No tracing of nop traceable fields (#29926)

* Add `no_trace` option to JSTraceable derive

* NoTrace wrapper

* Port some types to no_trace schematics

* Fixing my unsafe mistakes (not tracing traceables)

* Add docs & safety guards for no_trace

Safety guards (trait shenanigans) guarantees safety usage of `no_trace`

* Port canvas_traits to no_trace

* Port servo_media to no_trace

* Port net_traits to no_trace

* Port style to no_trace

* Port webgpu to no_trace

* Port script_traits to no_trace

* Port canvas_traits, devtools_traits, embedder_traits, profile_traits to no_trace

* unrooted_must_root lint in seperate file

* Add trace_in_no_trace_lint as script_plugin

* Composable types in must_not_have_traceable

* Introduced HashMapTracedValues wrapper

* `HashMap<NoTrace<K>,V>`->`HashMapTracedValues<K,V>`

* Port rest of servo's types to no_trace

* Port html5ever, euclid, mime and http to no_trace

* Port remaining externals to no_trace

* Port webxr and Arc<Mutex<_>>

* Fix spelling in notrace doc
This commit is contained in:
Samson 2023-08-04 12:17:43 +02:00 committed by GitHub
parent 66e0d543cf
commit 9514f670d1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
167 changed files with 1903 additions and 1020 deletions

