/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! An implementation of Houdini worklets.
//!
//! The goal of this implementation is to maximize responsiveness of worklets,
//! and in particular to ensure that the thread performing worklet tasks
//! is never busy GCing or loading worklet code. We do this by providing a custom
//! thread pool implementation, which only performs GC or code loading on
//! a backup thread, not on the primary worklet thread.

use app_units::Au;
use dom::bindings::codegen::Bindings::RequestBinding::RequestCredentials;
use dom::bindings::codegen::Bindings::WindowBinding::WindowBinding::WindowMethods;
use dom::bindings::codegen::Bindings::WorkletBinding::WorkletMethods;
use dom::bindings::codegen::Bindings::WorkletBinding::WorkletOptions;
use dom::bindings::codegen::Bindings::WorkletBinding::Wrap;
use dom::bindings::error::Error;
use dom::bindings::inheritance::Castable;
use dom::bindings::js::JS;
use dom::bindings::js::Root;
use dom::bindings::js::RootCollection;
use dom::bindings::refcounted::TrustedPromise;
use dom::bindings::reflector::Reflector;
use dom::bindings::reflector::reflect_dom_object;
use dom::bindings::str::USVString;
use dom::bindings::trace::JSTraceable;
use dom::bindings::trace::RootedTraceableBox;
use dom::globalscope::GlobalScope;
use dom::paintworkletglobalscope::PaintWorkletTask;
use dom::promise::Promise;
use dom::testworkletglobalscope::TestWorkletTask;
use dom::window::Window;
use dom::workletglobalscope::WorkletGlobalScope;
use dom::workletglobalscope::WorkletGlobalScopeInit;
use dom::workletglobalscope::WorkletGlobalScopeType;
use dom::workletglobalscope::WorkletTask;
use dom_struct::dom_struct;
use euclid::Size2D;
use js::jsapi::JSGCParamKey;
use js::jsapi::JSTracer;
use js::jsapi::JS_GC;
use js::jsapi::JS_GetGCParameter;
use js::rust::Runtime;
use msg::constellation_msg::PipelineId;
use net_traits::IpcSend;
use net_traits::image::base::Image;
use net_traits::load_whole_resource;
use net_traits::request::Destination;
use net_traits::request::RequestInit;
use net_traits::request::RequestMode;
use net_traits::request::Type as RequestType;
use script_runtime::CommonScriptMsg;
use script_runtime::ScriptThreadEventCategory;
use script_runtime::StackRootTLS;
use script_runtime::new_rt_and_cx;
use script_thread::MainThreadScriptMsg;
use script_thread::Runnable;
use script_thread::ScriptThread;
use script_traits::PaintWorkletError;
use script_traits::PaintWorkletExecutor;
use servo_atoms::Atom;
use servo_rand;
use servo_url::ImmutableOrigin;
use servo_url::ServoUrl;
use std::cmp::max;
use std::collections::HashMap;
use std::collections::hash_map;
use std::rc::Rc;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::atomic::AtomicIsize;
use std::sync::atomic::Ordering;
use std::sync::mpsc;
use std::sync::mpsc::Receiver;
use std::sync::mpsc::Sender;
use std::thread;
use std::time::Duration;
use style::thread_state;
use swapper::Swapper;
use swapper::swapper;
use uuid::Uuid;

// Magic numbers
const WORKLET_THREAD_POOL_SIZE: u32 = 3;
const MIN_GC_THRESHOLD: u32 = 1_000_000;
const PAINT_TIMEOUT_MILLISECONDS: u64 = 10;

#[dom_struct]
/// https://drafts.css-houdini.org/worklets/#worklet
pub struct Worklet {
    reflector: Reflector,
    window: JS<Window>,
    worklet_id: WorkletId,
    global_type: WorkletGlobalScopeType,
}

impl Worklet {
    fn new_inherited(window: &Window, global_type: WorkletGlobalScopeType) -> Worklet {
        Worklet {
            reflector: Reflector::new(),
            window: JS::from_ref(window),
            worklet_id: WorkletId::new(),
            global_type: global_type,
        }
    }

    pub fn new(window: &Window, global_type: WorkletGlobalScopeType) -> Root<Worklet> {
        debug!("Creating worklet {:?}.", global_type);
        reflect_dom_object(box Worklet::new_inherited(window, global_type), window, Wrap)
    }

    pub fn worklet_id(&self) -> WorkletId {
        self.worklet_id
    }

    #[allow(dead_code)]
    pub fn worklet_global_scope_type(&self) -> WorkletGlobalScopeType {
        self.global_type
    }

    pub fn executor(&self) -> WorkletExecutor {
        WorkletExecutor {
            worklet_id: self.worklet_id,
            primary_sender: Mutex::new(ScriptThread::worklet_thread_pool().primary_sender.clone()),
        }
    }
}

impl WorkletMethods for Worklet {
    #[allow(unrooted_must_root)]
    /// https://drafts.css-houdini.org/worklets/#dom-worklet-addmodule
    fn AddModule(&self, module_url: USVString, options: &WorkletOptions) -> Rc<Promise> {
        // Step 1.
        let promise = Promise::new(self.window.upcast());

