Replace the one-thread-per-timeout model by a two-thread model of timeouts.

This commit is contained in:
Alan Jeffrey 2016-05-19 16:49:00 -05:00
parent 983612751b
commit e6ebd7f11d

View file

@ -2,86 +2,20 @@
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use euclid::length::Length;
use ipc_channel::ipc::{self, IpcSender};
use ipc_channel::router::ROUTER;
use script_traits::{MsDuration, NsDuration, precise_time_ms, precise_time_ns};
use script_traits::{TimerEvent, TimerEventRequest};
use std::cell::RefCell;
use std::cmp::{self, Ord};
use std::collections::BinaryHeap;
use std::sync::Arc;
use std::sync::atomic::{self, AtomicBool};
use std::sync::mpsc::{channel, Receiver, Select};
use std::thread::{self, spawn, Thread};
use std::time::Duration;
use util::thread::spawn_named;
use std::sync::mpsc;
use std::sync::mpsc::TryRecvError::{Disconnected, Empty};
use std::thread;
use std::time::{Duration, Instant};
/// A quick hack to work around the removal of [`std::old_io::timer::Timer`](
/// http://doc.rust-lang.org/1.0.0-beta/std/old_io/timer/struct.Timer.html )
struct CancelableOneshotTimer {
thread: Thread,
canceled: Arc<AtomicBool>,
port: Receiver<()>,
}
impl CancelableOneshotTimer {
fn new(duration: MsDuration) -> CancelableOneshotTimer {
let (tx, rx) = channel();
let canceled = Arc::new(AtomicBool::new(false));
let canceled_clone = canceled.clone();
let thread = spawn(move || {
let due_time = precise_time_ms() + duration;
let mut park_time = duration;
loop {
thread::park_timeout(Duration::from_millis(park_time.get()));
if canceled_clone.load(atomic::Ordering::Relaxed) {
return;
}
// park_timeout_ms does not guarantee parking for the
// given amout. We might have woken up early.
let current_time = precise_time_ms();
if current_time >= due_time {
let _ = tx.send(());
return;
}
park_time = due_time - current_time;
}
}).thread().clone();
CancelableOneshotTimer {
thread: thread,
canceled: canceled,
port: rx,
}
}
fn port(&self) -> &Receiver<()> {
&self.port
}
fn cancel(&self) {
self.canceled.store(true, atomic::Ordering::Relaxed);
self.thread.unpark();
}
}
pub struct TimerScheduler {
port: Receiver<TimerEventRequest>,
scheduled_events: RefCell<BinaryHeap<ScheduledEvent>>,
timer: RefCell<Option<CancelableOneshotTimer>>,
}
pub struct TimerScheduler;
struct ScheduledEvent {
request: TimerEventRequest,
for_time: NsDuration,
for_time: Instant,
}
impl Ord for ScheduledEvent {
@ -103,119 +37,83 @@ impl PartialEq for ScheduledEvent {
}
}
enum Task {
HandleRequest(TimerEventRequest),
DispatchDueEvents,
}
impl TimerScheduler {
pub fn start() -> IpcSender<TimerEventRequest> {
let (chan, port) = ipc::channel().unwrap();
let (req_ipc_sender, req_ipc_receiver) = ipc::channel().unwrap();
let (req_sender, req_receiver) = mpsc::sync_channel(1);
let timer_scheduler = TimerScheduler {
port: ROUTER.route_ipc_receiver_to_new_mpsc_receiver(port),
// We could do this much more directly with recv_timeout
// (https://github.com/rust-lang/rfcs/issues/962).
scheduled_events: RefCell::new(BinaryHeap::new()),
timer: RefCell::new(None),
};
spawn_named("TimerScheduler".to_owned(), move || {
timer_scheduler.run_event_loop();
});
chan
// util::thread doesn't give us access to the JoinHandle, which we need for park/unpark,
// so we use the builder directly.
let timeout_thread = thread::Builder::new()
.name(String::from("TimerScheduler"))
.spawn(move || {
// We maintain a priority queue of future events, sorted by due time.
let mut scheduled_events = BinaryHeap::<ScheduledEvent>::new();
loop {
let now = Instant::now();
// Dispatch any events whose due time is past
loop {
match scheduled_events.peek() {
// Dispatch the event if its due time is past
Some(event) if event.for_time <= now => {
let TimerEventRequest(ref sender, source, id, _) = event.request;
let _ = sender.send(TimerEvent(source, id));
},
// Otherwise, we're done dispatching events
_ => break,
}
fn run_event_loop(&self) {
while let Some(thread) = self.receive_next_task() {
