mirror of
https://github.com/servo/servo.git
synced 2025-08-07 06:25:32 +01:00
Create own file for background calculations in layout
Move display_list_builder.rs and webrender_helpers.rs along with the new file to components/layout/display_list/ Remove apparently unused IdType enum. Only variant used was OverflowClip. See #19676
This commit is contained in:
parent
989d2fd532
commit
ea062e6e47
21 changed files with 635 additions and 620 deletions
549
components/layout/display_list/background.rs
Normal file
549
components/layout/display_list/background.rs
Normal file
|
@ -0,0 +1,549 @@
|
|||
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
//! Calculations for CSS images and CSS backgrounds.
|
||||
|
||||
#![deny(unsafe_code)]
|
||||
|
||||
// FIXME(rust-lang/rust#26264): Remove GenericEndingShape and GenericGradientItem.
|
||||
|
||||
use app_units::Au;
|
||||
use display_list::ToGfxColor;
|
||||
use euclid::{Point2D, Size2D, Vector2D};
|
||||
use gfx::display_list;
|
||||
use model::MaybeAuto;
|
||||
use style::values::computed::{Angle, GradientItem};
|
||||
use style::values::computed::{LengthOrPercentage, LengthOrPercentageOrAuto, Percentage};
|
||||
use style::values::computed::Position;
|
||||
use style::values::computed::image::{EndingShape, LineDirection};
|
||||
use style::values::generics::background::BackgroundSize;
|
||||
use style::values::generics::image::{Circle, Ellipse, ShapeExtent};
|
||||
use style::values::generics::image::EndingShape as GenericEndingShape;
|
||||
use style::values::generics::image::GradientItem as GenericGradientItem;
|
||||
use style::values::specified::background::RepeatKeyword;
|
||||
use style::values::specified::position::{X, Y};
|
||||
use webrender_api::GradientStop;
|
||||
|
||||
/// A helper data structure for gradients.
|
||||
#[derive(Clone, Copy)]
|
||||
struct StopRun {
|
||||
start_offset: f32,
|
||||
end_offset: f32,
|
||||
start_index: usize,
|
||||
stop_count: usize,
|
||||
}
|
||||
|
||||
/// For a given area and an image compute how big the
|
||||
/// image should be displayed on the background.
|
||||
pub fn compute_background_image_size(
|
||||
bg_size: BackgroundSize<LengthOrPercentageOrAuto>,
|
||||
bounds_size: Size2D<Au>,
|
||||
intrinsic_size: Option<Size2D<Au>>,
|
||||
) -> Size2D<Au> {
|
||||
match intrinsic_size {
|
||||
None => match bg_size {
|
||||
BackgroundSize::Cover | BackgroundSize::Contain => bounds_size,
|
||||
BackgroundSize::Explicit { width, height } => Size2D::new(
|
||||
MaybeAuto::from_style(width, bounds_size.width)
|
||||
.specified_or_default(bounds_size.width),
|
||||
MaybeAuto::from_style(height, bounds_size.height)
|
||||
.specified_or_default(bounds_size.height),
|
||||
),
|
||||
},
|
||||
Some(own_size) => {
|
||||
// If `image_aspect_ratio` < `bounds_aspect_ratio`, the image is tall; otherwise, it is
|
||||
// wide.
