323,7 @@ impl PropertyAnimation {
}
fn from_transition_property(transition_property: &TransitionProperty,
timing_function: TransitionTimingFunction,
timing_function: TimingFunction,
duration: Time,
old_style: &ComputedValues,
new_style: &ComputedValues)
@ -349,25 +349,26 @@ impl PropertyAnimation {
/// Update the given animation at a given point of progress.
pub fn update(&self, style: &mut ComputedValues, time: f64) {
let timing_function = match self.timing_function {
TransitionTimingFunction::Keyword(keyword) =>
keyword.to_non_keyword_value(),
other => other,
let solve_bezier = |(p1, p2): (Point2D<_>, Point2D<_>)| {
let epsilon = 1. / (200. * (self.duration.seconds() as f64));
let bezier = Bezier::new(
Point2D::new(p1.x as f64, p1.y as f64),
Point2D::new(p2.x as f64, p2.y as f64),
);
bezier.solve(time, epsilon)
};
let progress = match timing_function {
TransitionTimingFunction::CubicBezier(p1, p2) => {
// See `WebCore::AnimationBase::solveEpsilon(double)` in WebKit.
let epsilon = 1.0 / (200.0 * (self.duration.seconds() as f64));
Bezier::new(Point2D::new(p1.x as f64, p1.y as f64),
Point2D::new(p2.x as f64, p2.y as f64)).solve(time, epsilon)
let progress = match self.timing_function {
GenericTimingFunction::CubicBezier(p1, p2) => {
solve_bezier((p1, p2))
},
TransitionTimingFunction::Steps(steps, StartEnd::Start) => {
GenericTimingFunction::Steps(steps, StepPosition::Start) => {
(time * (steps as f64)).ceil() / (steps as f64)
},
TransitionTimingFunction::Steps(steps, StartEnd::End) => {
GenericTimingFunction::Steps(steps, StepPosition::End) => {
(time * (steps as f64)).floor() / (steps as f64)
},
TransitionTimingFunction::Frames(frames) => {
GenericTimingFunction::Frames(frames) => {
// https://drafts.csswg.org/css-timing/#frames-timing-functions
let mut out = (time * (frames as f64)).floor() / ((frames - 1) as f64);
if out > 1.0 {
@ -383,8 +384,8 @@ impl PropertyAnimation {
}
out
},
TransitionTimingFunction::Keyword(_) => {
panic!("Keyword function should not appear")
GenericTimingFunction::Keyword(keyword) => {
solve_bezier(keyword.to_bezier_points())
},
};

View file

@ -4,12 +4,11 @@
use euclid::point::{Point2D, TypedPoint2D};
use gecko_bindings::structs::{nsTimingFunction, nsTimingFunction_Type};
use properties::longhands::transition_timing_function::single_value::FunctionKeyword;
use properties::longhands::transition_timing_function::single_value::SpecifiedValue as SpecifiedTimingFunction;
use properties::longhands::transition_timing_function::single_value::computed_value::StartEnd;
use properties::longhands::transition_timing_function::single_value::computed_value::T as ComputedTimingFunction;
use std::mem;
use values::computed::ToComputedValue;
use values::computed::transform::TimingFunction as ComputedTimingFunction;
use values::generics::transform::{StepPosition, TimingFunction as GenericTimingFunction, TimingKeyword};
use values::specified::transform::TimingFunction;
impl nsTimingFunction {
