Create own file for background calculations in layout

Move display_list_builder.rs and webrender_helpers.rs
along with the new file to components/layout/display_list/

Remove apparently unused IdType enum.
Only variant used was OverflowClip.

See #19676
This commit is contained in:
Pyfisch 2018-01-04 13:34:04 +01:00
parent 989d2fd532
commit ea062e6e47
21 changed files with 635 additions and 620 deletions

View file

@ -0,0 +1,549 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Calculations for CSS images and CSS backgrounds.
#![deny(unsafe_code)]
// FIXME(rust-lang/rust#26264): Remove GenericEndingShape and GenericGradientItem.
use app_units::Au;
use display_list::ToGfxColor;
use euclid::{Point2D, Size2D, Vector2D};
use gfx::display_list;
use model::MaybeAuto;
use style::values::computed::{Angle, GradientItem};
use style::values::computed::{LengthOrPercentage, LengthOrPercentageOrAuto, Percentage};
use style::values::computed::Position;
use style::values::computed::image::{EndingShape, LineDirection};
use style::values::generics::background::BackgroundSize;
use style::values::generics::image::{Circle, Ellipse, ShapeExtent};
use style::values::generics::image::EndingShape as GenericEndingShape;
use style::values::generics::image::GradientItem as GenericGradientItem;
use style::values::specified::background::RepeatKeyword;
use style::values::specified::position::{X, Y};
use webrender_api::GradientStop;
/// A helper data structure for gradients.
#[derive(Clone, Copy)]
struct StopRun {
start_offset: f32,
end_offset: f32,
start_index: usize,
stop_count: usize,
}
/// For a given area and an image compute how big the
/// image should be displayed on the background.
pub fn compute_background_image_size(
bg_size: BackgroundSize<LengthOrPercentageOrAuto>,
bounds_size: Size2D<Au>,
intrinsic_size: Option<Size2D<Au>>,
) -> Size2D<Au> {
match intrinsic_size {
None => match bg_size {
BackgroundSize::Cover | BackgroundSize::Contain => bounds_size,
BackgroundSize::Explicit { width, height } => Size2D::new(
MaybeAuto::from_style(width, bounds_size.width)
.specified_or_default(bounds_size.width),
MaybeAuto::from_style(height, bounds_size.height)
.specified_or_default(bounds_size.height),
),
},
Some(own_size) => {
// If `image_aspect_ratio` < `bounds_aspect_ratio`, the image is tall; otherwise, it is
// wide.
let image_aspect_ratio = own_size.width.to_f32_px() / own_size.height.to_f32_px();
let bounds_aspect_ratio =
bounds_size.width.to_f32_px() / bounds_size.height.to_f32_px();
match (bg_size, image_aspect_ratio < bounds_aspect_ratio) {
(BackgroundSize::Contain, false) | (BackgroundSize::Cover, true) => Size2D::new(
bounds_size.width,
bounds_size.width.scale_by(image_aspect_ratio.recip()),
),
(BackgroundSize::Contain, true) | (BackgroundSize::Cover, false) => Size2D::new(
bounds_size.height.scale_by(image_aspect_ratio),
bounds_size.height,
),
(
BackgroundSize::Explicit {
width,
height: LengthOrPercentageOrAuto::Auto,
},
_,
) => {
let width = MaybeAuto::from_style(width, bounds_size.width)
.specified_or_default(own_size.width);
Size2D::new(width, width.scale_by(image_aspect_ratio.recip()))
},
(
BackgroundSize::Explicit {
width: LengthOrPercentageOrAuto::Auto,
height,
},
_,
) => {
let height = MaybeAuto::from_style(height, bounds_size.height)
.specified_or_default(own_size.height);
Size2D::new(height.scale_by(image_aspect_ratio), height)
},
(BackgroundSize::Explicit { width, height }, _) => Size2D::new(
MaybeAuto::from_style(width, bounds_size.width)
.specified_or_default(own_size.width),
MaybeAuto::from_style(height, bounds_size.height)
.specified_or_default(own_size.height),
),
}
},
}
}
fn tile_image_round(
position: &mut Au,
size: &mut Au,
absolute_anchor_origin: Au,
image_size: &mut Au,
) {
if *size == Au(0) || *image_size == Au(0) {
*position = Au(0);
*size = Au(0);
return;
}
let number_of_tiles = (size.to_f32_px() / image_size.to_f32_px()).round().max(1.0);
*image_size = *size / (number_of_tiles as i32);
tile_image(position, size, absolute_anchor_origin, *image_size);
}
fn tile_image_spaced(
position: &mut Au,
size: &mut Au,
tile_spacing: &mut Au,
absolute_anchor_origin: Au,
image_size: Au,
) {
if *size == Au(0) || image_size == Au(0) {
*position = Au(0);
*size = Au(0);
*tile_spacing = Au(0);
return;
}
// Per the spec, if the space available is not enough for two images, just tile as
// normal but only display a single tile.
if image_size * 2 >= *size {
tile_image(position, size, absolute_anchor_origin, image_size);
*tile_spacing = Au(0);
*size = image_size;
return;
}
// Take the box size, remove room for two tiles on the edges, and then calculate how many
// other tiles fit in between them.
let size_remaining = *size - (image_size * 2);
let num_middle_tiles = (size_remaining.to_f32_px() / image_size.to_f32_px()).floor() as i32;
// Allocate the remaining space as padding between tiles. background-position is ignored
// as per the spec, so the position is just the box origin. We are also ignoring
// background-attachment here, which seems unspecced when combined with
// background-repeat: space.
let space_for_middle_tiles = image_size * num_middle_tiles;
*tile_spacing = (size_remaining - space_for_middle_tiles) / (num_middle_tiles + 1);
}
/// Tile an image
fn tile_image(position: &mut Au, size: &mut Au, absolute_anchor_origin: Au, image_size: Au) {
// Avoid division by zero below!