|
||||
let image_aspect_ratio = own_size.width.to_f32_px() / own_size.height.to_f32_px();
|
||||
let bounds_aspect_ratio =
|
||||
bounds_size.width.to_f32_px() / bounds_size.height.to_f32_px();
|
||||
match (bg_size, image_aspect_ratio < bounds_aspect_ratio) {
|
||||
(BackgroundSize::Contain, false) | (BackgroundSize::Cover, true) => Size2D::new(
|
||||
bounds_size.width,
|
||||
bounds_size.width.scale_by(image_aspect_ratio.recip()),
|
||||
),
|
||||
(BackgroundSize::Contain, true) | (BackgroundSize::Cover, false) => Size2D::new(
|
||||
bounds_size.height.scale_by(image_aspect_ratio),
|
||||
bounds_size.height,
|
||||
),
|
||||
(
|
||||
BackgroundSize::Explicit {
|
||||
width,
|
||||
height: LengthOrPercentageOrAuto::Auto,
|
||||
},
|
||||
_,
|
||||
) => {
|
||||
let width = MaybeAuto::from_style(width, bounds_size.width)
|
||||
.specified_or_default(own_size.width);
|
||||
Size2D::new(width, width.scale_by(image_aspect_ratio.recip()))
|
||||
},
|
||||
(
|
||||
BackgroundSize::Explicit {
|
||||
width: LengthOrPercentageOrAuto::Auto,
|
||||
height,
|
||||
},
|
||||
_,
|
||||
) => {
|
||||
let height = MaybeAuto::from_style(height, bounds_size.height)
|
||||
.specified_or_default(own_size.height);
|
||||
Size2D::new(height.scale_by(image_aspect_ratio), height)
|
||||
},
|
||||
(BackgroundSize::Explicit { width, height }, _) => Size2D::new(
|
||||
MaybeAuto::from_style(width, bounds_size.width)
|
||||
.specified_or_default(own_size.width),
|
||||
MaybeAuto::from_style(height, bounds_size.height)
|
||||
.specified_or_default(own_size.height),
|
||||
),
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn tile_image_round(
|
||||
position: &mut Au,
|
||||
size: &mut Au,
|
||||
absolute_anchor_origin: Au,
|
||||
image_size: &mut Au,
|
||||
) {
|
||||
if *size == Au(0) || *image_size == Au(0) {
|
||||
*position = Au(0);
|
||||
*size = Au(0);
|
||||
return;
|
||||
}
|
||||
|
||||
let number_of_tiles = (size.to_f32_px() / image_size.to_f32_px()).round().max(1.0);
|
||||
*image_size = *size / (number_of_tiles as i32);
|
||||
tile_image(position, size, absolute_anchor_origin, *image_size);
|
||||
}
|
||||
|
||||
fn tile_image_spaced(
|
||||
position: &mut Au,
|
||||
size: &mut Au,
|
||||
tile_spacing: &mut Au,
|
||||
absolute_anchor_origin: Au,
|
||||
image_size: Au,
|
||||
) {
|
||||
if *size == Au(0) || image_size == Au(0) {
|
||||
*position = Au(0);
|
||||
*size = Au(0);
|
||||
*tile_spacing = Au(0);
|
||||
return;
|
||||
}
|
||||
|
||||
// Per the spec, if the space available is not enough for two images, just tile as
|
||||
// normal but only display a single tile.
|
||||
if image_size * 2 >= *size {
|
||||
tile_image(position, size, absolute_anchor_origin, image_size);
|
||||
*tile_spacing = Au(0);
|
||||
*size = image_size;
|
||||
return;
|
||||
}
|
||||
|
||||
// Take the box size, remove room for two tiles on the edges, and then calculate how many
|
||||
// other tiles fit in between them.
|
||||
let size_remaining = *size - (image_size * 2);
|
||||
let num_middle_tiles = (size_remaining.to_f32_px() / image_size.to_f32_px()).floor() as i32;
|
||||
|
||||
// Allocate the remaining space as padding between tiles. background-position is ignored
|
||||
// as per the spec, so the position is just the box origin. We are also ignoring
|
||||
// background-attachment here, which seems unspecced when combined with
|
||||
// background-repeat: space.
|
||||
let space_for_middle_tiles = image_size * num_middle_tiles;
|
||||
*tile_spacing = (size_remaining - space_for_middle_tiles) / (num_middle_tiles + 1);
|
||||
}
|
||||
|
||||
/// Tile an image
|
||||
fn tile_image(position: &mut Au, size: &mut Au, absolute_anchor_origin: Au, image_size: Au) {
|
||||
// Avoid division by zero below!
|
||||
// Images with a zero width or height are not displayed.
|
||||
// Therefore the positions do not matter and can be left unchanged.
|
||||
// NOTE: A possible optimization is not to build
|
||||
// display items in this case at all.
|
||||
if image_size == Au(0) {
|
||||
return;
|
||||
}
|
||||
|
||||
let delta_pixels = absolute_anchor_origin - *position;
|
||||
let image_size_px = image_size.to_f32_px();
|
||||
let tile_count = ((delta_pixels.to_f32_px() + image_size_px - 1.0) / image_size_px).floor();
|
||||
let offset = image_size * (tile_count as i32);
|
||||
let new_position = absolute_anchor_origin - offset;
|
||||
*size = *position - new_position + *size;
|
||||
*position = new_position;
|
||||
}
|
||||
|
||||
/// For either the x or the y axis ajust various values to account for tiling.
