style: Use ColorMix for interpolated colors in the computed style rather than ComplexColorRatios

This among other things preserves the right color-space when
interpolating currentColor.

Differential Revision: https://phabricator.services.mozilla.com/D147512
This commit is contained in:
Emilio Cobos Álvarez 2023-08-15 01:15:16 +02:00 committed by Martin Robinson
parent 0ac6aaa357
commit b6e8088e8e
10 changed files with 460 additions and 537 deletions

View file

@ -418,7 +418,7 @@ fn tweak_when_ignoring_colors(
fn alpha_channel(color: &Color, context: &computed::Context) -> u8 {
// We assume here currentColor is opaque.
let color = color.to_computed_value(context).to_rgba(RGBA::new(0, 0, 0, 255));
let color = color.to_computed_value(context).into_rgba(RGBA::new(0, 0, 0, 255));
color.alpha
}

View file

@ -20,7 +20,7 @@ ${helpers.single_keyword(
${helpers.predefined_type(
"stop-color",
"Color",
"RGBA::new(0, 0, 0, 255).into()",
"computed::Color::black()",
engines="gecko",
animation_value_type="AnimatedRGBA",
spec="https://www.w3.org/TR/SVGTiny12/painting.html#StopColorProperty",
@ -40,7 +40,7 @@ ${helpers.predefined_type(
${helpers.predefined_type(
"flood-color",
"Color",
"RGBA::new(0, 0, 0, 255).into()",
"computed::Color::black()",
engines="gecko",
animation_value_type="AnimatedColor",
spec="https://www.w3.org/TR/SVG/filters.html#FloodColorProperty",
@ -58,7 +58,7 @@ ${helpers.predefined_type(
${helpers.predefined_type(
"lighting-color",
"Color",
"RGBA::new(255, 255, 255, 255).into()",
"computed::Color::white()",
engines="gecko",
animation_value_type="AnimatedColor",
spec="https://www.w3.org/TR/SVG/filters.html#LightingColorProperty",

View file

@ -3219,7 +3219,7 @@ impl ComputedValues {
/// style.resolve_color(style.get_border().clone_border_top_color());
#[inline]
pub fn resolve_color(&self, color: computed::Color) -> RGBA {
color.to_rgba(self.get_inherited_text().clone_color())
color.into_rgba(self.get_inherited_text().clone_color())
}
/// Returns which longhand properties have different values in the two