// Images with a zero width or height are not displayed.
// Therefore the positions do not matter and can be left unchanged.
// NOTE: A possible optimization is not to build
// display items in this case at all.
if image_size == Au(0) {
return;
}
let delta_pixels = absolute_anchor_origin - *position;
let image_size_px = image_size.to_f32_px();
let tile_count = ((delta_pixels.to_f32_px() + image_size_px - 1.0) / image_size_px).floor();
let offset = image_size * (tile_count as i32);
let new_position = absolute_anchor_origin - offset;
*size = *position - new_position + *size;
*position = new_position;
}
/// For either the x or the y axis ajust various values to account for tiling.
///
/// This is done separately for both axes because the repeat keywords may differ.
pub fn tile_image_axis(
repeat: RepeatKeyword,
position: &mut Au,
size: &mut Au,
tile_size: &mut Au,
tile_spacing: &mut Au,
offset: Au,
clip_origin: Au,
clip_size: Au,
) {
let absolute_anchor_origin = *position + offset;
match repeat {
RepeatKeyword::NoRepeat => {
*position += offset;
*size = *tile_size;
},
RepeatKeyword::Repeat => {
*position = clip_origin;
*size = clip_size;
tile_image(position, size, absolute_anchor_origin, *tile_size);
},
RepeatKeyword::Space => {
tile_image_spaced(
position,
size,
tile_spacing,
absolute_anchor_origin,
*tile_size,
);
let combined_tile_size = *tile_size + *tile_spacing;
*position = clip_origin;
*size = clip_size;
tile_image(position, size, absolute_anchor_origin, combined_tile_size);
},
RepeatKeyword::Round => {
tile_image_round(position, size, absolute_anchor_origin, tile_size);
*position = clip_origin;
*size = clip_size;
tile_image(position, size, absolute_anchor_origin, *tile_size);
},
}
}
/// Determines the radius of a circle if it was not explictly provided.
/// <https://drafts.csswg.org/css-images-3/#typedef-size>
fn convert_circle_size_keyword(
keyword: ShapeExtent,
size: &Size2D<Au>,
center: &Point2D<Au>,
) -> Size2D<Au> {
let radius = match keyword {
ShapeExtent::ClosestSide | ShapeExtent::Contain => {
let dist = get_distance_to_sides(size, center, ::std::cmp::min);
::std::cmp::min(dist.width, dist.height)
},
ShapeExtent::FarthestSide => {
let dist = get_distance_to_sides(size, center, ::std::cmp::max);
::std::cmp::max(dist.width, dist.height)
},
ShapeExtent::ClosestCorner => get_distance_to_corner(size, center, ::std::cmp::min),
ShapeExtent::FarthestCorner | ShapeExtent::Cover => {
get_distance_to_corner(size, center, ::std::cmp::max)
},
};
Size2D::new(radius, radius)
}
/// Returns the radius for an ellipse with the same ratio as if it was matched to the sides.
fn get_ellipse_radius<F>(size: &Size2D<Au>, center: &Point2D<Au>, cmp: F) -> Size2D<Au>
where
F: Fn(Au, Au) -> Au,
{
let dist = get_distance_to_sides(size, center, cmp);
Size2D::new(
dist.width.scale_by(::std::f32::consts::FRAC_1_SQRT_2 * 2.0),
dist.height
.scale_by(::std::f32::consts::FRAC_1_SQRT_2 * 2.0),
)
}
/// Determines the radius of an ellipse if it was not explictly provided.
/// <https://drafts.csswg.org/css-images-3/#typedef-size>
fn convert_ellipse_size_keyword(
keyword: ShapeExtent,
size: &Size2D<Au>,
center: &Point2D<Au>,
) -> Size2D<Au> {
match keyword {
ShapeExtent::ClosestSide | ShapeExtent::Contain => {
get_distance_to_sides(size, center, ::std::cmp::min)
},
ShapeExtent::FarthestSide => get_distance_to_sides(size, center, ::std::cmp::max),
ShapeExtent::ClosestCorner => get_ellipse_radius(size, center, ::std::cmp::min),
ShapeExtent::FarthestCorner | ShapeExtent::Cover => {
get_ellipse_radius(size, center, ::std::cmp::max)
},
}
}
fn convert_gradient_stops(gradient_items: &[GradientItem], total_length: Au) -> Vec<GradientStop> {
// Determine the position of each stop per CSS-IMAGES § 3.4.