match thread {
Task::HandleRequest(request) => self.handle_request(request),
Task::DispatchDueEvents => self.dispatch_due_events(),
// Remove the event from the priority queue
// (Note this only executes when the first event has been dispatched
scheduled_events.pop();
}
// Look to see if there are any incoming events
match req_receiver.try_recv() {
// If there is an event, add it to the priority queue
Ok(req) => {
let TimerEventRequest(_, _, _, delay) = req;
let schedule = Instant::now() + Duration::from_millis(delay.get());
let event = ScheduledEvent { request: req, for_time: schedule };
scheduled_events.push(event);
},
// If there is no incoming event, park the thread,
// it will either be unparked when a new event arrives,
// or by a timeout.
Err(Empty) => match scheduled_events.peek() {
None => thread::park(),
Some(event) => thread::park_timeout(event.for_time - now),
},
// If the channel is closed, we are done.
Err(Disconnected) => break,
}
}
// This thread can terminate if the req_ipc_sender is dropped.
warn!("TimerScheduler thread terminated.");
})
.unwrap()
.thread()
.clone();
// A proxy that just routes incoming IPC requests over the MPSC channel to the timeout thread,
// and unparks the timeout thread each time. Note that if unpark is called while the timeout
// thread isn't parked, this causes the next call to thread::park by the timeout thread
// not to block. This means that the timeout thread won't park when there is a request
// waiting in the MPSC channel buffer.
thread::Builder::new()
.name(String::from("TimerProxy"))
.spawn(move || {
while let Ok(req) = req_ipc_receiver.recv() {
req_sender.send(req).unwrap();
timeout_thread.unpark();
}
// This thread can terminate if the req_ipc_sender is dropped.
warn!("TimerProxy thread terminated.");
})
.unwrap();
#[allow(unsafe_code)]
fn receive_next_task(&self) -> Option<Task> {
let port = &self.port;
let timer = self.timer.borrow();
let timer_port = timer.as_ref().map(|timer| timer.port());
if let Some(ref timer_port) = timer_port {
let sel = Select::new();
let mut scheduler_handle = sel.handle(port);
let mut timer_handle = sel.handle(timer_port);
unsafe {
scheduler_handle.add();
timer_handle.add();
}
let ret = sel.wait();
if ret == scheduler_handle.id() {
port.recv().ok().map(Task::HandleRequest)
} else if ret == timer_handle.id() {
timer_port.recv().ok().map(|_| Task::DispatchDueEvents)
} else {
panic!("unexpected select result!")
}
} else {
port.recv().ok().map(Task::HandleRequest)
}
}
fn handle_request(&self, request: TimerEventRequest) {
let TimerEventRequest(_, _, _, duration_ms) = request;
let duration_ns = Length::new(duration_ms.get() * 1000 * 1000);
let schedule_for = precise_time_ns() + duration_ns;
let previously_earliest = self.scheduled_events.borrow().peek()
.map_or(Length::new(u64::max_value()), |scheduled| scheduled.for_time);
self.scheduled_events.borrow_mut().push(ScheduledEvent {
request: request,
for_time: schedule_for,
});
if schedule_for < previously_earliest {
self.start_timer_for_next_event();
}
}
fn dispatch_due_events(&self) {
let now = precise_time_ns();
{
let mut events = self.scheduled_events.borrow_mut();
while !events.is_empty() && events.peek().as_ref().unwrap().for_time <= now {
let event = events.pop().unwrap();
let TimerEventRequest(chan, source, id, _) = event.request;
let _ = chan.send(TimerEvent(source, id));
}
}
self.start_timer_for_next_event();
}
fn start_timer_for_next_event(&self) {
let events = self.scheduled_events.borrow();
let next_event = events.peek();
let mut timer = self.timer.borrow_mut();
if let Some(ref mut timer) = *timer {
timer.cancel();
}
*timer = next_event.map(|next_event| {
let delay_ns = next_event.for_time.get().saturating_sub(precise_time_ns().get());
// Round up, we'd rather be late than early…
let delay_ms = Length::new(delay_ns.saturating_add(999999) / (1000 * 1000));
CancelableOneshotTimer::new(delay_ms)
});
// Return the IPC sender
req_ipc_sender
}
}