fn set_as_step(&mut self, function_type: nsTimingFunction_Type, steps: u32) {
@ -47,69 +46,35 @@ impl nsTimingFunction {
impl From<ComputedTimingFunction> for nsTimingFunction {
fn from(function: ComputedTimingFunction) -> nsTimingFunction {
SpecifiedTimingFunction::from_computed_value(&function).into()
TimingFunction::from_computed_value(&function).into()
}
}
impl From<SpecifiedTimingFunction> for nsTimingFunction {
fn from(function: SpecifiedTimingFunction) -> nsTimingFunction {
impl From<TimingFunction> for nsTimingFunction {
fn from(function: TimingFunction) -> nsTimingFunction {
let mut tf: nsTimingFunction = unsafe { mem::zeroed() };
match function {
SpecifiedTimingFunction::Steps(steps, StartEnd::Start) => {
GenericTimingFunction::Steps(steps, StepPosition::Start) => {
debug_assert!(steps.value() >= 0);
tf.set_as_step(nsTimingFunction_Type::StepStart, steps.value() as u32);
},
SpecifiedTimingFunction::Steps(steps, StartEnd::End) => {
GenericTimingFunction::Steps(steps, StepPosition::End) => {
debug_assert!(steps.value() >= 0);
tf.set_as_step(nsTimingFunction_Type::StepEnd, steps.value() as u32);
},
SpecifiedTimingFunction::Frames(frames) => {
GenericTimingFunction::Frames(frames) => {
debug_assert!(frames.value() >= 2);
tf.set_as_frames(frames.value() as u32);
},
SpecifiedTimingFunction::CubicBezier(p1, p2) => {
GenericTimingFunction::CubicBezier(p1, p2) => {
tf.set_as_bezier(nsTimingFunction_Type::CubicBezier,
Point2D::new(p1.x.get(), p1.y.get()),
Point2D::new(p2.x.get(), p2.y.get()));
},
SpecifiedTimingFunction::Keyword(keyword) => {
match keyword.to_non_keyword_value() {
ComputedTimingFunction::CubicBezier(p1, p2) => {
match keyword {
FunctionKeyword::Ease => {
tf.set_as_bezier(nsTimingFunction_Type::Ease, p1, p2);
},
FunctionKeyword::Linear => {
tf.set_as_bezier(nsTimingFunction_Type::Linear, p1, p2);
},
FunctionKeyword::EaseIn => {
tf.set_as_bezier(nsTimingFunction_Type::EaseIn, p1, p2);
},
FunctionKeyword::EaseOut => {
tf.set_as_bezier(nsTimingFunction_Type::EaseOut, p1, p2);
},
FunctionKeyword::EaseInOut => {
tf.set_as_bezier(nsTimingFunction_Type::EaseInOut, p1, p2);
},
_ => unreachable!("Unexpected bezier function type"),
}
},
ComputedTimingFunction::Steps(steps, StartEnd::Start) => {
debug_assert!(keyword == FunctionKeyword::StepStart && steps == 1);
tf.set_as_step(nsTimingFunction_Type::StepStart, steps);
},
ComputedTimingFunction::Steps(steps, StartEnd::End) => {
debug_assert!(keyword == FunctionKeyword::StepEnd && steps == 1);
tf.set_as_step(nsTimingFunction_Type::StepEnd, steps);
},
ComputedTimingFunction::Frames(frames) => {
tf.set_as_frames(frames)
},
ComputedTimingFunction::Keyword(_) => {
panic!("Keyword function should not appear")
},
}
GenericTimingFunction::Keyword(keyword) => {
let (p1, p2) = keyword.to_bezier_points();
tf.set_as_bezier(keyword.into(), p1, p2)
},
}
tf
@ -120,36 +85,36 @@ impl From<nsTimingFunction> for ComputedTimingFunction {