|
||||
///
|
||||
/// This is done separately for both axes because the repeat keywords may differ.
|
||||
pub fn tile_image_axis(
|
||||
repeat: RepeatKeyword,
|
||||
position: &mut Au,
|
||||
size: &mut Au,
|
||||
tile_size: &mut Au,
|
||||
tile_spacing: &mut Au,
|
||||
offset: Au,
|
||||
clip_origin: Au,
|
||||
clip_size: Au,
|
||||
) {
|
||||
let absolute_anchor_origin = *position + offset;
|
||||
match repeat {
|
||||
RepeatKeyword::NoRepeat => {
|
||||
*position += offset;
|
||||
*size = *tile_size;
|
||||
},
|
||||
RepeatKeyword::Repeat => {
|
||||
*position = clip_origin;
|
||||
*size = clip_size;
|
||||
tile_image(position, size, absolute_anchor_origin, *tile_size);
|
||||
},
|
||||
RepeatKeyword::Space => {
|
||||
tile_image_spaced(
|
||||
position,
|
||||
size,
|
||||
tile_spacing,
|
||||
absolute_anchor_origin,
|
||||
*tile_size,
|
||||
);
|
||||
let combined_tile_size = *tile_size + *tile_spacing;
|
||||
*position = clip_origin;
|
||||
*size = clip_size;
|
||||
tile_image(position, size, absolute_anchor_origin, combined_tile_size);
|
||||
},
|
||||
RepeatKeyword::Round => {
|
||||
tile_image_round(position, size, absolute_anchor_origin, tile_size);
|
||||
*position = clip_origin;
|
||||
*size = clip_size;
|
||||
tile_image(position, size, absolute_anchor_origin, *tile_size);
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
/// Determines the radius of a circle if it was not explictly provided.
|
||||
/// <https://drafts.csswg.org/css-images-3/#typedef-size>
|
||||
fn convert_circle_size_keyword(
|
||||
keyword: ShapeExtent,
|
||||
size: &Size2D<Au>,
|
||||
center: &Point2D<Au>,
|
||||
) -> Size2D<Au> {
|
||||
let radius = match keyword {
|
||||
ShapeExtent::ClosestSide | ShapeExtent::Contain => {
|
||||
let dist = get_distance_to_sides(size, center, ::std::cmp::min);
|
||||
::std::cmp::min(dist.width, dist.height)
|
||||
},
|
||||
ShapeExtent::FarthestSide => {
|
||||
let dist = get_distance_to_sides(size, center, ::std::cmp::max);
|
||||
::std::cmp::max(dist.width, dist.height)
|
||||
},
|
||||
ShapeExtent::ClosestCorner => get_distance_to_corner(size, center, ::std::cmp::min),
|
||||
ShapeExtent::FarthestCorner | ShapeExtent::Cover => {
|
||||
get_distance_to_corner(size, center, ::std::cmp::max)
|
||||
},
|
||||
};
|
||||
Size2D::new(radius, radius)
|
||||
}
|
||||
|
||||
/// Returns the radius for an ellipse with the same ratio as if it was matched to the sides.
|
||||
fn get_ellipse_radius<F>(size: &Size2D<Au>, center: &Point2D<Au>, cmp: F) -> Size2D<Au>
|
||||
where
|
||||
F: Fn(Au, Au) -> Au,
|
||||
{
|
||||
let dist = get_distance_to_sides(size, center, cmp);
|
||||
Size2D::new(
|
||||
dist.width.scale_by(::std::f32::consts::FRAC_1_SQRT_2 * 2.0),
|
||||
dist.height
|
||||
.scale_by(::std::f32::consts::FRAC_1_SQRT_2 * 2.0),
|
||||
)
|
||||
}
|
||||
|
||||
/// Determines the radius of an ellipse if it was not explictly provided.
