#line 1 /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #define PST_TOP_LEFT uint(0) #define PST_TOP_RIGHT uint(1) #define PST_BOTTOM_LEFT uint(2) #define PST_BOTTOM_RIGHT uint(3) #define PST_TOP uint(4) #define PST_LEFT uint(5) #define PST_BOTTOM uint(6) #define PST_RIGHT uint(7) #define UV_NORMALIZED uint(0) #define UV_PIXEL uint(1) // Border styles as defined in webrender_traits/types.rs #define BORDER_STYLE_NONE uint(0) #define BORDER_STYLE_SOLID uint(1) #define BORDER_STYLE_DOUBLE uint(2) #define BORDER_STYLE_DOTTED uint(3) #define BORDER_STYLE_DASHED uint(4) #define BORDER_STYLE_HIDDEN uint(5) #define BORDER_STYLE_GROOVE uint(6) #define BORDER_STYLE_RIDGE uint(7) #define BORDER_STYLE_INSET uint(8) #define BORDER_STYLE_OUTSET uint(9) #define MAX_STOPS_PER_ANGLE_GRADIENT 8 #ifdef WR_VERTEX_SHADER #define VECS_PER_LAYER 13 #define LAYERS_PER_ROW (WR_MAX_VERTEX_TEXTURE_WIDTH / VECS_PER_LAYER) #define VECS_PER_TILE 2 #define TILES_PER_ROW (WR_MAX_VERTEX_TEXTURE_WIDTH / VECS_PER_TILE) uniform sampler2D sLayers; uniform sampler2D sRenderTasks; struct Layer { mat4 transform; mat4 inv_transform; vec4 local_clip_rect; vec4 screen_vertices[4]; }; layout(std140) uniform Data { vec4 data[WR_MAX_UBO_VECTORS]; }; Layer fetch_layer(int index) { Layer layer; // Create a UV base coord for each 8 texels. // This is required because trying to use an offset // of more than 8 texels doesn't work on some versions // of OSX. int y = index / LAYERS_PER_ROW; int x = VECS_PER_LAYER * (index % LAYERS_PER_ROW); ivec2 uv0 = ivec2(x + 0, y); ivec2 uv1 = ivec2(x + 8, y); layer.transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(0, 0)); layer.transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(1, 0)); layer.transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(2, 0)); layer.transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(3, 0)); layer.inv_transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(4, 0)); layer.inv_transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(5, 0)); layer.inv_transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(6, 0)); layer.inv_transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(7, 0)); layer.local_clip_rect = texelFetchOffset(sLayers, uv1, 0, ivec2(0, 0)); layer.screen_vertices[0] = texelFetchOffset(sLayers, uv1, 0, ivec2(1, 0)); layer.screen_vertices[1] = texelFetchOffset(sLayers, uv1, 0, ivec2(2, 0)); layer.screen_vertices[2] = texelFetchOffset(sLayers, uv1, 0, ivec2(2, 0)); layer.screen_vertices[3] = texelFetchOffset(sLayers, uv1, 0, ivec2(3, 0)); return layer; } struct Tile { vec4 actual_rect; vec4 target_rect; }; Tile fetch_tile(int index) { Tile tile; int y = index / TILES_PER_ROW; int x = VECS_PER_TILE * (index % TILES_PER_ROW); ivec2 uv = ivec2(x + 0, y); tile.actual_rect = texelFetchOffset(sRenderTasks, uv, 0, ivec2(0, 0)); tile.target_rect = texelFetchOffset(sRenderTasks, uv, 0, ivec2(1, 0)); return tile; } struct PrimitiveInfo { vec4 layer_tile; vec4 local_clip_rect; vec4 local_rect; }; PrimitiveInfo unpack_prim_info(int offset) { PrimitiveInfo info; info.layer_tile = data[offset + 0]; info.local_clip_rect = data[offset + 1]; info.local_rect = data[offset + 2]; return info; } struct ClipCorner { vec4 rect; vec4 outer_inner_radius; }; ClipCorner unpack_clip_corner(int offset) { ClipCorner corner; corner.rect = data[offset + 0]; corner.outer_inner_radius = data[offset + 1]; return corner; } struct Clip { vec4 rect; ClipCorner top_left; ClipCorner top_right; ClipCorner bottom_left; ClipCorner bottom_right; }; Clip unpack_clip(int offset) { Clip clip; clip.rect = data[offset + 0]; clip.top_left = unpack_clip_corner(offset + 1); clip.top_right = unpack_clip_corner(offset + 3); clip.bottom_left = unpack_clip_corner(offset + 5); clip.bottom_right = unpack_clip_corner(offset + 7); return clip; } bool ray_plane(vec3 normal, vec3 point, vec3 ray_origin, vec3 ray_dir, out float t) { float denom = dot(normal, ray_dir); if (denom > 1e-6) { vec3 d = point - ray_origin; t = dot(d, normal) / denom; return t >= 0.0; } return false; } vec4 untransform(vec2 ref, vec3 n, vec3 a, mat4 inv_transform) { vec3 p = vec3(ref, -10000.0); vec3 d = vec3(0, 0, 1.0); float t; ray_plane(n, a, p, d, t); vec3 c = p + d * t; vec4 r = inv_transform * vec4(c, 1.0); return r; } vec3 get_layer_pos(vec2 pos, Layer layer) { vec3 a = layer.screen_vertices[0].xyz / layer.screen_vertices[0].w; vec3 b = layer.screen_vertices[3].xyz / layer.screen_vertices[3].w; vec3 c = layer.screen_vertices[2].xyz / layer.screen_vertices[2].w; vec3 n = normalize(cross(b-a, c-a)); vec4 local_pos = untransform(pos, n, a, layer.inv_transform); return local_pos.xyw; } struct Rect { vec2 p0; vec2 p1; }; struct VertexInfo { Rect local_rect; vec2 local_clamped_pos; vec2 global_clamped_pos; }; VertexInfo write_vertex(PrimitiveInfo info) { Layer layer = fetch_layer(int(info.layer_tile.x)); Tile tile = fetch_tile(int(info.layer_tile.y)); vec2 p0 = floor(0.5 + info.local_rect.xy * uDevicePixelRatio) / uDevicePixelRatio; vec2 p1 = floor(0.5 + (info.local_rect.xy + info.local_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio; vec2 local_pos = mix(p0, p1, aPosition.xy); vec2 cp0 = floor(0.5 + info.local_clip_rect.xy * uDevicePixelRatio) / uDevicePixelRatio; vec2 cp1 = floor(0.5 + (info.local_clip_rect.xy + info.local_clip_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio; local_pos = clamp(local_pos, cp0, cp1); local_pos = clamp(local_pos, vec2(layer.local_clip_rect.xy), vec2(layer.local_clip_rect.xy + layer.local_clip_rect.zw)); vec4 world_pos = layer.transform * vec4(local_pos, 0, 1); world_pos.xyz /= world_pos.w; vec2 device_pos = world_pos.xy * uDevicePixelRatio; vec2 clamped_pos = clamp(device_pos, vec2(tile.actual_rect.xy), vec2(tile.actual_rect.xy + tile.actual_rect.zw)); vec4 local_clamped_pos = layer.inv_transform * vec4(clamped_pos / uDevicePixelRatio, world_pos.z, 1); local_clamped_pos.xyz /= local_clamped_pos.w; vec2 final_pos = clamped_pos + vec2(tile.target_rect.xy) - vec2(tile.actual_rect.xy); gl_Position = uTransform * vec4(final_pos, 0, 1); VertexInfo vi = VertexInfo(Rect(p0, p1), local_clamped_pos.xy, clamped_pos.xy); return vi; } struct TransformVertexInfo { vec3 local_pos; vec4 clipped_local_rect; }; TransformVertexInfo write_transform_vertex(PrimitiveInfo info) { Layer layer = fetch_layer(int(info.layer_tile.x)); Tile tile = fetch_tile(int(info.layer_tile.y)); vec2 lp0 = info.local_rect.xy; vec2 lp1 = info.local_rect.xy + info.local_rect.zw; lp0 = clamp(lp0, layer.local_clip_rect.xy, layer.local_clip_rect.xy + layer.local_clip_rect.zw); lp1 = clamp(lp1, layer.local_clip_rect.xy, layer.local_clip_rect.xy + layer.local_clip_rect.zw); vec4 clipped_local_rect = vec4(lp0, lp1 - lp0); vec2 p0 = lp0; vec2 p1 = vec2(lp1.x, lp0.y); vec2 p2 = vec2(lp0.x, lp1.y); vec2 p3 = lp1; vec4 t0 = layer.transform * vec4(p0, 0, 1); vec4 t1 = layer.transform * vec4(p1, 0, 1); vec4 t2 = layer.transform * vec4(p2, 0, 1); vec4 t3 = layer.transform * vec4(p3, 0, 1); vec2 tp0 = t0.xy / t0.w; vec2 tp1 = t1.xy / t1.w; vec2 tp2 = t2.xy / t2.w; vec2 tp3 = t3.xy / t3.w; vec2 min_pos = min(tp0.xy, min(tp1.xy, min(tp2.xy, tp3.xy))); vec2 max_pos = max(tp0.xy, max(tp1.xy, max(tp2.xy, tp3.xy))); vec2 min_pos_clamped = clamp(min_pos * uDevicePixelRatio, vec2(tile.actual_rect.xy), vec2(tile.actual_rect.xy + tile.actual_rect.zw)); vec2 max_pos_clamped = clamp(max_pos * uDevicePixelRatio, vec2(tile.actual_rect.xy), vec2(tile.actual_rect.xy + tile.actual_rect.zw)); vec2 clamped_pos = mix(min_pos_clamped, max_pos_clamped, aPosition.xy); vec3 layer_pos = get_layer_pos(clamped_pos / uDevicePixelRatio, layer); vec2 final_pos = clamped_pos + vec2(tile.target_rect.xy) - vec2(tile.actual_rect.xy); gl_Position = uTransform * vec4(final_pos, 0, 1); return TransformVertexInfo(layer_pos, clipped_local_rect); } struct Rectangle { PrimitiveInfo info; vec4 color; }; Rectangle fetch_rectangle(int index) { Rectangle rect; int offset = index * 4; rect.info = unpack_prim_info(offset); rect.color = data[offset + 3]; return rect; } struct RectangleClip { PrimitiveInfo info; vec4 color; Clip clip; }; RectangleClip fetch_rectangle_clip(int index) { RectangleClip rect; int offset = index * 13; rect.info = unpack_prim_info(offset); rect.color = data[offset + 3]; rect.clip = unpack_clip(offset + 4); return rect; } struct Glyph { PrimitiveInfo info; vec4 color; vec4 uv_rect; }; Glyph fetch_glyph(int index) { Glyph glyph; int offset = index * 5; glyph.info = unpack_prim_info(offset); glyph.color = data[offset + 3]; glyph.uv_rect = data[offset + 4]; return glyph; } struct TextRunGlyph { vec4 local_rect; vec4 uv_rect; }; struct TextRun { PrimitiveInfo info; vec4 color; TextRunGlyph glyphs[WR_GLYPHS_PER_TEXT_RUN]; }; PrimitiveInfo fetch_text_run_glyph(int index, out vec4 color, out vec4 uv_rect) { int offset = 20 * (index / WR_GLYPHS_PER_TEXT_RUN); int glyph_index = index % WR_GLYPHS_PER_TEXT_RUN; int glyph_offset = offset + 4 + 2 * glyph_index; PrimitiveInfo info; info.layer_tile = data[offset + 0]; info.local_clip_rect = data[offset + 1]; info.local_rect = data[glyph_offset + 0]; color = data[offset + 3]; uv_rect = data[glyph_offset + 1]; return info; } struct Image { PrimitiveInfo info; vec4 st_rect; // Location of the image texture in the texture atlas. vec4 stretch_size_and_tile_spacing; // Size of the actual image and amount of space between // tiled instances of this image. vec4 uvkind; // Type of texture coordinates. }; Image fetch_image(int index) { Image image; int offset = index * 6; image.info = unpack_prim_info(offset); image.st_rect = data[offset + 3]; image.stretch_size_and_tile_spacing = data[offset + 4]; image.uvkind = data[offset + 5]; return image; } struct ImageClip { PrimitiveInfo info; vec4 st_rect; // Location of the image texture in the texture atlas. vec4 stretch_size_and_tile_spacing; // Size of the actual image and amount of space between // tiled instances of this image. vec4 uvkind; // Type of texture coordinates. Clip clip; }; ImageClip fetch_image_clip(int index) { ImageClip image; int offset = index * 15; image.info = unpack_prim_info(offset); image.st_rect = data[offset + 3]; image.stretch_size_and_tile_spacing = data[offset + 4]; image.uvkind = data[offset + 5]; image.clip = unpack_clip(offset + 6); return image; } struct Border { PrimitiveInfo info; vec4 verticalColor; vec4 horizontalColor; vec4 radii; vec4 border_style_trbl; vec4 part; }; Border fetch_border(int index) { Border border; int offset = index * 8; border.info = unpack_prim_info(offset); border.verticalColor = data[offset + 3]; border.horizontalColor = data[offset + 4]; border.radii = data[offset + 5]; border.border_style_trbl = data[offset + 6]; border.part = data[offset + 7]; return border; } struct BoxShadow { PrimitiveInfo info; vec4 color; vec4 border_radii_blur_radius_inverted; vec4 bs_rect; vec4 