fn from(function: nsTimingFunction) -> ComputedTimingFunction {
match function.mType {
nsTimingFunction_Type::StepStart => {
ComputedTimingFunction::Steps(
GenericTimingFunction::Steps(
unsafe { function.__bindgen_anon_1.__bindgen_anon_1.as_ref().mStepsOrFrames },
StartEnd::Start)
StepPosition::Start)
},
nsTimingFunction_Type::StepEnd => {
ComputedTimingFunction::Steps(
GenericTimingFunction::Steps(
unsafe { function.__bindgen_anon_1.__bindgen_anon_1.as_ref().mStepsOrFrames },
StartEnd::End)
StepPosition::End)
},
nsTimingFunction_Type::Frames => {
ComputedTimingFunction::Frames(
GenericTimingFunction::Frames(
unsafe { function.__bindgen_anon_1.__bindgen_anon_1.as_ref().mStepsOrFrames })
}
nsTimingFunction_Type::Ease => {
ComputedTimingFunction::Keyword(FunctionKeyword::Ease)
GenericTimingFunction::Keyword(TimingKeyword::Ease)
},
nsTimingFunction_Type::Linear => {
ComputedTimingFunction::Keyword(FunctionKeyword::Linear)
GenericTimingFunction::Keyword(TimingKeyword::Linear)
},
nsTimingFunction_Type::EaseIn => {
ComputedTimingFunction::Keyword(FunctionKeyword::EaseIn)
GenericTimingFunction::Keyword(TimingKeyword::EaseIn)
},
nsTimingFunction_Type::EaseOut => {
ComputedTimingFunction::Keyword(FunctionKeyword::EaseOut)
GenericTimingFunction::Keyword(TimingKeyword::EaseOut)
},
nsTimingFunction_Type::EaseInOut => {
ComputedTimingFunction::Keyword(FunctionKeyword::EaseInOut)
GenericTimingFunction::Keyword(TimingKeyword::EaseInOut)
},
nsTimingFunction_Type::CubicBezier => {
ComputedTimingFunction::CubicBezier(
GenericTimingFunction::CubicBezier(
TypedPoint2D::new(unsafe { function.__bindgen_anon_1.mFunc.as_ref().mX1 },
unsafe { function.__bindgen_anon_1.mFunc.as_ref().mY1 }),
TypedPoint2D::new(unsafe { function.__bindgen_anon_1.mFunc.as_ref().mX2 },
@ -158,3 +123,15 @@ impl From<nsTimingFunction> for ComputedTimingFunction {
}
}
}
impl From<TimingKeyword> for nsTimingFunction_Type {
fn from(keyword: TimingKeyword) -> Self {
match keyword {
TimingKeyword::Linear => nsTimingFunction_Type::Linear,
TimingKeyword::Ease => nsTimingFunction_Type::Ease,
TimingKeyword::EaseIn => nsTimingFunction_Type::EaseIn,
TimingKeyword::EaseOut => nsTimingFunction_Type::EaseOut,
TimingKeyword::EaseInOut => nsTimingFunction_Type::EaseInOut,
}
}
}

View file

@ -414,336 +414,15 @@ ${helpers.predefined_type("transition-duration",
extra_prefixes="moz webkit",
spec="https://drafts.csswg.org/css-transitions/#propdef-transition-duration")}
// TODO(pcwalton): Lots more timing functions.
<%helpers:vector_longhand name="transition-timing-function"
need_index="True"
animation_value_type="none"
extra_prefixes="moz webkit"
spec="https://drafts.csswg.org/css-transitions/#propdef-transition-timing-function">
use self::computed_value::StartEnd;
use values::specified::Number;
use euclid::point::{Point2D, TypedPoint2D};
use std::fmt;
use style_traits::ToCss;
// FIXME: This could use static variables and const functions when they are available.