|
||||
/// <https://drafts.csswg.org/css-images-3/#typedef-size>
|
||||
fn convert_ellipse_size_keyword(
|
||||
keyword: ShapeExtent,
|
||||
size: &Size2D<Au>,
|
||||
center: &Point2D<Au>,
|
||||
) -> Size2D<Au> {
|
||||
match keyword {
|
||||
ShapeExtent::ClosestSide | ShapeExtent::Contain => {
|
||||
get_distance_to_sides(size, center, ::std::cmp::min)
|
||||
},
|
||||
ShapeExtent::FarthestSide => get_distance_to_sides(size, center, ::std::cmp::max),
|
||||
ShapeExtent::ClosestCorner => get_ellipse_radius(size, center, ::std::cmp::min),
|
||||
ShapeExtent::FarthestCorner | ShapeExtent::Cover => {
|
||||
get_ellipse_radius(size, center, ::std::cmp::max)
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn convert_gradient_stops(gradient_items: &[GradientItem], total_length: Au) -> Vec<GradientStop> {
|
||||
// Determine the position of each stop per CSS-IMAGES § 3.4.
|
||||
|
||||
// Only keep the color stops, discard the color interpolation hints.
|
||||
let mut stop_items = gradient_items
|
||||
.iter()
|
||||
.filter_map(|item| match *item {
|
||||
GenericGradientItem::ColorStop(ref stop) => Some(*stop),
|
||||
_ => None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
assert!(stop_items.len() >= 2);
|
||||
|
||||
// Run the algorithm from
|
||||
// https://drafts.csswg.org/css-images-3/#color-stop-syntax
|
||||
|
||||
// Step 1:
|
||||
// If the first color stop does not have a position, set its position to 0%.
|
||||
{
|
||||
let first = stop_items.first_mut().unwrap();
|
||||
if first.position.is_none() {
|
||||
first.position = Some(LengthOrPercentage::Percentage(Percentage(0.0)));
|
||||
}
|
||||
}
|
||||
// If the last color stop does not have a position, set its position to 100%.
|
||||
{
|
||||
let last = stop_items.last_mut().unwrap();
|
||||
if last.position.is_none() {
|
||||
last.position = Some(LengthOrPercentage::Percentage(Percentage(1.0)));
|
||||
}
|
||||
}
|
||||
|
||||
// Step 2: Move any stops placed before earlier stops to the
|
||||
// same position as the preceding stop.
|
||||
let mut last_stop_position = stop_items.first().unwrap().position.unwrap();
|
||||
for stop in stop_items.iter_mut().skip(1) {
|
||||
if let Some(pos) = stop.position {
|
||||
if position_to_offset(last_stop_position, total_length) >
|
||||
position_to_offset(pos, total_length)
|
||||
{
|
||||
stop.position = Some(last_stop_position);
|
||||
}
|
||||
last_stop_position = stop.position.unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
// Step 3: Evenly space stops without position.
|
||||
// Note: Remove the + 2 if fix_gradient_stops is changed.
|
||||
let mut stops = Vec::with_capacity(stop_items.len() + 2);
|
||||
let mut stop_run = None;
|
||||
for (i, stop) in stop_items.iter().enumerate() {
|
||||
let offset = match stop.position {
|
||||
None => {
|
||||
if stop_run.is_none() {
|
||||
// Initialize a new stop run.
|
||||
// `unwrap()` here should never fail because this is the beginning of
|
||||
// a stop run, which is always bounded by a length or percentage.
|
||||
let start_offset =
|
||||
position_to_offset(stop_items[i - 1].position.unwrap(), total_length);
|
||||
// `unwrap()` here should never fail because this is the end of
|
||||
// a stop run, which is always bounded by a length or percentage.
|
||||
let (end_index, end_stop) = stop_items[(i + 1)..]