// Only keep the color stops, discard the color interpolation hints.
let mut stop_items = gradient_items
.iter()
.filter_map(|item| match *item {
GenericGradientItem::ColorStop(ref stop) => Some(*stop),
_ => None,
})
.collect::<Vec<_>>();
assert!(stop_items.len() >= 2);
// Run the algorithm from
// https://drafts.csswg.org/css-images-3/#color-stop-syntax
// Step 1:
// If the first color stop does not have a position, set its position to 0%.
{
let first = stop_items.first_mut().unwrap();
if first.position.is_none() {
first.position = Some(LengthOrPercentage::Percentage(Percentage(0.0)));
}
}
// If the last color stop does not have a position, set its position to 100%.
{
let last = stop_items.last_mut().unwrap();
if last.position.is_none() {
last.position = Some(LengthOrPercentage::Percentage(Percentage(1.0)));
}
}
// Step 2: Move any stops placed before earlier stops to the
// same position as the preceding stop.
let mut last_stop_position = stop_items.first().unwrap().position.unwrap();
for stop in stop_items.iter_mut().skip(1) {
if let Some(pos) = stop.position {
if position_to_offset(last_stop_position, total_length) >
position_to_offset(pos, total_length)
{
stop.position = Some(last_stop_position);
}
last_stop_position = stop.position.unwrap();
}
}
// Step 3: Evenly space stops without position.
// Note: Remove the + 2 if fix_gradient_stops is changed.
let mut stops = Vec::with_capacity(stop_items.len() + 2);
let mut stop_run = None;
for (i, stop) in stop_items.iter().enumerate() {
let offset = match stop.position {
None => {
if stop_run.is_none() {
// Initialize a new stop run.
// `unwrap()` here should never fail because this is the beginning of
// a stop run, which is always bounded by a length or percentage.
let start_offset =
position_to_offset(stop_items[i - 1].position.unwrap(), total_length);
// `unwrap()` here should never fail because this is the end of
// a stop run, which is always bounded by a length or percentage.
let (end_index, end_stop) = stop_items[(i + 1)..]
.iter()
.enumerate()
.find(|&(_, ref stop)| stop.position.is_some())
.unwrap();
let end_offset = position_to_offset(end_stop.position.unwrap(), total_length);
stop_run = Some(StopRun {
start_offset: start_offset,
end_offset: end_offset,
start_index: i - 1,
stop_count: end_index,
})
}
let stop_run = stop_run.unwrap();
let stop_run_length = stop_run.end_offset - stop_run.start_offset;
stop_run.start_offset +
stop_run_length * (i - stop_run.start_index) as f32 /
((2 + stop_run.stop_count) as f32)
},
Some(position) => {
stop_run = None;
position_to_offset(position, total_length)
},
};
assert!(offset.is_finite());
stops.push(GradientStop {
offset: offset,
color: stop.color.to_gfx_color(),
})
}
stops
}
pub fn convert_linear_gradient(
size: Size2D<Au>,
stops: &[GradientItem],
direction: LineDirection,
repeating: bool,
) -> display_list::Gradient {
let angle = match direction {
LineDirection::Angle(angle) => angle.radians(),
LineDirection::Horizontal(x) => match x {
X::Left => Angle::Deg(270.).radians(),
X::Right => Angle::Deg(90.).radians(),
},
LineDirection::Vertical(y) => match y {
Y::Top => Angle::Deg(0.).radians(),
Y::Bottom => Angle::Deg(180.).radians(),
},
LineDirection::Corner(horizontal, vertical) => {
// This the angle for one of the diagonals of the box. Our angle
// will either be this one, this one + PI, or one of the other
// two perpendicular angles.
let atan = (size.height.to_f32_px() / size.width.to_f32_px()).atan();
match (horizontal, vertical) {
(X::Right, Y::Bottom) => ::std::f32::consts::PI - atan,
(X::Left, Y::Bottom) => ::std::f32::consts::PI + atan,
(X::Right, Y::Top) => atan,
(X::Left, Y::Top) => -atan,
}
},
};
// Get correct gradient line length, based on:
// https://drafts.csswg.org/css-images-3/#linear-gradients
let dir = Point2D::new(angle.sin(), -angle.cos());
let line_length =
(dir.x * size.width.to_f32_px()).abs() + (dir.y * size.height.to_f32_px()).abs();
let inv_dir_length = 1.0 / (dir.x * dir.x + dir.y * dir.y).sqrt();
// This is the vector between the center and the ending point; i.e. half
// of the distance between the starting point and the ending point.
let delta = Vector2D::new(
Au::from_f32_px(dir.x * inv_dir_length * line_length / 2.0),
Au::from_f32_px(dir.y * inv_dir_length * line_length / 2.0),
);
// This is the length of the gradient line.
let length = Au::from_f32_px((delta.x.to_f32_px() * 2.0).hypot(delta.y.to_f32_px() * 2.0));
let mut stops = convert_gradient_stops(stops, length);
// Only clamped gradients need to be fixed because in repeating gradients
// there is no "first" or "last" stop because they repeat infinitly in
// both directions, so the rendering is always correct.
