through display list building.
The old `flow_origin` concept was ill-defined (sometimes the border box
plus the flow origin, sometimes including horizontal margins and
sometimes not, sometimes including relative position and sometimes not),
leading to brittleness and test failures. This commit reworks the logic
to always pass border box origins in during display list building.
The rendering is still wrong beause of #2795, but at least we get a rendering.
(This test change is just for readability, it should be equivalent to before.)
The exact rendering is ill-spec'd. Some things are ugly (especially the
width and height of list style images) but they are infrequently used
and I believe this implementation matches the spec. Numeric lists are
not supported yet, since they will require a separate layout pass.
The implementation is a subclass of `BlockFlow`, on advice from Robert
O'Callahan.
By "idempotent" I mean that later passes do not stomp on data from
earlier passes, so that we can run the passes individually for
incremental reflow. The main change here was to stop overwriting the
"minimum inline-size" field of each column with the column's computed
inline-size.
r? @mbrubeck
`invert` is not yet supported.
Objects that get layers will not yet display outlines properly. This is
because our overflow calculation doesn't take styles into account and
because layers are always anchored to the top left of the border box.
Since fixing this is work that is not related to outline *per se* I'm
leaving that to a followup and making a note in the code.
By "idempotent" I mean that later passes do not stomp on data from
earlier passes, so that we can run the passes individually for
incremental reflow. The main change here was to stop overwriting the
"minimum inline-size" field of each column with the column's computed
inline-size.
first-class.
This implements the scheme described here:
https://groups.google.com/forum/#!topic/mozilla.dev.servo/sZVPSfPVfkg
This commit changes Servo to generate one display list per stacking
context instead of one display list per layer. This is purely a
refactoring; there are no functional changes. Performance is essentially
the same as before. However, there should be numerous future benefits
that this is intended to allow for:
* It makes the code simpler to understand because the "new layer needed"
vs. "no new layer needed" code paths are more consolidated.
* It makes it easy to support CSS properties that did not fit into our
previous flat display list model (without unconditionally layerizing
them):
o `opacity` should be easy to support because the stacking context
provides the higher-level grouping of display items to which opacity
is to be applied.
o `transform` can be easily supported because the stacking context
provides a place to stash the transformation matrix. This has the side
benefit of nicely separating the transformation matrix from the
clipping regions.
* The `flatten` logic is now O(1) instead of O(n) and now only needs to
be invoked for pseudo-stacking contexts (right now: just floats),
instead of for every stacking context.
* Layers are now a proper tree instead of a flat list as far as layout
is concerned, bringing us closer to a production-quality
compositing/layers framework.
* This commit opens the door to incremental display list construction at
the level of stacking contexts.
Future performance improvements could come from optimizing allocation of
display list items, and, of course, incremental display list
construction.
Instead of looking at the display tree, have ContentBox(es)Query consult
the flow tree. This allow optimizing away parts of the display tree
later. To do this we need to be more careful about how we send reflow
requests, only querying the flow tree when possible.
Fixes#3790.
When this option is enabled, the layout task will print an error when
display list items draw outside their owning Flow's position rect. This
will make it easier to detect layout errors before they break rendering.
This is a command-line option for the moment, because we violate this
rule quite a bit still. Once all bugs causing this are fixed, we can be
more aggressive about enabling the option.
When this option is enabled, the layout task will print an error when
display list items draw outside their owning Flow's position rect. This
will make it easier to detect layout errors before they break rendering.
This is a command-line option for the moment, because we violate this
rule quite a bit still. Once all bugs causing this are fixed, we can be
more aggressive about enabling the option.
This also adds some extra debugging infrastructure which I found useful tracking
this bug down. A regression in the br reftests is also uncovered by this patch,
which I'll work on fixing next.
r? @pcwalton
Now that DOM/Flow traversals have been refactored out, the `recalc_style_for_subtree`
function in `css/matching.rs` can be removed, in lieu of just running the standard
`recalc_style_for_node` and `construct_flows` traversals sequentially. Now we
no longer have the maintenance headache of duplicating selector matching logic
in two places! \o/
r? @pcwalton
This also hides the not-yet-working parts of incremental reflow behind a runtime
flag. As I get the failing reftests passing, I'll send pull requests for them one
by one.
match L. David Baron's work-in-progress specification.
http://dbaron.org/css/intrinsic/
Column spans are not yet supported.
This effectively adds support for percentage widths, and it also fixes
many bugs, improving the layout of Google and Wikipedia.
matching, and use it for `<input size>` and `<td width>`.
This implements a general framework for legacy presentational attributes
to the DOM and style calculation, so that adding more of them later will
be straightforward.
a separate `ClipDisplayItem`.
We push down clipping areas during absolute position calculation. This
makes display items into a flat list, improving cache locality. It
dramatically simplifies the code all around.
Because we need to push down clip rects even for absolutely-positioned
children of non-absolutely-positioned flows, this patch alters the
parallel traversal to compute absolute positions for
absolutely-positioned children at the same time it computes absolute
positions for other children. This doesn't seem to break anything either
in theory (since the overall order remains correct) or in practice. It
simplifies the parallel traversal code quite a bit.
See the relevant Gecko bug:
https://bugzilla.mozilla.org/show_bug.cgi?id=615734