View file

@ -10,372 +10,50 @@
#![deny(unsafe_code)]
#![feature(plugin)]
#![feature(rustc_private)]
#![cfg(feature = "unrooted_must_root_lint")]
extern crate rustc_ast;
extern crate rustc_driver;
extern crate rustc_error_messages;
extern crate rustc_hir;
extern crate rustc_infer;
extern crate rustc_lint;
extern crate rustc_middle;
extern crate rustc_session;
extern crate rustc_span;
extern crate rustc_trait_selection;
extern crate rustc_type_ir;
use rustc_ast::ast::{AttrKind, Attribute};
use rustc_ast::Mutability;
use rustc_driver::plugin::Registry;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit as visit;
use rustc_hir::{self as hir, ExprKind};
use rustc_lint::{LateContext, LateLintPass, LintContext, LintPass};
use rustc_middle::ty;
use rustc_session::declare_lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::source_map;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LOCAL_CRATE};
use rustc_hir::PrimTy;
use rustc_hir::{ImplItemRef, ItemKind, Node, OwnerId, TraitItemRef};
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_lint::LateContext;
use rustc_middle::ty::TyCtxt;
use rustc_middle::ty::{self, GenericArg, ParamEnv, Ty, TypeVisitable};
use rustc_span::source_map::{ExpnKind, MacroKind, Span};
use rustc_span::symbol::sym;
use rustc_span::symbol::Ident;
use rustc_span::symbol::Symbol;
use rustc_span::DUMMY_SP;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_type_ir::{FloatTy, IntTy, UintTy};
#[cfg(feature = "unrooted_must_root_lint")]
mod unrooted_must_root;
#[cfg(feature = "trace_in_no_trace_lint")]
mod trace_in_no_trace;
#[allow(unsafe_code)] // #[no_mangle] is unsafe
#[no_mangle]
fn __rustc_plugin_registrar(reg: &mut Registry) {
registrar(reg)
}
fn registrar(reg: &mut Registry) {
let symbols = Symbols::new();
reg.lint_store.register_lints(&[&UNROOTED_MUST_ROOT]);
reg.lint_store
.register_late_pass(move |_| Box::new(UnrootedPass::new(symbols.clone())));
}
declare_lint!(
UNROOTED_MUST_ROOT,
Deny,
"Warn and report usage of unrooted jsmanaged objects"
);
/// Lint for ensuring safe usage of unrooted pointers
///
/// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that
/// `#[unrooted_must_root_lint::must_root]` values are used correctly.
///
/// "Incorrect" usage includes:
///
/// - Not being used in a struct/enum field which is not `#[unrooted_must_root_lint::must_root]` itself
/// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`)
/// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement.
///
/// This helps catch most situations where pointers like `JS<T>` are used in a way that they can be invalidated by a
/// GC pass.
///
/// Structs which have their own mechanism of rooting their unrooted contents (e.g. `ScriptThread`)
/// can be marked as `#[allow(unrooted_must_root)]`. Smart pointers which root their interior type
/// can be marked as `#[unrooted_must_root_lint::allow_unrooted_interior]`
pub(crate) struct UnrootedPass {
symbols: Symbols,
}
impl UnrootedPass {
pub fn new(symbols: Symbols) -> UnrootedPass {
UnrootedPass { symbols }
}
}
fn has_lint_attr(sym: &Symbols, attrs: &[Attribute], name: Symbol) -> bool {
attrs.iter().any(|attr| {
matches!(
&attr.kind,
AttrKind::Normal(normal)
if normal.item.path.segments.len() == 2 &&
normal.item.path.segments[0].ident.name == sym.unrooted_must_root_lint &&
normal.item.path.segments[1].ident.name == name
)
})
}
/// Checks if a type is unrooted or contains any owned unrooted types
fn is_unrooted_ty<'tcx>(
sym: &'_ Symbols,
cx: &LateContext<'tcx>,
ty: ty::Ty<'tcx>,
in_new_function: bool,
) -> bool {
let mut ret = false;
let mut walker = ty.walk();
while let Some(generic_arg) = walker.next() {
let t = match generic_arg.unpack() {
