This adds the infrastructure necessary to support stacking contexts that
are not containing blocks for absolutely-positioned elements. Our
infrastructure did not support that before. This minor revamp actually
ended up simplifying the logic around display list building and
stacking-relative position computation for absolutely-positioned flows,
which was nice.
first-class.
This implements the scheme described here:
https://groups.google.com/forum/#!topic/mozilla.dev.servo/sZVPSfPVfkg
This commit changes Servo to generate one display list per stacking
context instead of one display list per layer. This is purely a
refactoring; there are no functional changes. Performance is essentially
the same as before. However, there should be numerous future benefits
that this is intended to allow for:
* It makes the code simpler to understand because the "new layer needed"
vs. "no new layer needed" code paths are more consolidated.
* It makes it easy to support CSS properties that did not fit into our
previous flat display list model (without unconditionally layerizing
them):
o `opacity` should be easy to support because the stacking context
provides the higher-level grouping of display items to which opacity
is to be applied.
o `transform` can be easily supported because the stacking context
provides a place to stash the transformation matrix. This has the side
benefit of nicely separating the transformation matrix from the
clipping regions.
* The `flatten` logic is now O(1) instead of O(n) and now only needs to
be invoked for pseudo-stacking contexts (right now: just floats),
instead of for every stacking context.
* Layers are now a proper tree instead of a flat list as far as layout
is concerned, bringing us closer to a production-quality
compositing/layers framework.
* This commit opens the door to incremental display list construction at
the level of stacking contexts.
Future performance improvements could come from optimizing allocation of
display list items, and, of course, incremental display list
construction.
We've discussed this some and I think there's consensus to do it as a
pragmatic decision for now. CPU painting is more stable, especially with
buggy drivers, and faster (because we aren't caching the necessary
OpenGL objects yet and possibly for other reasons), so it provides a
better "out of the box" experience for newcomers to Servo who don't know
to pass the `-c` option. This patch continues to reftest both Skia and
Skia-GL out of a desire to keep options open. Skia-GL remains a
first-class citizen.
a separate `ClipDisplayItem`.
We push down clipping areas during absolute position calculation. This
makes display items into a flat list, improving cache locality. It
dramatically simplifies the code all around.
Because we need to push down clip rects even for absolutely-positioned
children of non-absolutely-positioned flows, this patch alters the
parallel traversal to compute absolute positions for
absolutely-positioned children at the same time it computes absolute
positions for other children. This doesn't seem to break anything either
in theory (since the overall order remains correct) or in practice. It
simplifies the parallel traversal code quite a bit.
See the relevant Gecko bug:
https://bugzilla.mozilla.org/show_bug.cgi?id=615734
The page_rect passed to DisplayListOptimizer is relative to the
RenderLayer origin, but the display list components are relative to the
page origin. Before passing the page rect to the display list, we
translate it by the RenderLayer position.