if !repeating {
fix_gradient_stops(&mut stops);
}
let center = Point2D::new(size.width / 2, size.height / 2);
display_list::Gradient {
start_point: center - delta,
end_point: center + delta,
stops: stops,
repeating: repeating,
}
}
pub fn convert_radial_gradient(
size: Size2D<Au>,
stops: &[GradientItem],
shape: EndingShape,
center: Position,
repeating: bool,
) -> display_list::RadialGradient {
let center = Point2D::new(
center.horizontal.to_used_value(size.width),
center.vertical.to_used_value(size.height),
);
let radius = match shape {
GenericEndingShape::Circle(Circle::Radius(length)) => {
let length = Au::from(length);
Size2D::new(length, length)
},
GenericEndingShape::Circle(Circle::Extent(extent)) => {
convert_circle_size_keyword(extent, &size, &center)
},
GenericEndingShape::Ellipse(Ellipse::Radii(x, y)) => {
Size2D::new(x.to_used_value(size.width), y.to_used_value(size.height))
},
GenericEndingShape::Ellipse(Ellipse::Extent(extent)) => {
convert_ellipse_size_keyword(extent, &size, &center)
},
};
let mut stops = convert_gradient_stops(stops, radius.width);
// Repeating gradients have no last stops that can be ignored. So
// fixup is not necessary but may actually break the gradient.
if !repeating {
fix_gradient_stops(&mut stops);
}
display_list::RadialGradient {
center: center,
radius: radius,
stops: stops,
repeating: repeating,
}
}
#[inline]
/// Duplicate the first and last stops if necessary.
///
/// Explanation by pyfisch:
/// If the last stop is at the same position as the previous stop the
/// last color is ignored by webrender. This differs from the spec
/// (I think so). The implementations of Chrome and Firefox seem
/// to have the same problem but work fine if the position of the last
/// stop is smaller than 100%. (Otherwise they ignore the last stop.)
///
/// Similarly the first stop is duplicated if it is not placed
/// at the start of the virtual gradient ray.
fn fix_gradient_stops(stops: &mut Vec<GradientStop>) {
if stops.first().unwrap().offset > 0.0 {
let color = stops.first().unwrap().color;
stops.insert(
0,
GradientStop {
offset: 0.0,
color: color,
},
)
}
if stops.last().unwrap().offset < 1.0 {
let color = stops.last().unwrap().color;
stops.push(GradientStop {
offset: 1.0,
color: color,
})
}
}
/// Returns the the distance to the nearest or farthest corner depending on the comperator.
fn get_distance_to_corner<F>(size: &Size2D<Au>, center: &Point2D<Au>, cmp: F) -> Au
where
F: Fn(Au, Au) -> Au,
{
let dist = get_distance_to_sides(size, center, cmp);
Au::from_f32_px(dist.width.to_f32_px().hypot(dist.height.to_f32_px()))
}
/// Returns the distance to the nearest or farthest sides depending on the comparator.
///
/// The first return value is horizontal distance the second vertical distance.
fn get_distance_to_sides<F>(size: &Size2D<Au>, center: &Point2D<Au>, cmp: F) -> Size2D<Au>
where
F: Fn(Au, Au) -> Au,
{
let top_side = center.y;
let right_side = size.width - center.x;
let bottom_side = size.height - center.y;
let left_side = center.x;
Size2D::new(cmp(left_side, right_side), cmp(top_side, bottom_side))
}
fn position_to_offset(position: LengthOrPercentage, total_length: Au) -> f32 {
if total_length == Au(0) {
return 0.0;
}
match position {
LengthOrPercentage::Length(l) => l.to_i32_au() as f32 / total_length.0 as f32,
LengthOrPercentage::Percentage(percentage) => percentage.0 as f32,
LengthOrPercentage::Calc(calc) => {
calc.to_used_value(Some(total_length)).unwrap().0 as f32 / total_length.0 as f32
},
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,18 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
pub use self::builder::BlockFlowDisplayListBuilding;
pub use self::builder::BorderPaintingMode;
pub use self::builder::DisplayListBuildState;
pub use self::builder::FlexFlowDisplayListBuilding;
pub use self::builder::InlineFlowDisplayListBuilding;
pub use self::builder::ListItemFlowDisplayListBuilding;
pub use self::builder::StackingContextCollectionFlags;
pub use self::builder::StackingContextCollectionState;
pub use self::builder::ToGfxColor;
pub use self::webrender_helpers::WebRenderDisplayListConverter;
mod background;
mod builder;
mod webrender_helpers;

View file

@ -0,0 +1,621 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// TODO(gw): This contains helper traits and implementations for converting Servo display lists
// into WebRender display lists. In the future, this step should be completely removed.