#[inline(always)]
fn ease() -> computed_value::T {
computed_value::T::CubicBezier(TypedPoint2D::new(0.25, 0.1),
TypedPoint2D::new(0.25, 1.0))
}
#[inline(always)]
fn linear() -> computed_value::T {
computed_value::T::CubicBezier(TypedPoint2D::new(0.0, 0.0),
TypedPoint2D::new(1.0, 1.0))
}
#[inline(always)]
fn ease_in() -> computed_value::T {
computed_value::T::CubicBezier(TypedPoint2D::new(0.42, 0.0),
TypedPoint2D::new(1.0, 1.0))
}
#[inline(always)]
fn ease_out() -> computed_value::T {
computed_value::T::CubicBezier(TypedPoint2D::new(0.0, 0.0),
TypedPoint2D::new(0.58, 1.0))
}
#[inline(always)]
fn ease_in_out() -> computed_value::T {
computed_value::T::CubicBezier(TypedPoint2D::new(0.42, 0.0),
TypedPoint2D::new(0.58, 1.0))
}
static STEP_START: computed_value::T =
computed_value::T::Steps(1, StartEnd::Start);
static STEP_END: computed_value::T =
computed_value::T::Steps(1, StartEnd::End);
pub mod computed_value {
use euclid::point::Point2D;
use std::fmt;
use style_traits::ToCss;
use super::FunctionKeyword;
use values::specified;
pub use super::parse;
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum T {
CubicBezier(Point2D<f32>, Point2D<f32>),
Steps(u32, StartEnd),
Frames(u32),
Keyword(FunctionKeyword),
}
impl ToCss for T {
fn to_css<W>(&self, dest: &mut W) -> fmt::Result
where W: fmt::Write,
{
match *self {
T::CubicBezier(p1, p2) => {
try!(dest.write_str("cubic-bezier("));
try!(p1.x.to_css(dest));
try!(dest.write_str(", "));
try!(p1.y.to_css(dest));
try!(dest.write_str(", "));
try!(p2.x.to_css(dest));
try!(dest.write_str(", "));
try!(p2.y.to_css(dest));
dest.write_str(")")
},
T::Steps(steps, start_end) => {
super::serialize_steps(dest, specified::Integer::new(steps as i32), start_end)
},
T::Frames(frames) => {
try!(dest.write_str("frames("));
try!(frames.to_css(dest));
dest.write_str(")")
},
T::Keyword(keyword) => {
super::serialize_keyword(dest, keyword)
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum StartEnd {
Start,
End,
}
impl ToCss for StartEnd {
fn to_css<W>(&self, dest: &mut W) -> fmt::Result
where W: fmt::Write,
{
match *self {
StartEnd::Start => dest.write_str("start"),
StartEnd::End => dest.write_str("end"),
}
}
}
}
define_css_keyword_enum!(FunctionKeyword:
"ease" => Ease,
"linear" => Linear,
"ease-in" => EaseIn,
"ease-out" => EaseOut,
"ease-in-out" => EaseInOut,
"step-start" => StepStart,
"step-end" => StepEnd);
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum SpecifiedValue {
CubicBezier(Point2D<Number>, Point2D<Number>),
Steps(specified::Integer, StartEnd),
Frames(specified::Integer),
Keyword(FunctionKeyword),
}
impl Parse for SpecifiedValue {
fn parse(context: &ParserContext, input: &mut ::cssparser::Parser) -> Result<Self, ()> {
if let Ok(function_name) = input.try(|input| input.expect_function()) {
return match_ignore_ascii_case! { &function_name,
"cubic-bezier" => {
let (mut p1x, mut p1y, mut p2x, mut p2y) =
(Number::new(0.0), Number::new(0.0), Number::new(0.0), Number::new(0.0));
try!(input.parse_nested_block(|input| {
p1x = try!(specified::parse_number(context, input));
try!(input.expect_comma());
p1y = try!(specified::parse_number(context, input));
try!(input.expect_comma());
p2x = try!(specified::parse_number(context, input));
try!(input.expect_comma());
p2y = try!(specified::parse_number(context, input));
Ok(())
}));
if p1x.get() < 0.0 || p1x.get() > 1.0 ||
p2x.get() < 0.0 || p2x.get() > 1.0 {
return Err(())
}
let (p1, p2) = (Point2D::new(p1x, p1y), Point2D::new(p2x, p2y));
Ok(SpecifiedValue::CubicBezier(p1, p2))
},
"steps" => {
let (mut step_count, mut start_end) = (specified::Integer::new(0), StartEnd::End);
try!(input.parse_nested_block(|input| {
step_count = try!(specified::parse_integer(context, input));