|
||||
.iter()
|
||||
.enumerate()
|
||||
.find(|&(_, ref stop)| stop.position.is_some())
|
||||
.unwrap();
|
||||
let end_offset = position_to_offset(end_stop.position.unwrap(), total_length);
|
||||
stop_run = Some(StopRun {
|
||||
start_offset: start_offset,
|
||||
end_offset: end_offset,
|
||||
start_index: i - 1,
|
||||
stop_count: end_index,
|
||||
})
|
||||
}
|
||||
|
||||
let stop_run = stop_run.unwrap();
|
||||
let stop_run_length = stop_run.end_offset - stop_run.start_offset;
|
||||
stop_run.start_offset +
|
||||
stop_run_length * (i - stop_run.start_index) as f32 /
|
||||
((2 + stop_run.stop_count) as f32)
|
||||
},
|
||||
Some(position) => {
|
||||
stop_run = None;
|
||||
position_to_offset(position, total_length)
|
||||
},
|
||||
};
|
||||
assert!(offset.is_finite());
|
||||
stops.push(GradientStop {
|
||||
offset: offset,
|
||||
color: stop.color.to_gfx_color(),
|
||||
})
|
||||
}
|
||||
stops
|
||||
}
|
||||
|
||||
pub fn convert_linear_gradient(
|
||||
size: Size2D<Au>,
|
||||
stops: &[GradientItem],
|
||||
direction: LineDirection,
|
||||
repeating: bool,
|
||||
) -> display_list::Gradient {
|
||||
let angle = match direction {
|
||||
LineDirection::Angle(angle) => angle.radians(),
|
||||
LineDirection::Horizontal(x) => match x {
|
||||
X::Left => Angle::Deg(270.).radians(),
|
||||
X::Right => Angle::Deg(90.).radians(),
|
||||
},
|
||||
LineDirection::Vertical(y) => match y {
|
||||
Y::Top => Angle::Deg(0.).radians(),
|
||||
Y::Bottom => Angle::Deg(180.).radians(),
|
||||
},
|
||||
LineDirection::Corner(horizontal, vertical) => {
|
||||
// This the angle for one of the diagonals of the box. Our angle
|
||||
// will either be this one, this one + PI, or one of the other
|
||||
// two perpendicular angles.
|
||||
let atan = (size.height.to_f32_px() / size.width.to_f32_px()).atan();
|
||||
match (horizontal, vertical) {
|
||||
(X::Right, Y::Bottom) => ::std::f32::consts::PI - atan,
|
||||
(X::Left, Y::Bottom) => ::std::f32::consts::PI + atan,
|
||||
(X::Right, Y::Top) => atan,
|
||||
(X::Left, Y::Top) => -atan,
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
// Get correct gradient line length, based on:
|
||||
// https://drafts.csswg.org/css-images-3/#linear-gradients
|
||||
let dir = Point2D::new(angle.sin(), -angle.cos());
|
||||
|
||||
let line_length =
|
||||
(dir.x * size.width.to_f32_px()).abs() + (dir.y * size.height.to_f32_px()).abs();
|
||||
|
||||
let inv_dir_length = 1.0 / (dir.x * dir.x + dir.y * dir.y).sqrt();
|
||||
|
||||
// This is the vector between the center and the ending point; i.e. half
|
||||
// of the distance between the starting point and the ending point.
|
||||
let delta = Vector2D::new(
|
||||
Au::from_f32_px(dir.x * inv_dir_length * line_length / 2.0),
|
||||
Au::from_f32_px(dir.y * inv_dir_length * line_length / 2.0),
|
||||
);
|
||||
|
||||
// This is the length of the gradient line.
|
||||
let length = Au::from_f32_px((delta.x.to_f32_px() * 2.0).hypot(delta.y.to_f32_px() * 2.0));
|
||||
|
||||
let mut stops = convert_gradient_stops(stops, length);
|
||||
|
||||
// Only clamped gradients need to be fixed because in repeating gradients
|
||||
// there is no "first" or "last" stop because they repeat infinitly in
|
||||
// both directions, so the rendering is always correct.
