Support accumulation of transform lists

This commit is contained in:
Brian Birtles 2017-05-23 15:13:11 +09:00
parent 64b0d59d21
commit d45ee9d662

View file

@ -1668,6 +1668,21 @@ fn build_identity_transform_list(list: &[TransformOperation]) -> Vec<TransformOp
result
}
/// A wrapper for calling add_weighted that interpolates the distance of the two values from
/// an initial_value and uses that to produce an interpolated value.
/// This is used for values such as 'scale' where the initial value is 1 and where if we interpolate
/// the absolute values, we will produce odd results for accumulation.
fn add_weighted_with_initial_val<T: Animatable>(a: &T,
b: &T,
a_portion: f64,
b_portion: f64,
initial_val: &T) -> Result<T, ()> {
let a = try!(a.add_weighted(&initial_val, 1.0, -1.0));
let b = try!(b.add_weighted(&initial_val, 1.0, -1.0));
let result = try!(a.add_weighted(&b, a_portion, b_portion));
result.add_weighted(&initial_val, 1.0, 1.0)
}
/// Add two transform lists.
/// http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms
fn add_weighted_transform_lists(from_list: &[TransformOperation],
@ -1705,9 +1720,12 @@ fn add_weighted_transform_lists(from_list: &[TransformOperation],
}
(&TransformOperation::Scale(fx, fy, fz),
&TransformOperation::Scale(tx, ty, tz)) => {
let ix = fx.add_weighted(&tx, self_portion, other_portion).unwrap();
let iy = fy.add_weighted(&ty, self_portion, other_portion).unwrap();
let iz = fz.add_weighted(&tz, self_portion, other_portion).unwrap();
let ix = add_weighted_with_initial_val(&fx, &tx, self_portion,
other_portion, &1.0).unwrap();
let iy = add_weighted_with_initial_val(&fy, &ty, self_portion,
other_portion, &1.0).unwrap();
let iz = add_weighted_with_initial_val(&fz, &tz, self_portion,
other_portion, &1.0).unwrap();
result.push(TransformOperation::Scale(ix, iy, iz));
}
(&TransformOperation::Rotate(fx, fy, fz, fa),
@ -1817,10 +1835,12 @@ pub struct MatrixDecomposed2D {
impl Animatable for InnerMatrix2D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(InnerMatrix2D {
m11: try!(self.m11.add_weighted(&other.m11, self_portion, other_portion)),
m11: try!(add_weighted_with_initial_val(&self.m11, &other.m11,
self_portion, other_portion, &1.0)),
m12: try!(self.m12.add_weighted(&other.m12, self_portion, other_portion)),
m21: try!(self.m21.add_weighted(&other.m21, self_portion, other_portion)),
m22: try!(self.m22.add_weighted(&other.m22, self_portion, other_portion)),
m22: try!(add_weighted_with_initial_val(&self.m22, &other.m22,
self_portion, other_portion, &1.0)),
})
}
}
@ -1837,8 +1857,8 @@ impl Animatable for Translate2D {
impl Animatable for Scale2D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Scale2D(
try!(self.0.add_weighted(&other.0, self_portion, other_portion)),
try!(self.1.add_weighted(&other.1, self_portion, other_portion))
try!(add_weighted_with_initial_val(&self.0, &other.0, self_portion, other_portion, &1.0)),
try!(add_weighted_with_initial_val(&self.1, &other.1, self_portion, other_portion, &1.0))
))
}
}
@ -2238,9 +2258,9 @@ impl Animatable for Translate3D {
impl Animatable for Scale3D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Scale3D(
try!(self.0.add_weighted(&other.0, self_portion, other_portion)),
try!(self.1.add_weighted(&other.1, self_portion, other_portion)),
try!(self.2.add_weighted(&other.2, self_portion, other_portion))
try!(add_weighted_with_initial_val(&self.0, &other.0, self_portion, other_portion, &1.0)),