src_rect; }; BoxShadow fetch_boxshadow(int index) { BoxShadow bs; int offset = index * 7; bs.info = unpack_prim_info(offset); bs.color = data[offset + 3]; bs.border_radii_blur_radius_inverted = data[offset + 4]; bs.bs_rect = data[offset + 5]; bs.src_rect = data[offset + 6]; return bs; } struct AlignedGradient { PrimitiveInfo info; vec4 color0; vec4 color1; vec4 dir; Clip clip; }; AlignedGradient fetch_aligned_gradient(int index) { AlignedGradient gradient; int offset = index * 15; gradient.info = unpack_prim_info(offset); gradient.color0 = data[offset + 3]; gradient.color1 = data[offset + 4]; gradient.dir = data[offset + 5]; gradient.clip = unpack_clip(offset + 6); return gradient; } struct AngleGradient { PrimitiveInfo info; vec4 start_end_point; vec4 stop_count; vec4 colors[MAX_STOPS_PER_ANGLE_GRADIENT]; vec4 offsets[MAX_STOPS_PER_ANGLE_GRADIENT/4]; }; AngleGradient fetch_angle_gradient(int index) { AngleGradient gradient; int offset = index * 15; gradient.info = unpack_prim_info(offset); gradient.start_end_point = data[offset + 3]; gradient.stop_count = data[offset + 4]; for (int i=0 ; i < MAX_STOPS_PER_ANGLE_GRADIENT ; ++i) { gradient.colors[i] = data[offset + 5 + i]; } for (int i=0 ; i < MAX_STOPS_PER_ANGLE_GRADIENT/4 ; ++i) { gradient.offsets[i] = data[offset + 5 + MAX_STOPS_PER_ANGLE_GRADIENT + i]; } return gradient; } struct Blend { vec4 src_id_target_id_opacity; }; Blend fetch_blend(int index) { Blend blend; int offset = index * 1; blend.src_id_target_id_opacity = data[offset + 0]; return blend; } struct Composite { vec4 src0_src1_target_id; vec4 info_amount; }; Composite fetch_composite(int index) { Composite composite; int offset = index * 2; composite.src0_src1_target_id = data[offset + 0]; composite.info_amount = data[offset + 1]; return composite; } #endif #ifdef WR_FRAGMENT_SHADER float do_clip(vec2 pos, vec4 clip_rect, vec4 radius) { vec2 ref_tl = clip_rect.xy + vec2( radius.x, radius.x); vec2 ref_tr = clip_rect.zy + vec2(-radius.y, radius.y); vec2 ref_br = clip_rect.zw + vec2(-radius.z, -radius.z); vec2 ref_bl = clip_rect.xw + vec2( radius.w, -radius.w); float d_tl = distance(pos, ref_tl); float d_tr = distance(pos, ref_tr); float d_br = distance(pos, ref_br); float d_bl = distance(pos, ref_bl); float pixels_per_fragment = length(fwidth(pos.xy)); float nudge = 0.5 * pixels_per_fragment; bool out0 = pos.x < ref_tl.x && pos.y < ref_tl.y && d_tl > radius.x - nudge; bool out1 = pos.x > ref_tr.x && pos.y < ref_tr.y && d_tr > radius.y - nudge; bool out2 = pos.x > ref_br.x && pos.y > ref_br.y && d_br > radius.z - nudge; bool out3 = pos.x < ref_bl.x && pos.y > ref_bl.y && d_bl > radius.w - nudge; float distance_from_border = (float(out0) * (d_tl - radius.x + nudge)) + (float(out1) * (d_tr - radius.y + nudge)) + (float(out2) * (d_br - radius.z + nudge)) + (float(out3) * (d_bl - radius.w + nudge)); // Move the distance back into pixels. distance_from_border /= pixels_per_fragment; // Apply a more gradual fade out to transparent. //distance_from_border -= 0.5; return smoothstep(1.0, 0.0, distance_from_border); } float squared_distance_from_rect(vec2 p, vec2 origin, vec2 size) { vec2 clamped = clamp(p, origin, origin + size); return distance(clamped, p); } vec2 init_transform_fs(vec3 local_pos, vec4 local_rect, out float fragment_alpha) { fragment_alpha = 1.0; vec2 pos = local_pos.xy / local_pos.z; float squared_distance = squared_distance_from_rect(pos, local_rect.xy, local_rect.zw); if (squared_distance != 0.0) { float delta = length(fwidth(local_pos.xy)); fragment_alpha = smoothstep(1.0, 0.0, squared_distance / delta * 2.0); } return pos; } #endif