View file

@ -5,9 +5,11 @@
//! Animated types for CSS colors.
use crate::values::animated::{Animate, Procedure, ToAnimatedZero};
use crate::values::computed::Percentage;
use crate::values::distance::{ComputeSquaredDistance, SquaredDistance};
use crate::values::generics::color::{Color as GenericColor, ComplexColorRatios};
use crate::values::specified::color::{ColorInterpolationMethod, ColorSpace, HueInterpolationMethod};
use crate::values::generics::color::{
GenericColor, GenericColorMix, ColorInterpolationMethod, ColorSpace, HueInterpolationMethod,
};
use euclid::default::{Transform3D, Vector3D};
use std::f32::consts::PI;
@ -15,7 +17,7 @@ use std::f32::consts::PI;
///
/// Unlike in computed values, each component value may exceed the
/// range `[0.0, 1.0]`.
#[derive(Clone, Copy, Debug, MallocSizeOf, PartialEq, ToAnimatedZero)]
#[derive(Clone, Copy, Debug, MallocSizeOf, PartialEq, ToAnimatedZero, ToAnimatedValue)]
#[repr(C)]
pub struct RGBA {
/// The red component.
@ -48,44 +50,20 @@ impl RGBA {
alpha,
}
}
/// Returns whether or not the colour is in gamut for sRGB.
pub fn in_gamut(&self) -> bool {
0. <= self.red &&
self.red <= 1. &&
0. <= self.green &&
self.green <= 1. &&
0. <= self.blue &&
self.blue <= 1.
}
/// Returns the colour with coordinates clamped to the sRGB range.
pub fn clamp(&self) -> Self {
Self {
red: self.red.max(0.).min(1.),
green: self.green.max(0.).min(1.),
blue: self.blue.max(0.).min(1.),
alpha: self.alpha,
}
}
}
impl Animate for RGBA {
#[inline]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
let mut alpha = self.alpha.animate(&other.alpha, procedure)?;
if alpha <= 0. {
// Ideally we should return color value that only alpha component is
// 0, but this is what current gecko does.
return Ok(RGBA::transparent());
}
alpha = alpha.min(1.);
let red = (self.red * self.alpha).animate(&(other.red * other.alpha), procedure)?;
let green = (self.green * self.alpha).animate(&(other.green * other.alpha), procedure)?;
let blue = (self.blue * self.alpha).animate(&(other.blue * other.alpha), procedure)?;
let inv = 1. / alpha;
Ok(RGBA::new(red * inv, green * inv, blue * inv, alpha))
let (left_weight, right_weight) = procedure.weights();
Ok(Color::mix(
&ColorInterpolationMethod::srgb(),
self,
left_weight as f32,
other,
right_weight as f32,
/* normalize_weights = */ false,
))
}
}
@ -113,41 +91,38 @@ impl ComputeSquaredDistance for RGBA {
}
/// An animated value for `<color>`.
pub type Color = GenericColor<RGBA>;
pub type Color = GenericColor<RGBA, Percentage>;
/// An animated value for `<color-mix>`.
pub type ColorMix = GenericColorMix<Color, Percentage>;
impl Color {
fn effective_intermediate_rgba(&self) -> RGBA {
if self.ratios.bg == 0. {
return RGBA::transparent();
}
if self.ratios.bg == 1. {
return self.color;
}
RGBA {
alpha: self.color.alpha * self.ratios.bg,
..self.color
}
fn to_rgba(&self, current_color: RGBA) -> RGBA {
let mut clone = self.clone();
clone.simplify(Some(&current_color));
*clone.as_numeric().unwrap()
}
/// Mix two colors into one.
pub fn mix(
interpolation: &ColorInterpolationMethod,
left_color: &Color,
left_color: &RGBA,
mut left_weight: f32,
right_color: &Color,
right_color: &RGBA,
mut right_weight: f32,
) -> Self {
normalize_weights: bool,
) -> RGBA {
// https://drafts.csswg.org/css-color-5/#color-mix-percent-norm
let sum = left_weight + right_weight;
let mut alpha_multiplier = 1.0;
if sum != 1.0 {
let scale = 1.0 / sum;
left_weight *= scale;
right_weight *= scale;
if sum < 1.0 {
alpha_multiplier = sum;
if normalize_weights {
let sum = left_weight + right_weight;
if sum != 1.0 {
let scale = 1.0 / sum;
left_weight *= scale;
right_weight *= scale;
if sum < 1.0 {
alpha_multiplier = sum;
}
}
}
@ -161,202 +136,77 @@ impl Color {
ColorSpace::Hsl => Self::mix_in::<HSLA>,
ColorSpace::Lch => Self::mix_in::<LCHA>,
};
mix_function(left_color, left_weight, right_color, right_weight, interpolation.hue, alpha_multiplier)
mix_function(
left_color,
left_weight,
right_color,
right_weight,
interpolation.hue,
alpha_multiplier,
)
}
fn mix_in<S>(
left_color: &Color,
left_color: &RGBA,
left_weight: f32,
right_color: &Color,
right_color: &RGBA,
right_weight: f32,
hue_interpolation: HueInterpolationMethod,
alpha_multiplier: f32,
) -> Self
) -> RGBA
where
S: ModelledColor,
{
let left_bg = S::from(left_color.scaled_rgba());
let right_bg = S::from(right_color.scaled_rgba());
let color = S::lerp(&left_bg, left_weight, &right_bg, right_weight, hue_interpolation);
let rgba: RGBA = color.into();
let mut rgba = if !rgba.in_gamut() {
// TODO: Better gamut mapping.
rgba.clamp()
} else {
rgba
};
let left = S::from(*left_color);
let right = S::from(*right_color);
let color = S::lerp(
&left,
left_weight,
&right,
right_weight,
hue_interpolation,
);
let mut rgba = RGBA::from(color.into());
if alpha_multiplier != 1.0 {
rgba.alpha *= alpha_multiplier;
}
let fg = left_color.ratios.fg * left_weight + right_color.ratios.fg * right_weight;
Self::new(rgba, ComplexColorRatios { bg: 1., fg })
}
fn scaled_rgba(&self) -> RGBA {
if self.ratios.bg == 0. {
return RGBA::transparent();
}
if self.ratios.bg == 1. {
return self.color;
}
RGBA {
red: self.color.red * self.ratios.bg,
green: self.color.green * self.ratios.bg,
blue: self.color.blue * self.ratios.bg,
alpha: self.color.alpha * self.ratios.bg,
}
rgba
}
}
impl Animate for Color {
#[inline]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
let self_numeric = self.is_numeric();
let other_numeric = other.is_numeric();
if self_numeric && other_numeric {
return Ok(Self::rgba(self.color.animate(&other.color, procedure)?));
}
let self_currentcolor = self.is_currentcolor();
let other_currentcolor = other.is_currentcolor();
if self_currentcolor && other_currentcolor {
let (self_weight, other_weight) = procedure.weights();