// This might be achieved by sharing types between WR and Servo display lists, or
// completely converting layout to directly generate WebRender display lists, for example.
use app_units::Au;
use euclid::{Point2D, Rect, SideOffsets2D, Size2D, Vector2D};
use gfx::display_list::{BorderDetails, BorderRadii, BoxShadowClipMode, ClipScrollNode};
use gfx::display_list::{ClipScrollNodeIndex, ClipScrollNodeType, ClippingRegion, DisplayItem};
use gfx::display_list::{DisplayList, StackingContextType};
use msg::constellation_msg::PipelineId;
use style::computed_values::image_rendering::T as ImageRendering;
use style::computed_values::mix_blend_mode::T as MixBlendMode;
use style::computed_values::transform_style::T as TransformStyle;
use style::values::computed::{BorderStyle, Filter};
use style::values::generics::effects::Filter as GenericFilter;
use webrender_api::{self, ClipAndScrollInfo, ClipId, ClipMode, ComplexClipRegion};
use webrender_api::{DisplayListBuilder, ExtendMode, LayoutTransform};
pub trait WebRenderDisplayListConverter {
fn convert_to_webrender(&self, pipeline_id: PipelineId) -> DisplayListBuilder;
}
trait WebRenderDisplayItemConverter {
fn prim_info(&self) -> webrender_api::LayoutPrimitiveInfo;
fn convert_to_webrender(
&self,
builder: &mut DisplayListBuilder,
clip_scroll_nodes: &[ClipScrollNode],
clip_ids: &mut Vec<Option<ClipId>>,
current_clip_and_scroll_info: &mut ClipAndScrollInfo,
);
}
trait ToBorderStyle {
fn to_border_style(&self) -> webrender_api::BorderStyle;
}
impl ToBorderStyle for BorderStyle {
fn to_border_style(&self) -> webrender_api::BorderStyle {
match *self {
BorderStyle::None => webrender_api::BorderStyle::None,
BorderStyle::Solid => webrender_api::BorderStyle::Solid,
BorderStyle::Double => webrender_api::BorderStyle::Double,
BorderStyle::Dotted => webrender_api::BorderStyle::Dotted,
BorderStyle::Dashed => webrender_api::BorderStyle::Dashed,
BorderStyle::Hidden => webrender_api::BorderStyle::Hidden,
BorderStyle::Groove => webrender_api::BorderStyle::Groove,
BorderStyle::Ridge => webrender_api::BorderStyle::Ridge,
BorderStyle::Inset => webrender_api::BorderStyle::Inset,
BorderStyle::Outset => webrender_api::BorderStyle::Outset,
}
}
}
trait ToBorderWidths {
fn to_border_widths(&self) -> webrender_api::BorderWidths;
}
impl ToBorderWidths for SideOffsets2D<Au> {
fn to_border_widths(&self) -> webrender_api::BorderWidths {
webrender_api::BorderWidths {
left: self.left.to_f32_px(),
top: self.top.to_f32_px(),
right: self.right.to_f32_px(),
bottom: self.bottom.to_f32_px(),
}
}
}
trait ToBoxShadowClipMode {
fn to_clip_mode(&self) -> webrender_api::BoxShadowClipMode;
}
impl ToBoxShadowClipMode for BoxShadowClipMode {
fn to_clip_mode(&self) -> webrender_api::BoxShadowClipMode {
match *self {
BoxShadowClipMode::Inset => webrender_api::BoxShadowClipMode::Inset,
BoxShadowClipMode::Outset => webrender_api::BoxShadowClipMode::Outset,
}
}
}
trait ToSizeF {
fn to_sizef(&self) -> webrender_api::LayoutSize;
}
trait ToPointF {
fn to_pointf(&self) -> webrender_api::LayoutPoint;
}
trait ToVectorF {
fn to_vectorf(&self) -> webrender_api::LayoutVector2D;
}
impl ToPointF for Point2D<Au> {
fn to_pointf(&self) -> webrender_api::LayoutPoint {
webrender_api::LayoutPoint::new(self.x.to_f32_px(), self.y.to_f32_px())
}
}
impl ToVectorF for Vector2D<Au> {
fn to_vectorf(&self) -> webrender_api::LayoutVector2D {
webrender_api::LayoutVector2D::new(self.x.to_f32_px(), self.y.to_f32_px())
}
}
impl ToSizeF for Size2D<Au> {
fn to_sizef(&self) -> webrender_api::LayoutSize {
webrender_api::LayoutSize::new(self.width.to_f32_px(), self.height.to_f32_px())
}
}
pub trait ToRectF {
fn to_rectf(&self) -> webrender_api::LayoutRect;
}
impl ToRectF for Rect<Au> {
fn to_rectf(&self) -> webrender_api::LayoutRect {
let x = self.origin.x.to_f32_px();
let y = self.origin.y.to_f32_px();
let w = self.size.width.to_f32_px();
let h = self.size.height.to_f32_px();
let point = webrender_api::LayoutPoint::new(x, y);
let size = webrender_api::LayoutSize::new(w, h);
webrender_api::LayoutRect::new(point, size)
}
}
pub trait ToBorderRadius {
fn to_border_radius(&self) -> webrender_api::BorderRadius;
}
impl ToBorderRadius for BorderRadii<Au> {
fn to_border_radius(&self) -> webrender_api::BorderRadius {
webrender_api::BorderRadius {
top_left: self.top_left.to_sizef(),
top_right: self.top_right.to_sizef(),
bottom_left: self.bottom_left.to_sizef(),
bottom_right: self.bottom_right.to_sizef(),
}
}
}
pub trait ToMixBlendMode {