rustc_middle::ty::subst::GenericArgKind::Type(t) => t,
_ => {
walker.skip_current_subtree();
continue;
},
};
let recur_into_subtree = match t.kind() {
ty::Adt(did, substs) => {
let has_attr =
|did, name| has_lint_attr(sym, &cx.tcx.get_attrs_unchecked(did), name);
if has_attr(did.did(), sym.must_root) {
ret = true;
false
} else if has_attr(did.did(), sym.allow_unrooted_interior) {
false
} else if match_def_path(cx, did.did(), &[sym.alloc, sym.rc, sym.Rc]) {
// Rc<Promise> is okay
let inner = substs.type_at(0);
if let ty::Adt(did, _) = inner.kind() {
if has_attr(did.did(), sym.allow_unrooted_in_rc) {
false
} else {
true
}
} else {
true
}
} else if match_def_path(cx, did.did(), &[sym::core, sym.cell, sym.Ref]) ||
match_def_path(cx, did.did(), &[sym::core, sym.cell, sym.RefMut]) ||
match_def_path(cx, did.did(), &[sym::core, sym::slice, sym::iter, sym.Iter]) ||
match_def_path(
cx,
did.did(),
&[sym::core, sym::slice, sym::iter, sym.IterMut],
) ||
match_def_path(cx, did.did(), &[sym.accountable_refcell, sym.Ref]) ||
match_def_path(cx, did.did(), &[sym.accountable_refcell, sym.RefMut]) ||
match_def_path(
cx,
did.did(),
&[sym::std, sym.collections, sym.hash, sym.map, sym.Entry],
) ||
match_def_path(
cx,
did.did(),
&[
sym::std,
sym.collections,
sym.hash,
sym.map,
sym.OccupiedEntry,
],
) ||
match_def_path(
cx,
did.did(),
&[
sym::std,
sym.collections,
sym.hash,
sym.map,
sym.VacantEntry,
],
) ||
match_def_path(
cx,
did.did(),
&[sym::std, sym.collections, sym.hash, sym.map, sym.Iter],
) ||
match_def_path(
cx,
did.did(),
&[sym::std, sym.collections, sym.hash, sym.set, sym.Iter],
)
{
// Structures which are semantically similar to an &ptr.
false
} else if did.is_box() && in_new_function {
// box in new() is okay
false
} else {
true
}
},
ty::Ref(..) => false, // don't recurse down &ptrs
ty::RawPtr(..) => false, // don't recurse down *ptrs
ty::FnDef(..) | ty::FnPtr(_) => false,
_ => true,
};
if !recur_into_subtree {
walker.skip_current_subtree();
}
}
ret
}
impl LintPass for UnrootedPass {
fn name(&self) -> &'static str {
"ServoUnrootedPass"
}
}
impl<'tcx> LateLintPass<'tcx> for UnrootedPass {
/// All structs containing #[unrooted_must_root_lint::must_root] types
/// must be #[unrooted_must_root_lint::must_root] themselves
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item) {
let attrs = cx.tcx.hir().attrs(item.hir_id());
if has_lint_attr(&self.symbols, &attrs, self.symbols.must_root) {
return;
}
if let hir::ItemKind::Struct(def, ..) = &item.kind {
for ref field in def.fields() {
let field_type = cx.tcx.type_of(field.def_id);
if is_unrooted_ty(&self.symbols, cx, field_type, false) {
cx.lint(
UNROOTED_MUST_ROOT,
"Type must be rooted, use #[unrooted_must_root_lint::must_root] \
on the struct definition to propagate",
|lint| lint.set_span(field.span),
)
}
}
}
}
/// All enums containing #[unrooted_must_root_lint::must_root] types
/// must be #[unrooted_must_root_lint::must_root] themselves
fn check_variant(&mut self, cx: &LateContext, var: &hir::Variant) {
let ref map = cx.tcx.hir();
let parent_item = map.expect_item(map.get_parent_item(var.hir_id).def_id);
let attrs = cx.tcx.hir().attrs(parent_item.hir_id());
if !has_lint_attr(&self.symbols, &attrs, self.symbols.must_root) {
match var.data {
hir::VariantData::Tuple(fields, ..) => {
for field in fields {
let field_type = cx.tcx.type_of(field.def_id);
if is_unrooted_ty(&self.symbols, cx, field_type, false) {
cx.lint(
UNROOTED_MUST_ROOT,
"Type must be rooted, \
use #[unrooted_must_root_lint::must_root] \
on the enum definition to propagate",
|lint| lint.set_span(field.ty.span),
)
}
}
},
_ => (), // Struct variants already caught by check_struct_def
}
}
}
/// Function arguments that are #[unrooted_must_root_lint::must_root] types are not allowed