return Ok(Self::new(
RGBA::transparent(),
ComplexColorRatios {
bg: 0.,
fg: (self_weight + other_weight) as f32,
},
));
}
// FIXME(emilio): Without these special cases tests fail, looks fairly
// sketchy!
if (self_currentcolor && other_numeric) || (self_numeric && other_currentcolor) {
let (self_weight, other_weight) = procedure.weights();
return Ok(if self_numeric {
Self::new(
self.color,
ComplexColorRatios {
bg: self_weight as f32,
fg: other_weight as f32,
},
)
} else {
Self::new(
other.color,
ComplexColorRatios {
bg: other_weight as f32,
fg: self_weight as f32,
},
)
});
}
// Compute the "scaled" contribution for `color`.
// Each `Color`, represents a complex combination of foreground color and
// background color where fg and bg represent the overall
// contributions. ie:
//
// color = { bg * mColor, fg * foreground }
// = { bg_color , fg_color }
// = bg_color + fg_color
//
// where `foreground` is `currentcolor`, and `bg_color`,
// `fg_color` are the scaled background and foreground
// contributions.
//
// Each operation, lerp, addition, or accumulate, can be
// represented as a scaled-addition each complex color. ie:
//
// p * col1 + q * col2
//
// where p = (1 - a), q = a for lerp(a), p = 1, q = 1 for
// addition, etc.
//
// Therefore:
//
// col1 op col2
// = p * col1 + q * col2
// = p * { bg_color1, fg_color1 } + q * { bg_color2, fg_color2 }
// = p * (bg_color1 + fg_color1) + q * (bg_color2 + fg_color2)
// = p * bg_color1 + p * fg_color1 + q * bg_color2 + p * fg_color2
// = (p * bg_color1 + q * bg_color2) + (p * fg_color1 + q * fg_color2)
// = (bg_color1 op bg_color2) + (fg_color1 op fg_color2)
//
// fg_color1 op fg_color2 is equivalent to (fg1 op fg2) * foreground,
// so the final color is:
//
// = { bg_color, fg_color }
// = { 1 * (bg_color1 op bg_color2), (fg1 op fg2) * foreground }
//
// To perform the operation on two complex colors, we need to
// generate the scaled contributions of each background color
// component.
let bg_color1 = self.scaled_rgba();
let bg_color2 = other.scaled_rgba();
// Perform bg_color1 op bg_color2
let bg_color = bg_color1.animate(&bg_color2, procedure)?;
// Calculate the final foreground color ratios; perform
// animation on effective fg ratios.
let fg = self.ratios.fg.animate(&other.ratios.fg, procedure)?;
Ok(Self::new(bg_color, ComplexColorRatios { bg: 1., fg }))
let (left_weight, right_weight) = procedure.weights();
let mut color = Color::ColorMix(Box::new(ColorMix {
interpolation: ColorInterpolationMethod::srgb(),
left: self.clone(),
left_percentage: Percentage(left_weight as f32),
right: other.clone(),
right_percentage: Percentage(right_weight as f32),
// See https://github.com/w3c/csswg-drafts/issues/7324
normalize_weights: false,
}));
color.simplify(None);
Ok(color)
}
}
impl ComputeSquaredDistance for Color {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
// All comments from the Animate impl also apply here.
let self_numeric = self.is_numeric();
let other_numeric = other.is_numeric();
if self_numeric && other_numeric {
return self.color.compute_squared_distance(&other.color);
}
let self_currentcolor = self.is_currentcolor();
let other_currentcolor = other.is_currentcolor();
if self_currentcolor && other_currentcolor {
return Ok(SquaredDistance::from_sqrt(0.));
}
if (self_currentcolor && other_numeric) || (self_numeric && other_currentcolor) {
let color = if self_numeric {
&self.color
} else {
&other.color
};
// `computed_squared_distance` is symmetric.
return Ok(color.compute_squared_distance(&RGBA::transparent())? +
SquaredDistance::from_sqrt(1.));
}
let self_color = self.effective_intermediate_rgba();
let other_color = other.effective_intermediate_rgba();
let self_ratios = self.ratios;
let other_ratios = other.ratios;
Ok(self_color.compute_squared_distance(&other_color)? +
self_ratios.bg.compute_squared_distance(&other_ratios.bg)? +
self_ratios.fg.compute_squared_distance(&other_ratios.fg)?)
let current_color = RGBA::transparent();
self.to_rgba(current_color)
.compute_squared_distance(&other.to_rgba(current_color))
}
}
impl ToAnimatedZero for Color {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(RGBA::transparent().into())
Ok(Color::rgba(RGBA::transparent()))
}
}
@ -488,9 +338,23 @@ fn interpolate_premultiplied(
for i in 0..3 {
let is_hue = hue_index == Some(i);
result[i] = if is_hue {
interpolate_hue(left[i], left_weight, right[i], right_weight, hue_interpolation)
interpolate_hue(
left[i],
left_weight,
right[i],
right_weight,
hue_interpolation,
)
} else {
interpolate_premultiplied_component(left[i], left_weight, left_alpha, right[i], right_weight, right_alpha, inverse_of_result_alpha)
interpolate_premultiplied_component(
left[i],
left_weight,
left_alpha,
right[i],
right_weight,
right_alpha,
inverse_of_result_alpha,
)
};
}
result[3] = result_alpha;
@ -524,7 +388,7 @@ macro_rules! impl_lerp {
}
}
}
}
};
}
impl_lerp!(RGBA, None);
@ -614,7 +478,12 @@ impl_lerp!(HSLA, Some(0));
//
// We also return min/max for the hwb conversion.
fn rgb_to_hsl(rgba: RGBA) -> (HSLA, f32, f32) {
let RGBA { red, green, blue, alpha } = rgba;
let RGBA {
red,
green,
blue,
alpha,
} = rgba;
let max = red.max(green).max(blue);
let min = red.min(green).min(blue);
let mut hue = std::f32::NAN;
@ -640,7 +509,16 @@ fn rgb_to_hsl(rgba: RGBA) -> (HSLA, f32, f32) {
hue *= 60.;
}
(HSLA { hue, sat, light, alpha }, min, max)
(
HSLA {
hue,
sat,
light,
alpha,
},
min,
max,
)
}
impl From<RGBA> for HSLA {
@ -750,7 +628,7 @@ impl From<XYZD50A> for XYZD65A {
0.0632593086610217, 0.021041398966943008, 1.3303659366080753, 0.,
0., 0., 0., 1.,
);
let d65 = BRADFORD_INVERSE.transform_vector3d(Vector3D::new(d50.x, d50.y, d50.z));
let d65 = BRADFORD_INVERSE.transform_vector3d(Vector3D::new(d50.x, d50.y, d50.z));
Self {
x: d65.x,
y: d65.y,

View file

@ -7,6 +7,7 @@
use crate::values::animated::color::RGBA as AnimatedRGBA;
use crate::values::animated::ToAnimatedValue;
use crate::values::generics::color::{GenericCaretColor, GenericColor, GenericColorOrAuto};
use crate::values::computed::percentage::Percentage;
use cssparser::{Color as CSSParserColor, RGBA};
use std::fmt;
use style_traits::{CssWriter, ToCss};
@ -20,7 +21,20 @@ pub type ColorPropertyValue = RGBA;
pub type MozFontSmoothingBackgroundColor = RGBA;
/// A computed value for `<color>`.
pub type Color = GenericColor<RGBA>;
pub type Color = GenericColor<RGBA, Percentage>;
impl ToCss for Color {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write,
{
match *self {
Self::Numeric(ref c) => c.to_css(dest),
Self::CurrentColor => CSSParserColor::CurrentColor.to_css(dest),
Self::ColorMix(ref m) => m.to_css(dest),
}
}
}
impl Color {
/// Returns a complex color value representing transparent.
@ -28,67 +42,21 @@ impl Color {
Color::rgba(RGBA::transparent())
}
/// Combine this complex color with the given foreground color into
/// a numeric RGBA color. It currently uses linear blending.
pub fn to_rgba(&self, fg_color: RGBA) -> RGBA {
// Common cases that the complex color is either pure numeric color or
// pure currentcolor.
if self.is_numeric() {
return self.color;
}
if self.is_currentcolor() {
return fg_color;
}
let ratios = &self.ratios;
let color = &self.color;
// For the more complicated case that the alpha value differs,
// we use the following formula to compute the components:
// alpha = self_alpha * bg_ratio + fg_alpha * fg_ratio
// color = (self_color * self_alpha * bg_ratio +
// fg_color * fg_alpha * fg_ratio) / alpha
let p1 = ratios.bg;
let a1 = color.alpha_f32();
let r1 = a1 * color.red_f32();
let g1 = a1 * color.green_f32();
let b1 = a1 * color.blue_f32();
let p2 = ratios.fg;
let a2 = fg_color.alpha_f32();
let r2 = a2 * fg_color.red_f32();
let g2 = a2 * fg_color.green_f32();
let b2 = a2 * fg_color.blue_f32();
let a = p1 * a1 + p2 * a2;
if a <= 0. {
return RGBA::transparent();
}
let a = a.min(1.);
let inv = 1. / a;
let r = (p1 * r1 + p2 * r2) * inv;
let g = (p1 * g1 + p2 * g2) * inv;
let b = (p1 * b1 + p2 * b2) * inv;
RGBA::from_floats(r, g, b, a)
/// Returns opaque black.
pub fn black() -> Color {
Color::rgba(RGBA::new(0, 0, 0, 255))
}
}
impl ToCss for Color {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write,
{
if self.is_currentcolor() {
return CSSParserColor::CurrentColor.to_css(dest);
}
if self.is_numeric() {
return self.color.to_css(dest);
}
Ok(())
/// Returns opaque white.
pub fn white() -> Color {
Color::rgba(RGBA::new(255, 255, 255, 255))
}
/// Combine this complex color with the given foreground color into
/// a numeric RGBA color.
pub fn into_rgba(mut self, current_color: RGBA) -> RGBA {
self.simplify(Some(&current_color));
*self.as_numeric().unwrap()
}
}

View file

@ -6,6 +6,7 @@
use crate::values::animated::ToAnimatedValue;
use crate::values::generics::NonNegative;
use crate::values::specified::percentage::ToPercentage;
use crate::values::{serialize_percentage, CSSFloat};
use crate::Zero;
use std::fmt;
@ -64,6 +65,12 @@ impl Zero for Percentage {
}
}
impl ToPercentage for Percentage {
fn to_percentage(&self) -> CSSFloat {
self.0
}
}
impl std::ops::AddAssign for Percentage {
fn add_assign(&mut self, other: Self) {
self.0 += other.0

View file

@ -8,7 +8,6 @@ use crate::values::computed::color::Color;
use crate::values::computed::url::ComputedUrl;
use crate::values::computed::{LengthPercentage, NonNegativeLengthPercentage, Opacity};
use crate::values::generics::svg as generic;
use crate::values::RGBA;
use crate::Zero;
pub use crate::values::specified::{DProperty, MozContextProperties, SVGPaintOrder};
@ -22,9 +21,8 @@ pub type SVGPaintKind = generic::GenericSVGPaintKind<Color, ComputedUrl>;
impl SVGPaint {
/// Opaque black color
pub fn black() -> Self {
let rgba = RGBA::from_floats(0., 0., 0., 1.).into();
SVGPaint {
kind: generic::SVGPaintKind::Color(rgba),
kind: generic::SVGPaintKind::Color(Color::black()),
fallback: generic::SVGPaintFallback::Unset,
}
}

View file

@ -4,81 +4,268 @@
//! Generic types for color properties.
/// Ratios representing the contribution of color and currentcolor to
/// the final color value.
///
/// NOTE(emilio): For animated colors, the sum of these two might be more than
/// one (because the background color would've been scaled down already). So
/// beware that it is not generally safe to assume that if bg is 1 then fg is 0,
/// for example.
#[derive(Clone, Copy, Debug, MallocSizeOf, PartialEq, ToAnimatedValue, ToShmem)]
#[repr(C)]
pub struct ComplexColorRatios {
/// Numeric color contribution.
pub bg: f32,
/// currentcolor contribution.
pub fg: f32,
}
impl ComplexColorRatios {
/// Ratios representing a `Numeric` color.
pub const NUMERIC: ComplexColorRatios = ComplexColorRatios { bg: 1., fg: 0. };
/// Ratios representing the `CurrentColor` color.
pub const CURRENT_COLOR: ComplexColorRatios = ComplexColorRatios { bg: 0., fg: 1. };
}
use std::fmt::{self, Write};
use style_traits::{CssWriter, ParseError, ToCss};
use crate::values::{Parse, ParserContext, Parser};
use crate::values::specified::percentage::ToPercentage;
use crate::values::animated::ToAnimatedValue;
use crate::values::animated::color::RGBA as AnimatedRGBA;
/// This struct represents a combined color from a numeric color and
/// the current foreground color (currentcolor keyword).
#[derive(Clone, Copy, Debug, MallocSizeOf, PartialEq, ToAnimatedValue, ToShmem)]
#[derive(Clone, Debug, MallocSizeOf, PartialEq, ToAnimatedValue, ToShmem)]
#[repr(C)]
pub struct GenericColor<RGBA> {
pub enum GenericColor<RGBA, Percentage> {
/// The actual numeric color.
pub color: RGBA,
/// The ratios of mixing between numeric and currentcolor.
/// The formula is: `color * ratios.bg + currentcolor * ratios.fg`.
pub ratios: ComplexColorRatios,
Numeric(RGBA),
/// The `CurrentColor` keyword.
CurrentColor,
/// The color-mix() function.
ColorMix(Box<GenericColorMix<Self, Percentage>>),
}
/// A color space as defined in [1].
///
/// [1]: https://drafts.csswg.org/css-color-4/#typedef-color-space
#[derive(Clone, Copy, Debug, Eq, MallocSizeOf, Parse, PartialEq, ToAnimatedValue, ToComputedValue, ToCss, ToResolvedValue, ToShmem)]
#[repr(u8)]
pub enum ColorSpace {
/// The sRGB color space.
Srgb,
/// The linear-sRGB color space.
LinearSrgb,
/// The CIEXYZ color space.
#[parse(aliases = "xyz-d65")]
Xyz,
/// https://drafts.csswg.org/css-color-4/#valdef-color-xyz
XyzD50,
/// The CIELAB color space.
Lab,
/// https://drafts.csswg.org/css-color-4/#valdef-hsl-hsl
Hsl,
/// https://drafts.csswg.org/css-color-4/#valdef-hwb-hwb
Hwb,
/// The CIELAB color space, expressed in cylindrical coordinates.
Lch,
// TODO: Oklab, Lch
}
impl ColorSpace {
/// Returns whether this is a `<polar-color-space>`.
pub fn is_polar(self) -> bool {
match self {
Self::Srgb | Self::LinearSrgb | Self::Xyz | Self::XyzD50 | Self::Lab => false,
Self::Hsl | Self::Hwb | Self::Lch => true,
}
}
}
/// A hue-interpolation-method as defined in [1].
///
/// [1]: https://drafts.csswg.org/css-color-4/#typedef-hue-interpolation-method
#[derive(Clone, Copy, Debug, Eq, MallocSizeOf, Parse, PartialEq, ToAnimatedValue, ToComputedValue, ToCss, ToResolvedValue, ToShmem)]
#[repr(u8)]
pub enum HueInterpolationMethod {
/// https://drafts.csswg.org/css-color-4/#shorter
Shorter,
/// https://drafts.csswg.org/css-color-4/#longer
Longer,
/// https://drafts.csswg.org/css-color-4/#increasing
Increasing,
/// https://drafts.csswg.org/css-color-4/#decreasing
Decreasing,
/// https://drafts.csswg.org/css-color-4/#specified
Specified,
}
/// https://drafts.csswg.org/css-color-4/#color-interpolation-method
#[derive(Clone, Copy, Debug, Eq, MallocSizeOf, PartialEq, ToShmem, ToAnimatedValue, ToComputedValue, ToResolvedValue)]
#[repr(C)]
pub struct ColorInterpolationMethod {
/// The color-space the interpolation should be done in.
pub space: ColorSpace,
/// The hue interpolation method.
pub hue: HueInterpolationMethod,
}
impl ColorInterpolationMethod {
/// Returns the srgb interpolation method.
pub fn srgb() -> Self {
Self {
space: ColorSpace::Srgb,
hue: HueInterpolationMethod::Shorter,
}
}
}
impl Parse for ColorInterpolationMethod {
fn parse<'i, 't>(
_: &ParserContext,
input: &mut Parser<'i, 't>,
) -> Result<Self, ParseError<'i>> {
input.expect_ident_matching("in")?;
let space = ColorSpace::parse(input)?;
// https://drafts.csswg.org/css-color-4/#hue-interpolation
// Unless otherwise specified, if no specific hue interpolation
// algorithm is selected by the host syntax, the default is shorter.
let hue = if space.is_polar() {
input.try_parse(|input| -> Result<_, ParseError<'i>> {
let hue = HueInterpolationMethod::parse(input)?;
input.expect_ident_matching("hue")?;
Ok(hue)
}).unwrap_or(HueInterpolationMethod::Shorter)
} else {
HueInterpolationMethod::Shorter
};
Ok(Self { space, hue })
}
}
impl ToCss for ColorInterpolationMethod {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
dest.write_str("in ")?;
self.space.to_css(dest)?;
if self.hue != HueInterpolationMethod::Shorter {
dest.write_char(' ')?;
self.hue.to_css(dest)?;
dest.write_str(" hue")?;
}
Ok(())
}
}
/// A restricted version of the css `color-mix()` function, which only supports
/// percentages.
///
/// https://drafts.csswg.org/css-color-5/#color-mix
#[derive(Clone, Debug, MallocSizeOf, PartialEq, ToAnimatedValue, ToComputedValue, ToResolvedValue, ToShmem)]
#[allow(missing_docs)]
#[repr(C)]
pub struct GenericColorMix<Color, Percentage> {
pub interpolation: ColorInterpolationMethod,
pub left: Color,
pub left_percentage: Percentage,
pub right: Color,
pub right_percentage: Percentage,
pub normalize_weights: bool,
}
pub use self::GenericColorMix as ColorMix;
impl<Color: ToCss, Percentage: ToCss + ToPercentage> ToCss for ColorMix<Color, Percentage> {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
fn can_omit<Percentage: ToPercentage>(percent: &Percentage, other: &Percentage, is_left: bool) -> bool {
if percent.is_calc() {
return false;
}
if percent.to_percentage() == 0.5 {
return other.to_percentage() == 0.5;
}
if is_left {
return false;
}
(1.0 - percent.to_percentage() - other.to_percentage()).abs() <= f32::EPSILON
}
dest.write_str("color-mix(")?;
self.interpolation.to_css(dest)?;
dest.write_str(", ")?;
self.left.to_css(dest)?;
if !can_omit(&self.left_percentage, &self.right_percentage, true) {
dest.write_str(" ")?;
self.left_percentage.to_css(dest)?;
}
dest.write_str(", ")?;
self.right.to_css(dest)?;
if !can_omit(&self.right_percentage, &self.left_percentage, false) {
dest.write_str(" ")?;
self.right_percentage.to_css(dest)?;
}
dest.write_str(")")
}
}
impl<RGBA, Percentage> ColorMix<GenericColor<RGBA, Percentage>, Percentage> {
fn to_rgba(&self) -> Option<RGBA>
where
RGBA: Clone + ToAnimatedValue<AnimatedValue = AnimatedRGBA>,
Percentage: ToPercentage,
{
use crate::values::animated::color::Color as AnimatedColor;
let left = self.left.as_numeric()?.clone().to_animated_value();
let right = self.right.as_numeric()?.clone().to_animated_value();
Some(ToAnimatedValue::from_animated_value(AnimatedColor::mix(
&self.interpolation,
&left,
self.left_percentage.to_percentage(),
&right,
self.right_percentage.to_percentage(),
self.normalize_weights,
)))
}
}
pub use self::GenericColor as Color;
impl Color<cssparser::RGBA> {
/// Returns a color value representing currentcolor.
pub fn currentcolor() -> Self {
Color {
color: cssparser::RGBA::transparent(),
ratios: ComplexColorRatios::CURRENT_COLOR,
impl<RGBA, Percentage> Color<RGBA, Percentage> {
/// Returns the numeric rgba value if this color is numeric, or None
/// otherwise.
pub fn as_numeric(&self) -> Option<&RGBA> {
match *self {
Self::Numeric(ref rgba) => Some(rgba),
_ => None,
}
}
}
impl<RGBA> Color<RGBA> {
/// Create a color based upon the specified ratios.
pub fn new(color: RGBA, ratios: ComplexColorRatios) -> Self {
Self { color, ratios }
/// Simplifies the color-mix()es to the extent possible given a current
/// color (or not).
pub fn simplify(&mut self, current_color: Option<&RGBA>)
where
RGBA: Clone + ToAnimatedValue<AnimatedValue = AnimatedRGBA>,
Percentage: ToPercentage,
{
match *self {
Self::Numeric(..) => {},
Self::CurrentColor => {
if let Some(c) = current_color {
*self = Self::Numeric(c.clone());
}
},
Self::ColorMix(ref mut mix) => {
mix.left.simplify(current_color);
mix.right.simplify(current_color);
if let Some(mix) = mix.to_rgba() {
*self = Self::Numeric(mix);
}
},
}
}
/// Returns a color value representing currentcolor.
pub fn currentcolor() -> Self {
Self::CurrentColor
}
/// Returns a numeric color representing the given RGBA value.
pub fn rgba(color: RGBA) -> Self {
Self {
color,
ratios: ComplexColorRatios::NUMERIC,
}
}
/// Whether it is a numeric color (no currentcolor component).
pub fn is_numeric(&self) -> bool {
self.ratios == ComplexColorRatios::NUMERIC
Self::Numeric(color)
}
/// Whether it is a currentcolor value (no numeric color component).
pub fn is_currentcolor(&self) -> bool {
self.ratios == ComplexColorRatios::CURRENT_COLOR
matches!(*self, Self::CurrentColor)
}
}
impl<RGBA> From<RGBA> for Color<RGBA> {
fn from(color: RGBA) -> Self {
Self::rgba(color)
/// Whether it is a numeric color (no currentcolor component).
pub fn is_numeric(&self) -> bool {
matches!(*self, Self::Numeric(..))
}
}