fn to_mix_blend_mode(&self) -> webrender_api::MixBlendMode;
}
impl ToMixBlendMode for MixBlendMode {
fn to_mix_blend_mode(&self) -> webrender_api::MixBlendMode {
match *self {
MixBlendMode::Normal => webrender_api::MixBlendMode::Normal,
MixBlendMode::Multiply => webrender_api::MixBlendMode::Multiply,
MixBlendMode::Screen => webrender_api::MixBlendMode::Screen,
MixBlendMode::Overlay => webrender_api::MixBlendMode::Overlay,
MixBlendMode::Darken => webrender_api::MixBlendMode::Darken,
MixBlendMode::Lighten => webrender_api::MixBlendMode::Lighten,
MixBlendMode::ColorDodge => webrender_api::MixBlendMode::ColorDodge,
MixBlendMode::ColorBurn => webrender_api::MixBlendMode::ColorBurn,
MixBlendMode::HardLight => webrender_api::MixBlendMode::HardLight,
MixBlendMode::SoftLight => webrender_api::MixBlendMode::SoftLight,
MixBlendMode::Difference => webrender_api::MixBlendMode::Difference,
MixBlendMode::Exclusion => webrender_api::MixBlendMode::Exclusion,
MixBlendMode::Hue => webrender_api::MixBlendMode::Hue,
MixBlendMode::Saturation => webrender_api::MixBlendMode::Saturation,
MixBlendMode::Color => webrender_api::MixBlendMode::Color,
MixBlendMode::Luminosity => webrender_api::MixBlendMode::Luminosity,
}
}
}
trait ToImageRendering {
fn to_image_rendering(&self) -> webrender_api::ImageRendering;
}
impl ToImageRendering for ImageRendering {
fn to_image_rendering(&self) -> webrender_api::ImageRendering {
match *self {
ImageRendering::CrispEdges => webrender_api::ImageRendering::CrispEdges,
ImageRendering::Auto => webrender_api::ImageRendering::Auto,
ImageRendering::Pixelated => webrender_api::ImageRendering::Pixelated,
}
}
}
trait ToFilterOps {
fn to_filter_ops(&self) -> Vec<webrender_api::FilterOp>;
}
impl ToFilterOps for Vec<Filter> {
fn to_filter_ops(&self) -> Vec<webrender_api::FilterOp> {
let mut result = Vec::with_capacity(self.len());
for filter in self.iter() {
match *filter {
GenericFilter::Blur(radius) => {
result.push(webrender_api::FilterOp::Blur(radius.px()))
},
GenericFilter::Brightness(amount) => {
result.push(webrender_api::FilterOp::Brightness(amount.0))
},
GenericFilter::Contrast(amount) => {
result.push(webrender_api::FilterOp::Contrast(amount.0))
},
GenericFilter::Grayscale(amount) => {
result.push(webrender_api::FilterOp::Grayscale(amount.0))
},
GenericFilter::HueRotate(angle) => {
result.push(webrender_api::FilterOp::HueRotate(angle.radians()))
},
GenericFilter::Invert(amount) => {
result.push(webrender_api::FilterOp::Invert(amount.0))
},
GenericFilter::Opacity(amount) => {
result.push(webrender_api::FilterOp::Opacity(amount.0.into(), amount.0));
},
GenericFilter::Saturate(amount) => {
result.push(webrender_api::FilterOp::Saturate(amount.0))
},
GenericFilter::Sepia(amount) => {
result.push(webrender_api::FilterOp::Sepia(amount.0))
},
GenericFilter::DropShadow(ref shadow) => match *shadow {},
}
}
result
}
}
pub trait ToTransformStyle {
fn to_transform_style(&self) -> webrender_api::TransformStyle;
}
impl ToTransformStyle for TransformStyle {
fn to_transform_style(&self) -> webrender_api::TransformStyle {
match *self {
TransformStyle::Auto | TransformStyle::Flat => webrender_api::TransformStyle::Flat,
TransformStyle::Preserve3d => webrender_api::TransformStyle::Preserve3D,
}
}
}
impl WebRenderDisplayListConverter for DisplayList {
fn convert_to_webrender(&self, pipeline_id: PipelineId) -> DisplayListBuilder {
let mut builder = DisplayListBuilder::with_capacity(
pipeline_id.to_webrender(),
self.bounds().size.to_sizef(),
1024 * 1024,
); // 1 MB of space
let mut current_clip_and_scroll_info = pipeline_id.root_clip_and_scroll_info();
builder.push_clip_and_scroll_info(current_clip_and_scroll_info);
let mut clip_ids = Vec::with_capacity(self.clip_scroll_nodes.len());
clip_ids.resize(self.clip_scroll_nodes.len(), None);
clip_ids[0] = Some(ClipId::root_scroll_node(pipeline_id.to_webrender()));
for item in &self.list {
item.convert_to_webrender(
&mut builder,
&self.clip_scroll_nodes,
&mut clip_ids,
&mut current_clip_and_scroll_info,
);
}
builder
}
}
impl WebRenderDisplayItemConverter for DisplayItem {
fn prim_info(&self) -> webrender_api::LayoutPrimitiveInfo {
let tag = match self.base().metadata.pointing {
Some(cursor) => Some((self.base().metadata.node.0 as u64, cursor as u16)),
None => None,
};
webrender_api::LayoutPrimitiveInfo {
rect: self.base().bounds.to_rectf(),
local_clip: self.base().local_clip,
// TODO(gw): Make use of the WR backface visibility functionality.