|
||||
if !repeating {
|
||||
fix_gradient_stops(&mut stops);
|
||||
}
|
||||
|
||||
let center = Point2D::new(size.width / 2, size.height / 2);
|
||||
|
||||
display_list::Gradient {
|
||||
start_point: center - delta,
|
||||
end_point: center + delta,
|
||||
stops: stops,
|
||||
repeating: repeating,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn convert_radial_gradient(
|
||||
size: Size2D<Au>,
|
||||
stops: &[GradientItem],
|
||||
shape: EndingShape,
|
||||
center: Position,
|
||||
repeating: bool,
|
||||
) -> display_list::RadialGradient {
|
||||
let center = Point2D::new(
|
||||
center.horizontal.to_used_value(size.width),
|
||||
center.vertical.to_used_value(size.height),
|
||||
);
|
||||
let radius = match shape {
|
||||
GenericEndingShape::Circle(Circle::Radius(length)) => {
|
||||
let length = Au::from(length);
|
||||
Size2D::new(length, length)
|
||||
},
|
||||
GenericEndingShape::Circle(Circle::Extent(extent)) => {
|
||||
convert_circle_size_keyword(extent, &size, ¢er)
|
||||
},
|
||||
GenericEndingShape::Ellipse(Ellipse::Radii(x, y)) => {
|
||||
Size2D::new(x.to_used_value(size.width), y.to_used_value(size.height))
|
||||
},
|
||||
GenericEndingShape::Ellipse(Ellipse::Extent(extent)) => {
|
||||
convert_ellipse_size_keyword(extent, &size, ¢er)
|
||||
},
|
||||
};
|
||||
|
||||
let mut stops = convert_gradient_stops(stops, radius.width);
|
||||
// Repeating gradients have no last stops that can be ignored. So
|
||||
// fixup is not necessary but may actually break the gradient.
|
||||
if !repeating {
|
||||
fix_gradient_stops(&mut stops);
|
||||
}
|
||||
|
||||
display_list::RadialGradient {
|
||||
center: center,
|
||||
radius: radius,
|
||||
stops: stops,
|
||||
repeating: repeating,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Duplicate the first and last stops if necessary.
|
||||
///
|
||||
/// Explanation by pyfisch:
|
||||
/// If the last stop is at the same position as the previous stop the
|
||||
/// last color is ignored by webrender. This differs from the spec
|
||||
/// (I think so). The implementations of Chrome and Firefox seem
|
||||
/// to have the same problem but work fine if the position of the last
|
||||
/// stop is smaller than 100%. (Otherwise they ignore the last stop.)
|
||||
///
|
||||
/// Similarly the first stop is duplicated if it is not placed
|
||||
/// at the start of the virtual gradient ray.
|
||||
fn fix_gradient_stops(stops: &mut Vec<GradientStop>) {
|
||||
if stops.first().unwrap().offset > 0.0 {
|
||||
let color = stops.first().unwrap().color;
|
||||
stops.insert(
|
||||
0,
|
||||
GradientStop {
|
||||
offset: 0.0,
|
||||
color: color,
|
||||
},
|
||||
)
|
||||
}
|
||||
if stops.last().unwrap().offset < 1.0 {
|
||||
let color = stops.last().unwrap().color;
|
||||
stops.push(GradientStop {
|
||||
offset: 1.0,
|
||||
color: color,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the the distance to the nearest or farthest corner depending on the comperator.
|
||||
fn get_distance_to_corner<F>(size: &Size2D<Au>, center: &Point2D<Au>, cmp: F) -> Au
|
||||
where
|
||||
F: Fn(Au, Au) -> Au,
|
||||
{
|
||||
let dist = get_distance_to_sides(size, center, cmp);
|
||||
Au::from_f32_px(dist.width.to_f32_px().hypot(dist.height.to_f32_px()))
|
||||
}
|
||||
|
||||
/// Returns the distance to the nearest or farthest sides depending on the comparator.
|
||||
///
|
||||
/// The first return value is horizontal distance the second vertical distance.
|
||||
fn get_distance_to_sides<F>(size: &Size2D<Au>, center: &Point2D<Au>, cmp: F) -> Size2D<Au>
|
||||
where
|
||||
F: Fn(Au, Au) -> Au,
|
||||
{
|
||||
let top_side = center.y;
|
||||
let right_side = size.width - center.x;
|
||||
let bottom_side = size.height - center.y;
|
||||
let left_side = center.x;
|
||||
Size2D::new(cmp(left_side, right_side), cmp(top_side, bottom_side))
|
||||
}
|
||||
|
||||
fn position_to_offset(position: LengthOrPercentage, total_length: Au) -> f32 {
|
||||
if total_length == Au(0) {
|
||||
return 0.0;
|
||||
}
|
||||
match position {
|
||||
LengthOrPercentage::Length(l) => l.to_i32_au() as f32 / total_length.0 as f32,
|
||||
LengthOrPercentage::Percentage(percentage) => percentage.0 as f32,
|
||||
LengthOrPercentage::Calc(calc) => {
|
||||
calc.to_used_value(Some(total_length)).unwrap().0 as f32 / total_length.0 as f32
|
||||
},
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue