/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Servo heavily uses display lists, which are retained-mode lists of rendering commands to //! perform. Using a list instead of rendering elements in immediate mode allows transforms, hit //! testing, and invalidation to be performed using the same primitives as painting. It also allows //! Servo to aggressively cull invisible and out-of-bounds rendering elements, to reduce overdraw. //! Finally, display lists allow tiles to be farmed out onto multiple CPUs and rendered in //! parallel (although this benefit does not apply to GPU-based rendering). //! //! Display items describe relatively high-level drawing operations (for example, entire borders //! and shadows instead of lines and blur operations), to reduce the amount of allocation required. //! They are therefore not exactly analogous to constructs like Skia pictures, which consist of //! low-level drawing primitives. use color::Color; use render_context::RenderContext; use text::glyph::CharIndex; use text::TextRun; use azure::azure::AzFloat; use collections::Deque; use collections::dlist::{mod, DList}; use geom::{Point2D, Rect, SideOffsets2D, Size2D, Matrix2D}; use libc::uintptr_t; use servo_net::image::base::Image; use servo_util::dlist as servo_dlist; use servo_util::geometry::Au; use servo_util::range::Range; use std::fmt; use std::slice::Items; use style::computed_values::border_style; use sync::Arc; // It seems cleaner to have layout code not mention Azure directly, so let's just reexport this for // layout to use. pub use azure::azure_hl::GradientStop; pub mod optimizer; /// An opaque handle to a node. The only safe operation that can be performed on this node is to /// compare it to another opaque handle or to another node. /// /// Because the script task's GC does not trace layout, node data cannot be safely stored in layout /// data structures. Also, layout code tends to be faster when the DOM is not being accessed, for /// locality reasons. Using `OpaqueNode` enforces this invariant. #[deriving(Clone, PartialEq)] pub struct OpaqueNode(pub uintptr_t); impl OpaqueNode { /// Returns the address of this node, for debugging purposes. pub fn id(&self) -> uintptr_t { let OpaqueNode(pointer) = *self; pointer } } /// "Steps" as defined by CSS 2.1 § E.2. #[deriving(Clone, PartialEq, Show)] pub enum StackingLevel { /// The border and backgrounds for the root of this stacking context: steps 1 and 2. BackgroundAndBordersStackingLevel, /// Borders and backgrounds for block-level descendants: step 4. BlockBackgroundsAndBordersStackingLevel, /// Floats: step 5. These are treated as pseudo-stacking contexts. FloatStackingLevel, /// All other content. ContentStackingLevel, /// Positioned descendant stacking contexts, along with their `z-index` levels. /// /// TODO(pcwalton): `z-index` should be the actual CSS property value in order to handle /// `auto`, not just an integer. PositionedDescendantStackingLevel(i32) } impl StackingLevel { #[inline] pub fn from_background_and_border_level(level: BackgroundAndBorderLevel) -> StackingLevel { match level { RootOfStackingContextLevel => BackgroundAndBordersStackingLevel, BlockLevel => BlockBackgroundsAndBordersStackingLevel, ContentLevel => ContentStackingLevel, } } } struct StackingContext { /// The border and backgrounds for the root of this stacking context: steps 1 and 2. pub background_and_borders: DisplayList, /// Borders and backgrounds for block-level descendants: step 4. pub block_backgrounds_and_borders: DisplayList, /// Floats: step 5. These are treated as pseudo-stacking contexts. pub floats: DisplayList, /// All other content. pub content: DisplayList, /// Positioned descendant stacking contexts, along with their `z-index` levels. pub positioned_descendants: Vec<(i32, DisplayList)>, } impl StackingContext { /// Creates a new empty stacking context. #[inline] fn new() -> StackingContext { StackingContext { background_and_borders: DisplayList::new(), block_backgrounds_and_borders: DisplayList::new(), floats: DisplayList::new(), content: DisplayList::new(), positioned_descendants: Vec::new(), } } /// Initializes a stacking context from a display list, consuming that display list in the /// process. fn init_from_list(&mut self, list: &mut DisplayList) { while !list.list.is_empty() { let mut head = DisplayList::from_list(servo_dlist::split(&mut list.list)); match head.front().unwrap().base().level { BackgroundAndBordersStackingLevel => { self.background_and_borders.append_from(&mut head) } BlockBackgroundsAndBordersStackingLevel => { self.block_backgrounds_and_borders.append_from(&mut head) } FloatStackingLevel => self.floats.append_from(&mut head), ContentStackingLevel => self.content.append_from(&mut head), PositionedDescendantStackingLevel(z_index) => { match self.positioned_descendants.iter_mut().find(|& &(z, _)| z_index == z) { Some(&(_, ref mut my_list)) => { my_list.append_from(&mut head); continue } None => {} } self.positioned_descendants.push((z_index, head)) } } } } } /// Which level to place backgrounds and borders in. pub enum BackgroundAndBorderLevel { RootOfStackingContextLevel, BlockLevel, ContentLevel, } /// A list of rendering operations to be performed. #[deriving(Clone, Show)] pub struct DisplayList { pub list: DList, } pub enum DisplayListIterator<'a> { EmptyDisplayListIterator, ParentDisplayListIterator(Items<'a,DisplayList>), } impl<'a> Iterator<&'a DisplayList> for DisplayListIterator<'a> { #[inline] fn next(&mut self) -> Option<&'a DisplayList> { match *self { EmptyDisplayListIterator => None, ParentDisplayListIterator(ref mut subiterator) => subiterator.next(), } } } impl DisplayList { /// Creates a new display list. #[inline] pub fn new() -> DisplayList { DisplayList { list: DList::new(), } } /// Creates a new display list from the given list of display items. fn from_list(list: DList) -> DisplayList { DisplayList { list: list, } } /// Appends the given item to the display list. #[inline] pub fn push(&mut self, item: DisplayItem) { self.list.push(item); } /// Appends the items in the given display list to this one, removing them in the process. #[inline] pub fn append_from(&mut self, other: &mut DisplayList) { servo_dlist::append_from(&mut self.list, &mut other.list) } /// Returns the first display item in this list. #[inline] fn front(&self) -> Option<&DisplayItem> { self.list.front() } pub fn debug(&self) { for item in self.list.iter() { item.debug_with_level(0); } } /// Draws the display list into the given render context. The display list must be flattened /// first for correct painting. pub fn draw_into_context(&self, render_context: &mut RenderContext, current_transform: &Matrix2D, current_clip_stack: &mut Vec>) { debug!("Beginning display list."); for item in self.list.iter() { item.draw_into_context(render_context, current_transform, current_clip_stack) } debug!("Ending display list."); } /// Returns a preorder iterator over the given display list. #[inline] pub fn iter<'a>(&'a self) -> DisplayItemIterator<'a> { ParentDisplayItemIterator(self.list.iter()) } /// Flattens a display list into a display list with a single stacking level according to the /// steps in CSS 2.1 § E.2. /// /// This must be called before `draw_into_context()` is for correct results. pub fn flatten(&mut self, resulting_level: StackingLevel) { // Fast paths: if self.list.len() == 0 { return } if self.list.len() == 1 { self.set_stacking_level(resulting_level); return } let mut stacking_context = StackingContext::new(); stacking_context.init_from_list(self); debug_assert!(self.list.is_empty()); // Steps 1 and 2: Borders and background for the root. self.append_from(&mut stacking_context.background_and_borders); // Sort positioned children according to z-index. stacking_context.positioned_descendants.sort_by(|&(z_index_a, _), &(z_index_b, _)| { z_index_a.cmp(&z_index_b) }); // Step 3: Positioned descendants with negative z-indices. for &(ref mut z_index, ref mut list) in stacking_context.positioned_descendants.iter_mut() { if *z_index < 0 { self.append_from(list) } } // Step 4: Block backgrounds and borders. self.append_from(&mut stacking_context.block_backgrounds_and_borders); // Step 5: Floats. self.append_from(&mut stacking_context.floats); // TODO(pcwalton): Step 6: Inlines that generate stacking contexts. // Step 7: Content. self.append_from(&mut stacking_context.content); // Steps 8 and 9: Positioned descendants with nonnegative z-indices. for &(ref mut z_index, ref mut list) in stacking_context.positioned_descendants.iter_mut() { if *z_index >= 0 { self.append_from(list) } } // TODO(pcwalton): Step 10: Outlines. self.set_stacking_level(resulting_level); } /// Sets the stacking level for this display list and all its subitems. fn set_stacking_level(&mut self, new_level: StackingLevel) { for item in self.list.iter_mut() { item.mut_base().level = new_level; } } } /// One drawing command in the list. #[deriving(Clone)] pub enum DisplayItem { SolidColorDisplayItemClass(Box), TextDisplayItemClass(Box), ImageDisplayItemClass(Box), BorderDisplayItemClass(Box), GradientDisplayItemClass(Box), LineDisplayItemClass(Box), /// A pseudo-display item that exists only so that queries like `ContentBoxQuery` and /// `ContentBoxesQuery` can be answered. /// /// FIXME(pcwalton): This is really bogus. Those queries should not consult the display list /// but should instead consult the flow/box tree. PseudoDisplayItemClass(Box), } /// Information common to all display items. #[deriving(Clone)] pub struct BaseDisplayItem { /// The boundaries of the display item, in layer coordinates. pub bounds: Rect, /// The originating DOM node. pub node: OpaqueNode, /// The stacking level in which this display item lives. pub level: StackingLevel, /// The rectangle to clip to. /// /// TODO(pcwalton): Eventually, to handle `border-radius`, this will (at least) need to grow /// the ability to describe rounded rectangles. pub clip_rect: Rect, } impl BaseDisplayItem { #[inline(always)] pub fn new(bounds: Rect, node: OpaqueNode, level: StackingLevel, clip_rect: Rect) -> BaseDisplayItem { BaseDisplayItem { bounds: bounds, node: node, level: level, clip_rect: clip_rect, } } } /// Renders a solid color. #[deriving(Clone)] pub struct SolidColorDisplayItem { pub base: BaseDisplayItem, pub color: Color, } /// Renders text. #[deriving(Clone)] pub struct TextDisplayItem { /// Fields common to all display items. pub base: BaseDisplayItem, /// The text run. pub text_run: Arc>, /// The range of text within the text run. pub range: Range, /// The color of the text. pub text_color: Color, pub baseline_origin: Point2D, pub orientation: TextOrientation, } #[deriving(Clone, Eq, PartialEq)] pub enum TextOrientation { Upright, SidewaysLeft, SidewaysRight, } /// Renders an image. #[deriving(Clone)] pub struct ImageDisplayItem { pub base: BaseDisplayItem, pub image: Arc>, /// The dimensions to which the image display item should be stretched. If this is smaller than /// the bounds of this display item, then the image will be repeated in the appropriate /// direction to tile the entire bounds. pub stretch_size: Size2D, } /// Paints a gradient. #[deriving(Clone)] pub struct GradientDisplayItem { /// Fields common to all display items. pub base: BaseDisplayItem, /// The start point of the gradient (computed during display list construction). pub start_point: Point2D, /// The end point of the gradient (computed during display list construction). pub end_point: Point2D, /// A list of color stops. pub stops: Vec, } /// Renders a border. #[deriving(Clone)] pub struct BorderDisplayItem { pub base: BaseDisplayItem, /// The border widths pub border: SideOffsets2D, /// The border colors. pub color: SideOffsets2D, /// The border styles. pub style: SideOffsets2D } /// Renders a line segment. #[deriving(Clone)] pub struct LineDisplayItem { pub base: BaseDisplayItem, /// The line segment color. pub color: Color, /// The line segment style. pub style: border_style::T } pub enum DisplayItemIterator<'a> { EmptyDisplayItemIterator, ParentDisplayItemIterator(dlist::Items<'a,DisplayItem>), } impl<'a> Iterator<&'a DisplayItem> for DisplayItemIterator<'a> { #[inline] fn next(&mut self) -> Option<&'a DisplayItem> { match *self { EmptyDisplayItemIterator => None, ParentDisplayItemIterator(ref mut subiterator) => subiterator.next(), } } } impl DisplayItem { /// Renders this display item into the given render context. fn draw_into_context(&self, render_context: &mut RenderContext, current_transform: &Matrix2D, current_clip_stack: &mut Vec>) { // This should have been flattened to the content stacking level first. assert!(self.base().level == ContentStackingLevel); // TODO(pcwalton): This will need some tweaking to deal with more complex clipping regions. let clip_rect = &self.base().clip_rect; if current_clip_stack.len() == 0 || current_clip_stack.last().unwrap() != clip_rect { while current_clip_stack.len() != 0 { render_context.draw_pop_clip(); drop(current_clip_stack.pop()); } render_context.draw_push_clip(clip_rect); current_clip_stack.push(*clip_rect); } match *self { SolidColorDisplayItemClass(ref solid_color) => { render_context.draw_solid_color(&solid_color.base.bounds, solid_color.color) } TextDisplayItemClass(ref text) => { debug!("Drawing text at {}.", text.base.bounds); render_context.draw_text(&**text, current_transform); } ImageDisplayItemClass(ref image_item) => { debug!("Drawing image at {:?}.", image_item.base.bounds); let mut y_offset = Au(0); while y_offset < image_item.base.bounds.size.height { let mut x_offset = Au(0); while x_offset < image_item.base.bounds.size.width { let mut bounds = image_item.base.bounds; bounds.origin.x = bounds.origin.x + x_offset; bounds.origin.y = bounds.origin.y + y_offset; bounds.size = image_item.stretch_size; render_context.draw_image(bounds, image_item.image.clone()); x_offset = x_offset + image_item.stretch_size.width; } y_offset = y_offset + image_item.stretch_size.height; } } BorderDisplayItemClass(ref border) => { render_context.draw_border(&border.base.bounds, border.border, border.color, border.style) } GradientDisplayItemClass(ref gradient) => { render_context.draw_linear_gradient(&gradient.base.bounds, &gradient.start_point, &gradient.end_point, gradient.stops.as_slice()); } LineDisplayItemClass(ref line) => { render_context.draw_line(&line.base.bounds, line.color, line.style) } PseudoDisplayItemClass(_) => {} } } pub fn base<'a>(&'a self) -> &'a BaseDisplayItem { match *self { SolidColorDisplayItemClass(ref solid_color) => &solid_color.base, TextDisplayItemClass(ref text) => &text.base, ImageDisplayItemClass(ref image_item) => &image_item.base, BorderDisplayItemClass(ref border) => &border.base, GradientDisplayItemClass(ref gradient) => &gradient.base, LineDisplayItemClass(ref line) => &line.base, PseudoDisplayItemClass(ref base) => &**base, } } pub fn mut_base<'a>(&'a mut self) -> &'a mut BaseDisplayItem { match *self { SolidColorDisplayItemClass(ref mut solid_color) => &mut solid_color.base, TextDisplayItemClass(ref mut text) => &mut text.base, ImageDisplayItemClass(ref mut image_item) => &mut image_item.base, BorderDisplayItemClass(ref mut border) => &mut border.base, GradientDisplayItemClass(ref mut gradient) => &mut gradient.base, LineDisplayItemClass(ref mut line) => &mut line.base, PseudoDisplayItemClass(ref mut base) => &mut **base, } } pub fn bounds(&self) -> Rect { self.base().bounds } pub fn debug_with_level(&self, level: uint) { let mut indent = String::new(); for _ in range(0, level) { indent.push_str("| ") } println!("{}+ {}", indent, self); } } impl fmt::Show for DisplayItem { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} @ {} ({:x}) [{}]", match *self { SolidColorDisplayItemClass(_) => "SolidColor", TextDisplayItemClass(_) => "Text", ImageDisplayItemClass(_) => "Image", BorderDisplayItemClass(_) => "Border", GradientDisplayItemClass(_) => "Gradient", LineDisplayItemClass(_) => "Line", PseudoDisplayItemClass(_) => "Pseudo", }, self.base().bounds, self.base().node.id(), self.base().level ) } }