is_backface_visible: true,
tag,
}
}
fn convert_to_webrender(
&self,
builder: &mut DisplayListBuilder,
clip_scroll_nodes: &[ClipScrollNode],
clip_ids: &mut Vec<Option<ClipId>>,
current_clip_and_scroll_info: &mut ClipAndScrollInfo,
) {
let get_id = |clip_ids: &[Option<ClipId>], index: ClipScrollNodeIndex| -> ClipId {
match clip_ids[index.0] {
Some(id) => id,
None => unreachable!("Tried to use WebRender ClipId before it was defined."),
}
};
let clip_and_scroll_indices = self.base().clipping_and_scrolling;
let scrolling_id = get_id(clip_ids, clip_and_scroll_indices.scrolling);
let clip_and_scroll_info = match clip_and_scroll_indices.clipping {
None => ClipAndScrollInfo::simple(scrolling_id),
Some(index) => ClipAndScrollInfo::new(scrolling_id, get_id(clip_ids, index)),
};
if clip_and_scroll_info != *current_clip_and_scroll_info {
builder.pop_clip_id();
builder.push_clip_and_scroll_info(clip_and_scroll_info);
*current_clip_and_scroll_info = clip_and_scroll_info;
}
match *self {
DisplayItem::SolidColor(ref item) => {
builder.push_rect(&self.prim_info(), item.color);
},
DisplayItem::Text(ref item) => {
let mut origin = item.baseline_origin.clone();
let mut glyphs = vec![];
for slice in item.text_run
.natural_word_slices_in_visual_order(&item.range)
{
for glyph in slice.glyphs.iter_glyphs_for_byte_range(&slice.range) {
let glyph_advance = if glyph.char_is_space() {
glyph.advance() + item.text_run.extra_word_spacing
} else {
glyph.advance()
};
if !slice.glyphs.is_whitespace() {
let glyph_offset = glyph.offset().unwrap_or(Point2D::zero());
let x = (origin.x + glyph_offset.x).to_f32_px();
let y = (origin.y + glyph_offset.y).to_f32_px();
let point = webrender_api::LayoutPoint::new(x, y);
let glyph = webrender_api::GlyphInstance {
index: glyph.id(),
point: point,
};
glyphs.push(glyph);
}
origin.x = origin.x + glyph_advance;
}
}
if glyphs.len() > 0 {
builder.push_text(
&self.prim_info(),
&glyphs,
item.text_run.font_key,
item.text_color,
None,
);
}
},
DisplayItem::Image(ref item) => {
if let Some(id) = item.webrender_image.key {
if item.stretch_size.width > Au(0) && item.stretch_size.height > Au(0) {
builder.push_image(
&self.prim_info(),
item.stretch_size.to_sizef(),
item.tile_spacing.to_sizef(),
item.image_rendering.to_image_rendering(),
id,
);
}
}
},
DisplayItem::Border(ref item) => {
let widths = item.border_widths.to_border_widths();
let details = match item.details {
BorderDetails::Normal(ref border) => {
let left = webrender_api::BorderSide {
color: border.color.left,
style: border.style.left.to_border_style(),
};
let top = webrender_api::BorderSide {
color: border.color.top,
style: border.style.top.to_border_style(),
};
let right = webrender_api::BorderSide {
color: border.color.right,
style: border.style.right.to_border_style(),
};
let bottom = webrender_api::BorderSide {
color: border.color.bottom,
style: border.style.bottom.to_border_style(),
};
let radius = border.radius.to_border_radius();
webrender_api::BorderDetails::Normal(webrender_api::NormalBorder {
left: left,
top: top,
right: right,
bottom: bottom,
radius: radius,
})
},
BorderDetails::Image(ref image) => match image.image.key {
None => return,
Some(key) => {
webrender_api::BorderDetails::Image(webrender_api::ImageBorder {
image_key: key,
patch: webrender_api::NinePatchDescriptor {
width: image.image.width,
height: image.image.height,
slice: image.slice,
},
fill: image.fill,
outset: image.outset,
repeat_horizontal: image.repeat_horizontal,
repeat_vertical: image.repeat_vertical,
})
},
},
BorderDetails::Gradient(ref gradient) => {
let extend_mode = if gradient.gradient.repeating {
ExtendMode::Repeat
} else {
ExtendMode::Clamp
};
webrender_api::BorderDetails::Gradient(webrender_api::GradientBorder {
gradient: builder.create_gradient(
gradient.gradient.start_point.to_pointf(),
gradient.gradient.end_point.to_pointf(),
gradient.gradient.stops.clone(),
extend_mode,
),
outset: gradient.outset,
})
},
BorderDetails::RadialGradient(ref gradient) => {
let extend_mode = if gradient.gradient.repeating {
ExtendMode::Repeat
} else {
ExtendMode::Clamp
};
webrender_api::BorderDetails::RadialGradient(
webrender_api::RadialGradientBorder {
gradient: builder.create_radial_gradient(
gradient.gradient.center.to_pointf(),
gradient.gradient.radius.to_sizef(),
gradient.gradient.stops.clone(),
extend_mode,
),
outset: gradient.outset,
},
)
},
};
builder.push_border(&self.prim_info(), widths, details);
},
DisplayItem::Gradient(ref item) => {
let start_point = item.gradient.start_point.to_pointf();
let end_point = item.gradient.end_point.to_pointf();
let extend_mode = if item.gradient.repeating {
ExtendMode::Repeat
} else {
ExtendMode::Clamp
};
let gradient = builder.create_gradient(
start_point,
end_point,
item.gradient.stops.clone(),
extend_mode,
);
builder.push_gradient(
&self.prim_info(),
gradient,
item.tile.to_sizef(),
item.tile_spacing.to_sizef(),
);
},
DisplayItem::RadialGradient(ref item) => {
let center = item.gradient.center.to_pointf();
let radius = item.gradient.radius.to_sizef();
let extend_mode = if item.gradient.repeating {
ExtendMode::Repeat
} else {
ExtendMode::Clamp
};
let gradient = builder.create_radial_gradient(
center,
radius,
item.gradient.stops.clone(),
extend_mode,
);
builder.push_radial_gradient(
&self.prim_info(),
gradient,
item.tile.to_sizef(),
item.tile_spacing.to_sizef(),
);
},
DisplayItem::Line(ref item) => {
builder.push_line(
&self.prim_info(),
// TODO(gw): Use a better estimate for wavy line thickness.