if step_count.value() < 1 {
return Err(())
}
if input.try(|input| input.expect_comma()).is_ok() {
start_end = try!(match_ignore_ascii_case! {
&try!(input.expect_ident()),
"start" => Ok(StartEnd::Start),
"end" => Ok(StartEnd::End),
_ => Err(())
});
}
Ok(())
}));
Ok(SpecifiedValue::Steps(step_count, start_end))
},
"frames" => {
// https://drafts.csswg.org/css-timing/#frames-timing-functions
let frames = try!(input.parse_nested_block(|input| {
specified::Integer::parse_with_minimum(context, input, 2)
}));
Ok(SpecifiedValue::Frames(frames))
},
_ => Err(())
}
}
Ok(SpecifiedValue::Keyword(try!(FunctionKeyword::parse(input))))
}
}
fn serialize_steps<W>(dest: &mut W,
steps: specified::Integer,
start_end: StartEnd) -> fmt::Result
where W: fmt::Write,
{
try!(dest.write_str("steps("));
try!(steps.to_css(dest));
if let StartEnd::Start = start_end {
try!(dest.write_str(", start"));
}
dest.write_str(")")
}
fn serialize_keyword<W>(dest: &mut W, keyword: FunctionKeyword) -> fmt::Result
where W: fmt::Write,
{
match keyword {
FunctionKeyword::StepStart => {
serialize_steps(dest, specified::Integer::new(1), StartEnd::Start)
},
FunctionKeyword::StepEnd => {
serialize_steps(dest, specified::Integer::new(1), StartEnd::End)
},
_ => {
keyword.to_css(dest)
},
}
}
// https://drafts.csswg.org/css-transitions/#serializing-a-timing-function
impl ToCss for SpecifiedValue {
fn to_css<W>(&self, dest: &mut W) -> fmt::Result where W: fmt::Write {
match *self {
SpecifiedValue::CubicBezier(p1, p2) => {
try!(dest.write_str("cubic-bezier("));
try!(p1.x.to_css(dest));
try!(dest.write_str(", "));
try!(p1.y.to_css(dest));
try!(dest.write_str(", "));
try!(p2.x.to_css(dest));
try!(dest.write_str(", "));
try!(p2.y.to_css(dest));
dest.write_str(")")
},
SpecifiedValue::Steps(steps, start_end) => {
serialize_steps(dest, steps, start_end)
},
SpecifiedValue::Frames(frames) => {
try!(dest.write_str("frames("));
try!(frames.to_css(dest));
dest.write_str(")")
},
SpecifiedValue::Keyword(keyword) => {
serialize_keyword(dest, keyword)
},
}
}
}
impl ToComputedValue for SpecifiedValue {
type ComputedValue = computed_value::T;
#[inline]
fn to_computed_value(&self, context: &Context) -> computed_value::T {
match *self {
SpecifiedValue::CubicBezier(p1, p2) => {
computed_value::T::CubicBezier(
Point2D::new(p1.x.to_computed_value(context), p1.y.to_computed_value(context)),
Point2D::new(p2.x.to_computed_value(context), p2.y.to_computed_value(context)))
},
SpecifiedValue::Steps(count, start_end) => {
computed_value::T::Steps(count.to_computed_value(context) as u32, start_end)
},
SpecifiedValue::Frames(frames) => {
computed_value::T::Frames(frames.to_computed_value(context) as u32)
},
SpecifiedValue::Keyword(keyword) => {
computed_value::T::Keyword(keyword)
},
}
}
#[inline]
fn from_computed_value(computed: &computed_value::T) -> Self {
match *computed {
computed_value::T::CubicBezier(p1, p2) => {
SpecifiedValue::CubicBezier(
Point2D::new(Number::from_computed_value(&p1.x),
Number::from_computed_value(&p1.y)),
Point2D::new(Number::from_computed_value(&p2.x),
Number::from_computed_value(&p2.y)))
},
computed_value::T::Steps(count, start_end) => {
let int_count = count as i32;
SpecifiedValue::Steps(specified::Integer::from_computed_value(&int_count), start_end)
},
computed_value::T::Frames(frames) => {
let frames = frames as i32;
SpecifiedValue::Frames(specified::Integer::from_computed_value(&frames))
},
computed_value::T::Keyword(keyword) => {
SpecifiedValue::Keyword(keyword)
},
}
}
}
impl FunctionKeyword {
#[inline]
pub fn to_non_keyword_value(&self) -> computed_value::T {
match *self {
FunctionKeyword::Ease => ease(),
FunctionKeyword::Linear => linear(),