try!(add_weighted_with_initial_val(&self.1, &other.1, self_portion, other_portion, &1.0)),
try!(add_weighted_with_initial_val(&self.2, &other.2, self_portion, other_portion, &1.0))
))
}
}
@ -2261,7 +2281,7 @@ impl Animatable for Perspective {
try!(self.0.add_weighted(&other.0, self_portion, other_portion)),
try!(self.1.add_weighted(&other.1, self_portion, other_portion)),
try!(self.2.add_weighted(&other.2, self_portion, other_portion)),
try!(self.3.add_weighted(&other.3, self_portion, other_portion))
try!(add_weighted_with_initial_val(&self.3, &other.3, self_portion, other_portion, &1.0))
))
}
}
@ -2270,8 +2290,9 @@ impl Animatable for MatrixDecomposed3D {
/// https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-3d-matrix-values
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64)
-> Result<Self, ()> {
assert!(self_portion + other_portion == 1.0f64,
"add_weighted should only be used for interpolating transforms");
assert!(self_portion + other_portion == 1.0f64 ||
other_portion == 1.0f64,
"add_weighted should only be used for interpolating or accumulating transforms");
let mut sum = *self;
@ -2284,30 +2305,63 @@ impl Animatable for MatrixDecomposed3D {
self_portion, other_portion));
// Add quaternions using spherical linear interpolation (Slerp).
let mut product = self.quaternion.0 * other.quaternion.0 +
self.quaternion.1 * other.quaternion.1 +
self.quaternion.2 * other.quaternion.2 +
self.quaternion.3 * other.quaternion.3;
//
// We take a specialized code path for accumulation (where other_portion is 1)
if other_portion == 1.0 {
if self_portion == 0.0 {
return Ok(*other)
}
// Clamp product to -1.0 <= product <= 1.0
product = product.min(1.0);
product = product.max(-1.0);
let clamped_w = self.quaternion.3.min(1.0).max(-1.0);
if product == 1.0 {
return Ok(sum);
// Determine the scale factor.
let mut theta = clamped_w.acos();
let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
theta *= self_portion as f32;
scale *= theta.sin();
// Scale the self matrix by self_portion.
let mut scaled_self = *self;
% for i in range(3):
scaled_self.quaternion.${i} *= scale;
% endfor
scaled_self.quaternion.3 = theta.cos();
// Multiply scaled-self by other.
let a = &scaled_self.quaternion;
let b = &other.quaternion;
sum.quaternion = Quaternion(
a.3 * b.0 + a.0 * b.3 + a.1 * b.2 - a.2 * b.1,
a.3 * b.1 - a.0 * b.2 + a.1 * b.3 + a.2 * b.0,
a.3 * b.2 + a.0 * b.1 - a.1 * b.0 + a.2 * b.3,
a.3 * b.3 - a.0 * b.0 - a.1 * b.1 - a.2 * b.2,
);
} else {
let mut product = self.quaternion.0 * other.quaternion.0 +
self.quaternion.1 * other.quaternion.1 +
self.quaternion.2 * other.quaternion.2 +
self.quaternion.3 * other.quaternion.3;
// Clamp product to -1.0 <= product <= 1.0
product = product.min(1.0);
product = product.max(-1.0);
if product == 1.0 {
return Ok(sum);
}
let theta = product.acos();
let w = (other_portion as f32 * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
let mut a = *self;
let mut b = *other;
% for i in range(4):
a.quaternion.${i} *= (other_portion as f32 * theta).cos() - product * w;
b.quaternion.${i} *= w;
sum.quaternion.${i} = a.quaternion.${i} + b.quaternion.${i};
% endfor
}
let theta = product.acos();
let w = (other_portion as f32 * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
let mut a = *self;
let mut b = *other;
% for i in range(4):
a.quaternion.${i} *= (other_portion as f32 * theta).cos() - product * w;
b.quaternion.${i} *= w;
sum.quaternion.${i} = a.quaternion.${i} + b.quaternion.${i};
% endfor
Ok(sum)
}
}