View file

@ -7,7 +7,7 @@
use super::AllowQuirks;
use crate::parser::{Parse, ParserContext};
use crate::values::computed::{Color as ComputedColor, Context, ToComputedValue};
use crate::values::generics::color::{GenericCaretColor, GenericColorOrAuto};
use crate::values::generics::color::{ColorInterpolationMethod, GenericColorMix, GenericCaretColor, GenericColorOrAuto};
use crate::values::specified::calc::CalcNode;
use crate::values::specified::Percentage;
use crate::values::CustomIdent;
@ -19,119 +19,8 @@ use std::io::Write as IoWrite;
use style_traits::{CssType, CssWriter, KeywordsCollectFn, ParseError, StyleParseErrorKind};
use style_traits::{SpecifiedValueInfo, ToCss, ValueParseErrorKind};
/// A color space as defined in [1].
///
/// [1]: https://drafts.csswg.org/css-color-4/#typedef-color-space
#[derive(Clone, Copy, Debug, Eq, MallocSizeOf, Parse, PartialEq, ToCss, ToShmem)]
pub enum ColorSpace {
/// The sRGB color space.
Srgb,
/// The linear-sRGB color space.
LinearSrgb,
/// The CIEXYZ color space.
#[parse(aliases = "xyz-d65")]
Xyz,
/// https://drafts.csswg.org/css-color-4/#valdef-color-xyz
XyzD50,
/// The CIELAB color space.
Lab,
/// https://drafts.csswg.org/css-color-4/#valdef-hsl-hsl
Hsl,
/// https://drafts.csswg.org/css-color-4/#valdef-hwb-hwb
Hwb,
/// The CIELAB color space, expressed in cylindrical coordinates.
Lch,
// TODO: Oklab, Lch
}
impl ColorSpace {
/// Returns whether this is a `<polar-color-space>`.
pub fn is_polar(self) -> bool {
match self {
Self::Srgb | Self::LinearSrgb | Self::Xyz | Self::XyzD50 | Self::Lab => false,
Self::Hsl | Self::Hwb | Self::Lch => true,
}
}
}
/// A hue-interpolation-method as defined in [1].
///
/// [1]: https://drafts.csswg.org/css-color-4/#typedef-hue-interpolation-method
#[derive(Clone, Copy, Debug, Eq, MallocSizeOf, Parse, PartialEq, ToCss, ToShmem)]
pub enum HueInterpolationMethod {
/// https://drafts.csswg.org/css-color-4/#shorter
Shorter,
/// https://drafts.csswg.org/css-color-4/#longer
Longer,
/// https://drafts.csswg.org/css-color-4/#increasing
Increasing,
/// https://drafts.csswg.org/css-color-4/#decreasing
Decreasing,
/// https://drafts.csswg.org/css-color-4/#specified
Specified,
}
/// https://drafts.csswg.org/css-color-4/#color-interpolation-method
#[derive(Clone, Copy, Debug, Eq, MallocSizeOf, PartialEq, ToShmem)]
pub struct ColorInterpolationMethod {
/// The color-space the interpolation should be done in.
pub space: ColorSpace,
/// The hue interpolation method.
pub hue: HueInterpolationMethod,
}
impl Parse for ColorInterpolationMethod {
fn parse<'i, 't>(
_: &ParserContext,
input: &mut Parser<'i, 't>,
) -> Result<Self, ParseError<'i>> {
input.expect_ident_matching("in")?;
let space = ColorSpace::parse(input)?;
// https://drafts.csswg.org/css-color-4/#hue-interpolation
// Unless otherwise specified, if no specific hue interpolation
// algorithm is selected by the host syntax, the default is shorter.
let hue = if space.is_polar() {
input.try_parse(|input| -> Result<_, ParseError<'i>> {
let hue = HueInterpolationMethod::parse(input)?;
input.expect_ident_matching("hue")?;
Ok(hue)
}).unwrap_or(HueInterpolationMethod::Shorter)
} else {
HueInterpolationMethod::Shorter
};
Ok(Self { space, hue })
}
}
impl ToCss for ColorInterpolationMethod {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
dest.write_str("in ")?;
self.space.to_css(dest)?;
if self.hue != HueInterpolationMethod::Shorter {
dest.write_char(' ')?;
self.hue.to_css(dest)?;
dest.write_str(" hue")?;
}
Ok(())
}
}
/// A restricted version of the css `color-mix()` function, which only supports
/// percentages.
///
/// https://drafts.csswg.org/css-color-5/#color-mix
#[derive(Clone, Debug, MallocSizeOf, PartialEq, ToShmem)]
#[allow(missing_docs)]
pub struct ColorMix {
pub interpolation: ColorInterpolationMethod,
pub left: Color,
pub left_percentage: Percentage,
pub right: Color,
pub right_percentage: Percentage,
}
/// A specified color-mix().
pub type ColorMix = GenericColorMix<Color, Percentage>;
#[inline]
fn allow_color_mix() -> bool {
@ -160,7 +49,9 @@ impl Parse for ColorMix {
input.expect_comma()?;
let try_parse_percentage = |input: &mut Parser| -> Option<Percentage> {
input.try_parse(|input| Percentage::parse_zero_to_a_hundred(context, input)).ok()
input
.try_parse(|input| Percentage::parse_zero_to_a_hundred(context, input))
.ok()
};
let mut left_percentage = try_parse_percentage(input);
@ -180,9 +71,8 @@ impl Parse for ColorMix {
right_percentage = try_parse_percentage(input);
}
let right_percentage = right_percentage.unwrap_or_else(|| {
Percentage::new(1.0 - left_percentage.map_or(0.5, |p| p.get()))
});
let right_percentage = right_percentage
.unwrap_or_else(|| Percentage::new(1.0 - left_percentage.map_or(0.5, |p| p.get())));
let left_percentage =
left_percentage.unwrap_or_else(|| Percentage::new(1.0 - right_percentage.get()));
@ -198,47 +88,12 @@ impl Parse for ColorMix {
left_percentage,
right,
right_percentage,
normalize_weights: true,
})
})
}
}
impl ToCss for ColorMix {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
fn can_omit(percent: &Percentage, other: &Percentage, is_left: bool) -> bool {
if percent.is_calc() {
return false;
}
if percent.get() == 0.5 {
return other.get() == 0.5;
}
if is_left {
return false;
}
(1.0 - percent.get() - other.get()).abs() <= f32::EPSILON
}
dest.write_str("color-mix(")?;
self.interpolation.to_css(dest)?;
dest.write_str(", ")?;