FunctionKeyword::EaseIn => ease_in(),
FunctionKeyword::EaseOut => ease_out(),
FunctionKeyword::EaseInOut => ease_in_out(),
FunctionKeyword::StepStart => STEP_START,
FunctionKeyword::StepEnd => STEP_END,
}
}
}
no_viewport_percentage!(SpecifiedValue);
#[inline]
pub fn get_initial_value() -> computed_value::T {
computed_value::T::Keyword(FunctionKeyword::Ease)
}
#[inline]
pub fn get_initial_specified_value() -> SpecifiedValue {
SpecifiedValue::Keyword(FunctionKeyword::Ease)
}
pub fn parse(context: &ParserContext, input: &mut Parser) -> Result<SpecifiedValue,()> {
SpecifiedValue::parse(context, input)
}
</%helpers:vector_longhand>
${helpers.predefined_type("transition-timing-function",
"TimingFunction",
"computed::TimingFunction::ease()",
initial_specified_value="specified::TimingFunction::ease()",
vector=True,
need_index=True,
animation_value_type="none",
extra_prefixes="moz webkit",
spec="https://drafts.csswg.org/css-transitions/#propdef-transition-timing-function")}
<%helpers:vector_longhand name="transition-property"
allow_empty="True"

View file

@ -39,7 +39,7 @@ pub use self::length::{LengthOrPercentageOrAutoOrContent, LengthOrPercentageOrNo
pub use self::length::{MaxLength, MozLength};
pub use self::position::Position;
pub use self::text::{LetterSpacing, LineHeight, WordSpacing};
pub use self::transform::TransformOrigin;
pub use self::transform::{TimingFunction, TransformOrigin};
pub mod background;
pub mod basic_shape;

View file

@ -5,12 +5,16 @@
//! Computed types for CSS values that are related to transformations.
use properties::animated_properties::Animatable;
use values::computed::{Length, LengthOrPercentage};
use values::computed::{Length, LengthOrPercentage, Number};
use values::generics::transform::TimingFunction as GenericTimingFunction;
use values::generics::transform::TransformOrigin as GenericTransformOrigin;
/// The computed value of a CSS `<transform-origin>`
pub type TransformOrigin = GenericTransformOrigin<LengthOrPercentage, LengthOrPercentage, Length>;
/// A computed timing function.
pub type TimingFunction = GenericTimingFunction<u32, Number>;
impl TransformOrigin {
/// Returns the initial computed value for `transform-origin`.
#[inline]

View file

@ -4,6 +4,11 @@
//! Generic types for CSS values that are related to transformations.
use euclid::Point2D;
use std::fmt;
use style_traits::{HasViewportPercentage, ToCss};
use values::CSSFloat;
/// A generic transform origin.
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
#[derive(Clone, Copy, Debug, HasViewportPercentage, PartialEq, ToComputedValue, ToCss)]
@ -16,6 +21,41 @@ pub struct TransformOrigin<H, V, Depth> {
pub depth: Depth,
}
/// A generic timing function.
///
/// https://drafts.csswg.org/css-timing-1/#single-timing-function-production
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum TimingFunction<Integer, Number> {
/// `linear | ease | ease-in | ease-out | ease-in-out`
Keyword(TimingKeyword),
/// `cubic-bezier(<number>, <number>, <number>, <number>)`
CubicBezier(Point2D<Number>, Point2D<Number>),
/// `step-start | step-end | steps(<integer>, [ start | end ]?)`
Steps(Integer, StepPosition),
/// `frames(<integer>)`
Frames(Integer),
}
impl<I, N> HasViewportPercentage for TimingFunction<I, N> {
fn has_viewport_percentage(&self) -> bool { false }
}
define_css_keyword_enum! { TimingKeyword:
"linear" => Linear,
"ease" => Ease,
"ease-in" => EaseIn,
"ease-out" => EaseOut,
"ease-in-out" => EaseInOut,
}
add_impls_for_keyword_enum!(TimingKeyword);
define_css_keyword_enum! { StepPosition:
"start" => Start,
"end" => End,
}
add_impls_for_keyword_enum!(StepPosition);
impl<H, V, D> TransformOrigin<H, V, D> {
/// Returns a new transform origin.