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
kind: visit::FnKind<'tcx>,
decl: &'tcx hir::FnDecl,
body: &'tcx hir::Body,
span: source_map::Span,
def_id: LocalDefId,
) {
let in_new_function = match kind {
visit::FnKind::ItemFn(n, _, _) | visit::FnKind::Method(n, _) => {
&*n.as_str() == "new" || n.as_str().starts_with("new_")
},
visit::FnKind::Closure => return,
};
if !in_derive_expn(span) {
let sig = cx.tcx.type_of(def_id).fn_sig(cx.tcx);
for (arg, ty) in decl.inputs.iter().zip(sig.inputs().skip_binder().iter()) {
if is_unrooted_ty(&self.symbols, cx, *ty, false) {
cx.lint(UNROOTED_MUST_ROOT, "Type must be rooted", |lint| {
lint.set_span(arg.span)
})
}
}
if !in_new_function &&
is_unrooted_ty(&self.symbols, cx, sig.output().skip_binder(), false)
{
cx.lint(UNROOTED_MUST_ROOT, "Type must be rooted", |lint| {
lint.set_span(decl.output.span())
})
}
}
let mut visitor = FnDefVisitor {
symbols: &self.symbols,
cx,
in_new_function,
};
visit::walk_expr(&mut visitor, &body.value);
}
}
struct FnDefVisitor<'a, 'tcx: 'a> {
symbols: &'a Symbols,
cx: &'a LateContext<'tcx>,
in_new_function: bool,
}
impl<'a, 'tcx> visit::Visitor<'tcx> for FnDefVisitor<'a, 'tcx> {
type Map = rustc_middle::hir::map::Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
let cx = self.cx;
let require_rooted = |cx: &LateContext, in_new_function: bool, subexpr: &hir::Expr| {
let ty = cx.typeck_results().expr_ty(&subexpr);
if is_unrooted_ty(&self.symbols, cx, ty, in_new_function) {
cx.lint(
UNROOTED_MUST_ROOT,
format!("Expression of type {:?} must be rooted", ty),
|lint| lint.set_span(subexpr.span),
)
}
};
match expr.kind {
// Trait casts from #[unrooted_must_root_lint::must_root] types are not allowed
ExprKind::Cast(subexpr, _) => require_rooted(cx, self.in_new_function, &subexpr),
// This catches assignments... the main point of this would be to catch mutable
// references to `JS<T>`.
// FIXME: Enable this? Triggers on certain kinds of uses of DomRefCell.
// hir::ExprAssign(_, ref rhs) => require_rooted(cx, self.in_new_function, &*rhs),
// This catches calls; basically, this enforces the constraint that only constructors
// can call other constructors.
// FIXME: Enable this? Currently triggers with constructs involving DomRefCell, and
// constructs like Vec<JS<T>> and RootedVec<JS<T>>.
// hir::ExprCall(..) if !self.in_new_function => {
// require_rooted(cx, self.in_new_function, expr);
// }
_ => {
// TODO(pcwalton): Check generics with a whitelist of allowed generics.
},
}
visit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
let cx = self.cx;
// We want to detect pattern bindings that move a value onto the stack.
// When "default binding modes" https://github.com/rust-lang/rust/issues/42640
// are implemented, the `Unannotated` case could cause false-positives.
// These should be fixable by adding an explicit `ref`.
match pat.kind {
hir::PatKind::Binding(hir::BindingAnnotation::NONE, ..) |
hir::PatKind::Binding(hir::BindingAnnotation::MUT, ..) => {
let ty = cx.typeck_results().pat_ty(pat);
if is_unrooted_ty(self.symbols, cx, ty, self.in_new_function) {
cx.lint(
UNROOTED_MUST_ROOT,
format!("Expression of type {:?} must be rooted", ty),
|lint| lint.set_span(pat.span),
)
}
},
_ => {},
}
visit::walk_pat(self, pat);
}
fn visit_ty(&mut self, _: &'tcx hir::Ty) {}
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
#[cfg(feature = "unrooted_must_root_lint")]
unrooted_must_root::register(reg);
#[cfg(feature = "trace_in_no_trace_lint")]
trace_in_no_trace::register(reg);
}
/// check if a DefId's path matches the given absolute type path
@ -408,11 +86,12 @@ fn in_derive_expn(span: Span) -> bool {
)
}
#[macro_export]
macro_rules! symbols {
($($s: ident)+) => {
#[derive(Clone)]
#[allow(non_snake_case)]
struct Symbols {
pub(crate) struct Symbols {
$( $s: Symbol, )+
}
@ -426,25 +105,248 @@ macro_rules! symbols {
}
}
symbols! {
unrooted_must_root_lint
allow_unrooted_interior
allow_unrooted_in_rc
must_root
alloc
rc
Rc
cell
accountable_refcell
Ref
RefMut
Iter
IterMut
collections
hash
map
set
Entry
OccupiedEntry
VacantEntry
/*
Stuff copied from clippy:
*/
fn find_primitive_impls<'tcx>(tcx: TyCtxt<'tcx>, name: &str) -> impl Iterator<Item = DefId> + 'tcx {
use rustc_middle::ty::fast_reject::SimplifiedType::*;
let ty = match name {
"bool" => BoolSimplifiedType,
"char" => CharSimplifiedType,
"str" => StrSimplifiedType,
"array" => ArraySimplifiedType,
"slice" => SliceSimplifiedType,
// FIXME: rustdoc documents these two using just `pointer`.
//
// Maybe this is something we should do here too.
"const_ptr" => PtrSimplifiedType(Mutability::Not),
"mut_ptr" => PtrSimplifiedType(Mutability::Mut),
"isize" => IntSimplifiedType(IntTy::Isize),
"i8" => IntSimplifiedType(IntTy::I8),
"i16" => IntSimplifiedType(IntTy::I16),
"i32" => IntSimplifiedType(IntTy::I32),
"i64" => IntSimplifiedType(IntTy::I64),
"i128" => IntSimplifiedType(IntTy::I128),
"usize" => UintSimplifiedType(UintTy::Usize),
"u8" => UintSimplifiedType(UintTy::U8),
"u16" => UintSimplifiedType(UintTy::U16),
"u32" => UintSimplifiedType(UintTy::U32),
"u64" => UintSimplifiedType(UintTy::U64),
"u128" => UintSimplifiedType(UintTy::U128),
"f32" => FloatSimplifiedType(FloatTy::F32),
"f64" => FloatSimplifiedType(FloatTy::F64),
_ => return [].iter().copied(),
};
tcx.incoherent_impls(ty).iter().copied()
}
fn non_local_item_children_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: Symbol) -> Vec<Res> {
match tcx.def_kind(def_id) {
DefKind::Mod | DefKind::Enum | DefKind::Trait => tcx
.module_children(def_id)
.iter()
.filter(|item| item.ident.name == name)
.map(|child| child.res.expect_non_local())
.collect(),
DefKind::Impl { .. } => tcx
.associated_item_def_ids(def_id)
.iter()
.copied()
.filter(|assoc_def_id| tcx.item_name(*assoc_def_id) == name)
.map(|assoc_def_id| Res::Def(tcx.def_kind(assoc_def_id), assoc_def_id))
.collect(),
_ => Vec::new(),
}
}
fn local_item_children_by_name(tcx: TyCtxt<'_>, local_id: LocalDefId, name: Symbol) -> Vec<Res> {
let hir = tcx.hir();
let root_mod;
let item_kind = match hir.find_by_def_id(local_id) {
Some(Node::Crate(r#mod)) => {
root_mod = ItemKind::Mod(r#mod);
&root_mod
},
Some(Node::Item(item)) => &item.kind,
_ => return Vec::new(),
};
let res = |ident: Ident, owner_id: OwnerId| {
if ident.name == name {
let def_id = owner_id.to_def_id();
Some(Res::Def(tcx.def_kind(def_id), def_id))
} else {
None
}
};
match item_kind {
ItemKind::Mod(r#mod) => r#mod
.item_ids
.iter()
.filter_map(|&item_id| res(hir.item(item_id).ident, item_id.owner_id))
.collect(),
ItemKind::Impl(r#impl) => r#impl
.items
.iter()
.filter_map(|&ImplItemRef { ident, id, .. }| res(ident, id.owner_id))
.collect(),
ItemKind::Trait(.., trait_item_refs) => trait_item_refs
.iter()
.filter_map(|&TraitItemRef { ident, id, .. }| res(ident, id.owner_id))
.collect(),
_ => Vec::new(),
}
}
fn item_children_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: Symbol) -> Vec<Res> {
if let Some(local_id) = def_id.as_local() {
local_item_children_by_name(tcx, local_id, name)
} else {
non_local_item_children_by_name(tcx, def_id, name)
}
}
/// Resolves a def path like `std::vec::Vec`.
///
/// Can return multiple resolutions when there are multiple versions of the same crate, e.g.
/// `memchr::memchr` could return the functions from both memchr 1.0 and memchr 2.0.
///
/// Also returns multiple results when there are multiple paths under the same name e.g. `std::vec`
/// would have both a [`DefKind::Mod`] and [`DefKind::Macro`].
///
/// This function is expensive and should be used sparingly.
pub fn def_path_res(cx: &LateContext<'_>, path: &[&str]) -> Vec<Res> {
fn find_crates(tcx: TyCtxt<'_>, name: Symbol) -> impl Iterator<Item = DefId> + '_ {
tcx.crates(())
.iter()
.copied()
.filter(move |&num| tcx.crate_name(num) == name)
.map(CrateNum::as_def_id)
}
let tcx = cx.tcx;
let (base, mut path) = match *path {
[primitive] => {
return vec![PrimTy::from_name(Symbol::intern(primitive)).map_or(Res::Err, Res::PrimTy)];
},
[base, ref path @ ..] => (base, path),
_ => return Vec::new(),
};
let base_sym = Symbol::intern(base);
let local_crate = if tcx.crate_name(LOCAL_CRATE) == base_sym {
Some(LOCAL_CRATE.as_def_id())
} else {
None
};
let starts = find_primitive_impls(tcx, base)
.chain(find_crates(tcx, base_sym))
.chain(local_crate)
.map(|id| Res::Def(tcx.def_kind(id), id));
let mut resolutions: Vec<Res> = starts.collect();
while let [segment, rest @ ..] = path {
path = rest;
let segment = Symbol::intern(segment);
resolutions = resolutions
.into_iter()
.filter_map(|res| res.opt_def_id())
.flat_map(|def_id| {
// When the current def_id is e.g. `struct S`, check the impl items in
// `impl S { ... }`
let inherent_impl_children = tcx
.inherent_impls(def_id)
.iter()
.flat_map(|&impl_def_id| item_children_by_name(tcx, impl_def_id, segment));
let direct_children = item_children_by_name(tcx, def_id, segment);
inherent_impl_children.chain(direct_children)
})
.collect();
}
resolutions
}
/// Resolves a def path like `std::vec::Vec` to its [`DefId`]s, see [`def_path_res`].
pub fn def_path_def_ids(cx: &LateContext<'_>, path: &[&str]) -> impl Iterator<Item = DefId> {
def_path_res(cx, path)
.into_iter()
.filter_map(|res| res.opt_def_id())
}
pub fn get_trait_def_id(cx: &LateContext<'_>, path: &[&str]) -> Option<DefId> {
def_path_res(cx, path)
.into_iter()
.find_map(|res| match res {
Res::Def(DefKind::Trait | DefKind::TraitAlias, trait_id) => Some(trait_id),
_ => None,
})
}
/// Checks whether a type implements a trait.
/// The function returns false in case the type contains an inference variable.
///
/// See:
/// * [`get_trait_def_id`](super::get_trait_def_id) to get a trait [`DefId`].
/// * [Common tools for writing lints] for an example how to use this function and other options.
///
/// [Common tools for writing lints]: https://github.com/rust-lang/rust-clippy/blob/master/book/src/development/common_tools_writing_lints.md#checking-if-a-type-implements-a-specific-trait
pub fn implements_trait<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
trait_id: DefId,
ty_params: &[GenericArg<'tcx>],
) -> bool {
implements_trait_with_env(
cx.tcx,
cx.param_env,
ty,
trait_id,
ty_params.iter().map(|&arg| Some(arg)),
)
}
/// Same as `implements_trait` but allows using a `ParamEnv` different from the lint context.
pub fn implements_trait_with_env<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
ty: ty::Ty<'tcx>,
trait_id: DefId,
ty_params: impl IntoIterator<Item = Option<GenericArg<'tcx>>>,
) -> bool {
let ty = tcx.erase_regions(ty);
if ty.has_escaping_bound_vars() {
return false;
}
let infcx = tcx.infer_ctxt().build();
let orig = TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: DUMMY_SP,
};
// in new nightlies: mk_substs -> mk_substs_from_iter
let ty_params = tcx.mk_substs(
ty_params
.into_iter()
.map(|arg| arg.unwrap_or_else(|| infcx.next_ty_var(orig).into())),
);
infcx
.type_implements_trait(
trait_id,
// for some unknown reason we need to have vec here
// clippy has array
vec![ty.into()].into_iter().chain(ty_params),
param_env,
)
.must_apply_modulo_regions()
}