self.left.to_css(dest)?;
if !can_omit(&self.left_percentage, &self.right_percentage, true) {
dest.write_str(" ")?;
self.left_percentage.to_css(dest)?;
}
dest.write_str(", ")?;
self.right.to_css(dest)?;
if !can_omit(&self.right_percentage, &self.left_percentage, false) {
dest.write_str(" ")?;
self.right_percentage.to_css(dest)?;
}
dest.write_str(")")
}
}
/// Specified color value
#[derive(Clone, Debug, MallocSizeOf, PartialEq, ToShmem)]
pub enum Color {
@ -251,8 +106,6 @@ pub enum Color {
/// Authored representation
authored: Option<Box<str>>,
},
/// A complex color value from computed value
Complex(ComputedColor),
/// A system color.
#[cfg(feature = "gecko")]
System(SystemColor),
@ -640,8 +493,6 @@ impl ToCss for Color {
Color::Numeric {
parsed: ref rgba, ..
} => rgba.to_css(dest),
// TODO: Could represent this as a color-mix() instead.
Color::Complex(_) => Ok(()),
Color::ColorMix(ref mix) => mix.to_css(dest),
#[cfg(feature = "gecko")]
Color::System(system) => system.to_css(dest),
@ -787,22 +638,23 @@ impl Color {
/// the context to resolve, then `None` is returned.
pub fn to_computed_color(&self, context: Option<&Context>) -> Option<ComputedColor> {
Some(match *self {
Color::CurrentColor => ComputedColor::currentcolor(),
Color::Numeric { ref parsed, .. } => ComputedColor::rgba(*parsed),
Color::Complex(ref complex) => *complex,
Color::CurrentColor => ComputedColor::CurrentColor,
Color::Numeric { ref parsed, .. } => ComputedColor::Numeric(*parsed),
Color::ColorMix(ref mix) => {
use crate::values::animated::color::Color as AnimatedColor;
use crate::values::animated::ToAnimatedValue;
use crate::values::computed::percentage::Percentage;
let left = mix.left.to_computed_color(context)?.to_animated_value();
let right = mix.right.to_computed_color(context)?.to_animated_value();
ToAnimatedValue::from_animated_value(AnimatedColor::mix(
&mix.interpolation,
&left,
mix.left_percentage.get(),
&right,
mix.right_percentage.get(),
))
let left = mix.left.to_computed_color(context)?;
let right = mix.right.to_computed_color(context)?;
let mut color = ComputedColor::ColorMix(Box::new(GenericColorMix {
interpolation: mix.interpolation,
left,
left_percentage: Percentage(mix.left_percentage.get()),
right,
right_percentage: Percentage(mix.right_percentage.get()),
normalize_weights: mix.normalize_weights,
}));
color.simplify(None);
color
},
#[cfg(feature = "gecko")]
Color::System(system) => system.compute(context?),
@ -820,13 +672,13 @@ impl ToComputedValue for Color {
}
fn from_computed_value(computed: &ComputedColor) -> Self {
if computed.is_numeric() {
return Color::rgba(computed.color);
match *computed {
ComputedColor::Numeric(ref color) => Color::rgba(*color),
ComputedColor::CurrentColor => Color::CurrentColor,
ComputedColor::ColorMix(ref mix) => {
Color::ColorMix(Box::new(ToComputedValue::from_computed_value(&**mix)))
},
}
if computed.is_currentcolor() {
return Color::currentcolor();
}
Color::Complex(*computed)
}
}
@ -854,7 +706,7 @@ impl ToComputedValue for MozFontSmoothingBackgroundColor {
fn to_computed_value(&self, context: &Context) -> RGBA {
self.0
.to_computed_value(context)
.to_rgba(RGBA::transparent())
.into_rgba(RGBA::transparent())
}
fn from_computed_value(computed: &RGBA) -> Self {
@ -871,7 +723,15 @@ impl SpecifiedValueInfo for Color {
// should probably be handled that way as well.
// XXX `currentColor` should really be `currentcolor`. But let's
// keep it consistent with the old system for now.
f(&["rgb", "rgba", "hsl", "hsla", "hwb", "currentColor", "transparent"]);
f(&[
"rgb",
"rgba",
"hsl",
"hsla",
"hwb",
"currentColor",
"transparent",
]);
}
}
@ -888,7 +748,7 @@ impl ToComputedValue for ColorPropertyValue {
fn to_computed_value(&self, context: &Context) -> RGBA {
self.0
.to_computed_value(context)
.to_rgba(context.builder.get_parent_inherited_text().clone_color())
.into_rgba(context.builder.get_parent_inherited_text().clone_color())
}
#[inline]
@ -1050,7 +910,19 @@ impl ToCss for ColorScheme {
}
/// https://drafts.csswg.org/css-color-adjust/#print-color-adjust
#[derive(Clone, Copy, Debug, MallocSizeOf, Parse, PartialEq, SpecifiedValueInfo, ToCss, ToComputedValue, ToResolvedValue, ToShmem)]
#[derive(
Clone,
Copy,
Debug,
MallocSizeOf,
Parse,
PartialEq,
SpecifiedValueInfo,
ToCss,
ToComputedValue,
ToResolvedValue,
ToShmem,
)]
#[repr(u8)]
pub enum PrintColorAdjust {
/// Ignore backgrounds and darken text.

View file

@ -92,11 +92,6 @@ impl Percentage {
Number::new_with_clamping_mode(self.value, self.calc_clamping_mode)
}
/// Returns whether this percentage is a `calc()` value.
pub fn is_calc(&self) -> bool {
self.calc_clamping_mode.is_some()
}
/// Returns the calc() clamping mode for this percentage.
pub fn calc_clamping_mode(&self) -> Option<AllowedNumericType> {
self.calc_clamping_mode
@ -188,6 +183,24 @@ impl ToComputedValue for Percentage {
impl SpecifiedValueInfo for Percentage {}
/// Turns the percentage into a plain float.
pub trait ToPercentage {
/// Returns whether this percentage used to be a calc().
fn is_calc(&self) -> bool { false }
/// Turns the percentage into a plain float.
fn to_percentage(&self) -> CSSFloat;
}
impl ToPercentage for Percentage {
fn is_calc(&self) -> bool {
self.calc_clamping_mode.is_some()
}
fn to_percentage(&self) -> CSSFloat {
self.get()
}
}
/// A wrapper of Percentage, whose value must be >= 0.
pub type NonNegativePercentage = NonNegative<Percentage>;