pub fn new(horizontal: H, vertical: V, depth: D) -> Self {
@ -26,3 +66,65 @@ impl<H, V, D> TransformOrigin<H, V, D> {
}
}
}
impl<Integer, Number> TimingFunction<Integer, Number> {
/// `ease`
#[inline]
pub fn ease() -> Self {
TimingFunction::Keyword(TimingKeyword::Ease)
}
}
impl<Integer, Number> ToCss for TimingFunction<Integer, Number>
where
Integer: ToCss,
Number: ToCss,
{
fn to_css<W>(&self, dest: &mut W) -> fmt::Result
where
W: fmt::Write,
{
match *self {
TimingFunction::Keyword(keyword) => keyword.to_css(dest),
TimingFunction::CubicBezier(ref p1, ref p2) => {
dest.write_str("cubic-bezier(")?;
p1.x.to_css(dest)?;
dest.write_str(", ")?;
p1.y.to_css(dest)?;
dest.write_str(", ")?;
p2.x.to_css(dest)?;
dest.write_str(", ")?;
p2.y.to_css(dest)?;
dest.write_str(")")
},
TimingFunction::Steps(ref intervals, position) => {
dest.write_str("steps(")?;
intervals.to_css(dest)?;
if position != StepPosition::End {
dest.write_str(", ")?;
position.to_css(dest)?;
}
dest.write_str(")")
},
TimingFunction::Frames(ref frames) => {
dest.write_str("frames(")?;
frames.to_css(dest)?;
dest.write_str(")")
},
}
}
}
impl TimingKeyword {
/// Returns this timing keyword as a pair of `cubic-bezier()` points.
#[inline]
pub fn to_bezier_points(self) -> (Point2D<CSSFloat>, Point2D<CSSFloat>) {
match self {
TimingKeyword::Linear => (Point2D::new(0., 0.), Point2D::new(1., 1.)),
TimingKeyword::Ease => (Point2D::new(0.25, 0.1), Point2D::new(0.25, 1.)),
TimingKeyword::EaseIn => (Point2D::new(0.42, 0.), Point2D::new(1., 1.)),
TimingKeyword::EaseOut => (Point2D::new(0., 0.), Point2D::new(0.58, 1.)),
TimingKeyword::EaseInOut => (Point2D::new(0.42, 0.), Point2D::new(0.58, 1.)),
}
}
}

View file

@ -44,7 +44,7 @@ pub use self::length::{LengthOrPercentageOrNone, LengthOrPercentageOrAutoOrConte
pub use self::length::{MaxLength, MozLength};
pub use self::position::{Position, PositionComponent};
pub use self::text::{LetterSpacing, LineHeight, WordSpacing};
pub use self::transform::TransformOrigin;
pub use self::transform::{TimingFunction, TransformOrigin};
#[cfg(feature = "gecko")]
pub mod align;

View file

@ -5,11 +5,15 @@
//! Specified types for CSS values that are related to transformations.
use cssparser::Parser;
use euclid::Point2D;
use parser::{Parse, ParserContext};
use std::fmt;
use style_traits::ToCss;
use values::computed::{LengthOrPercentage as ComputedLengthOrPercentage, Context, ToComputedValue};
use values::generics::transform::TransformOrigin as GenericTransformOrigin;
use values::computed::transform::TimingFunction as ComputedTimingFunction;
use values::generics::transform::{StepPosition, TimingFunction as GenericTimingFunction};
use values::generics::transform::{TimingKeyword, TransformOrigin as GenericTransformOrigin};
use values::specified::{Integer, Number};
use values::specified::length::{Length, LengthOrPercentage};
use values::specified::position::{Side, X, Y};
@ -28,6 +32,9 @@ pub enum OriginComponent<S> {
Side(S),
}
/// A specified timing function.