(0.33 * item.base.bounds.size.height.to_f32_px()).ceil(),
webrender_api::LineOrientation::Horizontal,
&item.color,
item.style,
);
},
DisplayItem::BoxShadow(ref item) => {
let box_bounds = item.box_bounds.to_rectf();
builder.push_box_shadow(
&self.prim_info(),
box_bounds,
item.offset.to_vectorf(),
item.color,
item.blur_radius.to_f32_px(),
item.spread_radius.to_f32_px(),
item.border_radius.to_border_radius(),
item.clip_mode.to_clip_mode(),
);
},
DisplayItem::PushTextShadow(ref item) => {
builder.push_shadow(
&self.prim_info(),
webrender_api::Shadow {
blur_radius: item.blur_radius.to_f32_px(),
offset: item.offset.to_vectorf(),
color: item.color,
},
);
},
DisplayItem::PopAllTextShadows(_) => {
builder.pop_all_shadows();
},
DisplayItem::Iframe(ref item) => {
builder.push_iframe(&self.prim_info(), item.iframe.to_webrender());
},
DisplayItem::PushStackingContext(ref item) => {
let stacking_context = &item.stacking_context;
debug_assert!(stacking_context.context_type == StackingContextType::Real);
let transform = stacking_context
.transform
.map(|transform| LayoutTransform::from_untyped(&transform).into());
let perspective = stacking_context
.perspective
.map(|perspective| LayoutTransform::from_untyped(&perspective));
builder.push_stacking_context(
&webrender_api::LayoutPrimitiveInfo::new(stacking_context.bounds.to_rectf()),
stacking_context.scroll_policy,
transform,
stacking_context.transform_style,
perspective,
stacking_context.mix_blend_mode,
stacking_context.filters.to_filter_ops(),
);
},
DisplayItem::PopStackingContext(_) => builder.pop_stacking_context(),
DisplayItem::DefineClipScrollNode(ref item) => {
let node = &clip_scroll_nodes[item.node_index.0];
let parent_id = get_id(clip_ids, node.parent_index);
let item_rect = node.clip.main.to_rectf();
let webrender_id = match node.node_type {
ClipScrollNodeType::Clip => builder.define_clip_with_parent(
node.id,
parent_id,
item_rect,
node.clip.get_complex_clips(),
None,
),
ClipScrollNodeType::ScrollFrame(scroll_sensitivity) => builder
.define_scroll_frame_with_parent(
node.id,
parent_id,
node.content_rect.to_rectf(),
node.clip.main.to_rectf(),
node.clip.get_complex_clips(),
None,
scroll_sensitivity,
),
ClipScrollNodeType::StickyFrame(ref sticky_data) => {
// TODO: Add define_sticky_frame_with_parent to WebRender.
builder.push_clip_id(parent_id);
let id = builder.define_sticky_frame(
node.id,
item_rect,
sticky_data.margins,
sticky_data.vertical_offset_bounds,
sticky_data.horizontal_offset_bounds,
webrender_api::LayoutVector2D::zero(),
);
builder.pop_clip_id();
id
},
};
debug_assert!(node.id.is_none() || node.id == Some(webrender_id));
clip_ids[item.node_index.0] = Some(webrender_id);
},
}
}
}
trait ToWebRenderClip {
fn get_complex_clips(&self) -> Vec<ComplexClipRegion>;
}
impl ToWebRenderClip for ClippingRegion {
fn get_complex_clips(&self) -> Vec<ComplexClipRegion> {
self.complex
.iter()
.map(|complex_clipping_region| {
ComplexClipRegion::new(
complex_clipping_region.rect.to_rectf(),
complex_clipping_region.radii.to_border_radius(),
ClipMode::Clip,
)
})
.collect()
}
}