pub type TimingFunction = GenericTimingFunction<Integer, Number>;
impl Parse for TransformOrigin {
fn parse(context: &ParserContext, input: &mut Parser) -> Result<Self, ()> {
let parse_depth = |input: &mut Parser| {
@ -130,3 +137,121 @@ impl<S> ToComputedValue for OriginComponent<S>
OriginComponent::Length(ToComputedValue::from_computed_value(computed))
}
}
impl Parse for TimingFunction {
fn parse(context: &ParserContext, input: &mut Parser) -> Result<Self, ()> {
if let Ok(keyword) = input.try(TimingKeyword::parse) {
return Ok(GenericTimingFunction::Keyword(keyword));
}
if let Ok(ident) = input.try(|i| i.expect_ident()) {
let position = match_ignore_ascii_case! { &ident,
"step-start" => StepPosition::Start,
"step-end" => StepPosition::End,
_ => return Err(()),
};
return Ok(GenericTimingFunction::Steps(Integer::new(1), position));
}
let function = input.expect_function()?;
input.parse_nested_block(|i| {
match_ignore_ascii_case! { &function,
"cubic-bezier" => {
let p1x = Number::parse(context, i)?;
i.expect_comma()?;
let p1y = Number::parse(context, i)?;
i.expect_comma()?;
let p2x = Number::parse(context, i)?;
i.expect_comma()?;
let p2y = Number::parse(context, i)?;
if p1x.get() < 0.0 || p1x.get() > 1.0 || p2x.get() < 0.0 || p2x.get() > 1.0 {
return Err(());
}
let (p1, p2) = (Point2D::new(p1x, p1y), Point2D::new(p2x, p2y));
Ok(GenericTimingFunction::CubicBezier(p1, p2))
},
"steps" => {
let steps = Integer::parse_positive(context, i)?;
let position = i.try(|i| {
i.expect_comma()?;
StepPosition::parse(i)
}).unwrap_or(StepPosition::End);
Ok(GenericTimingFunction::Steps(steps, position))
},
"frames" => {
let frames = Integer::parse_with_minimum(context, i, 2)?;
Ok(GenericTimingFunction::Frames(frames))
},
_ => Err(()),
}
})
}
}
impl ToComputedValue for TimingFunction {
type ComputedValue = ComputedTimingFunction;
#[inline]
fn to_computed_value(&self, context: &Context) -> Self::ComputedValue {
match *self {
GenericTimingFunction::Keyword(keyword) => {
GenericTimingFunction::Keyword(keyword)
},
GenericTimingFunction::CubicBezier(p1, p2) => {
GenericTimingFunction::CubicBezier(
Point2D::new(
p1.x.to_computed_value(context),
p1.y.to_computed_value(context),
),
Point2D::new(
p2.x.to_computed_value(context),
p2.y.to_computed_value(context),
),
)
},
GenericTimingFunction::Steps(steps, position) => {
GenericTimingFunction::Steps(
steps.to_computed_value(context) as u32,
position,
)
},
GenericTimingFunction::Frames(frames) => {
GenericTimingFunction::Frames(
frames.to_computed_value(context) as u32,
)
},
}
}
#[inline]
fn from_computed_value(computed: &Self::ComputedValue) -> Self {
match *computed {
GenericTimingFunction::Keyword(keyword) => {
GenericTimingFunction::Keyword(keyword)
},
GenericTimingFunction::CubicBezier(p1, p2) => {
GenericTimingFunction::CubicBezier(
Point2D::new(
Number::from_computed_value(&p1.x),
Number::from_computed_value(&p1.y),
),
Point2D::new(
Number::from_computed_value(&p2.x),
Number::from_computed_value(&p2.y),
),
)
},
GenericTimingFunction::Steps(steps, position) => {
GenericTimingFunction::Steps(
Integer::from_computed_value(&(steps as i32)),
position,
)
},
GenericTimingFunction::Frames(frames) => {
GenericTimingFunction::Frames(
Integer::from_computed_value(&(frames as i32)),
)
},
}
}
}