        // Step 3.
        let module_url_record = match self.window.Document().base_url().join(&module_url.0) {
            Ok(url) => url,
            Err(err) => {
                // Step 4.
                debug!("URL {:?} parse error {:?}.", module_url.0, err);
                promise.reject_error(self.window.get_cx(), Error::Syntax);
                return promise;
            }
        };
        debug!("Adding Worklet module {}.", module_url_record);

        // Steps 6-12 in parallel.
        let pending_tasks_struct = PendingTasksStruct::new();
        let global = self.window.upcast::<GlobalScope>();
        let pool = ScriptThread::worklet_thread_pool();

        pool.fetch_and_invoke_a_worklet_script(global.pipeline_id(),
                                               self.worklet_id,
                                               self.global_type,
                                               self.window.origin().immutable().clone(),
                                               global.api_base_url(),
                                               module_url_record,
                                               options.credentials.clone(),
                                               pending_tasks_struct,
                                               &promise);

        // Step 5.
        promise
    }
}

/// A guid for worklets.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, JSTraceable)]
pub struct WorkletId(Uuid);

known_heap_size!(0, WorkletId);

impl WorkletId {
    fn new() -> WorkletId {
        WorkletId(servo_rand::random())
    }
}

/// https://drafts.css-houdini.org/worklets/#pending-tasks-struct
#[derive(Clone, Debug)]
struct PendingTasksStruct(Arc<AtomicIsize>);

impl PendingTasksStruct {
    fn new() -> PendingTasksStruct {
        PendingTasksStruct(Arc::new(AtomicIsize::new(WORKLET_THREAD_POOL_SIZE as isize)))
    }

    fn set_counter_to(&self, value: isize) -> isize {
        self.0.swap(value, Ordering::AcqRel)
    }

    fn decrement_counter_by(&self, offset: isize) -> isize {
        self.0.fetch_sub(offset, Ordering::AcqRel)
    }
}

/// Worklets execute in a dedicated thread pool.
///
/// The goal is to ensure that there is a primary worklet thread,
/// which is able to responsively execute worklet code. In particular,
/// worklet execution should not be delayed by GC, or by script
/// loading.
///
/// To achieve this, we implement a three-thread pool, with the
/// threads cycling between three thread roles:
///
///  * The primary worklet thread is the one available to execute
///    worklet code.
///
///  * The hot backup thread may peform GC, but otherwise is expected
///    to take over the primary role.
///
///  * The cold backup thread may peform script loading and other
///    long-running tasks.
///
/// In the implementation, we use two kinds of messages:
///
///  * Data messages are expected to be processed quickly, and include
///    the worklet tasks to be performed by the primary thread, as
///    well as requests to change role or quit execution.
///
///  * Control messages are expected to be processed more slowly, and
///    include script loading.
///
/// Data messages are targeted at a role, for example, task execution
/// is expected to be performed by whichever thread is currently
/// primary. Control messages are targeted at a thread, for example
/// adding a module is performed in every thread, even if they change roles
/// in the middle of module loading.
///
/// The thread pool lives in the script thread, and is initialized
/// when a worklet adds a module. It is dropped when the script thread
/// is dropped, and asks each of the worklet threads to quit.

#[derive(Clone, JSTraceable)]
pub struct WorkletThreadPool {
    // Channels to send data messages to the three roles.
    primary_sender: Sender<WorkletData>,
    hot_backup_sender: Sender<WorkletData>,
    cold_backup_sender: Sender<WorkletData>,
    // Channels to send control messages to the three threads.
    control_sender_0: Sender<WorkletControl>,
    control_sender_1: Sender<WorkletControl>,
    control_sender_2: Sender<WorkletControl>,
}

impl Drop for WorkletThreadPool {
    fn drop(&mut self) {
        let _ = self.cold_backup_sender.send(WorkletData::Quit);
        let _ = self.hot_backup_sender.send(WorkletData::Quit);
        let _ = self.primary_sender.send(WorkletData::Quit);
    }
}

impl WorkletThreadPool {
    /// Create a new thread pool and spawn the threads.
    /// When the thread pool is dropped, the threads will be asked to quit.
    pub fn spawn(script_sender: Sender<MainThreadScriptMsg>, global_init: WorkletGlobalScopeInit) -> WorkletThreadPool {
        let primary_role = WorkletThreadRole::new(false, false);
        let hot_backup_role = WorkletThreadRole::new(true, false);
        let cold_backup_role = WorkletThreadRole::new(false, true);
        let primary_sender = primary_role.sender.clone();
        let hot_backup_sender = hot_backup_role.sender.clone();
        let cold_backup_sender = cold_backup_role.sender.clone();
        let init = WorkletThreadInit {
            hot_backup_sender: hot_backup_sender.clone(),
            cold_backup_sender: cold_backup_sender.clone(),
            script_sender: script_sender.clone(),
            global_init: global_init,
        };
        WorkletThreadPool {
            primary_sender: primary_sender,
            hot_backup_sender: hot_backup_sender,
            cold_backup_sender: cold_backup_sender,
            control_sender_0: WorkletThread::spawn(primary_role, init.clone()),
            control_sender_1: WorkletThread::spawn(hot_backup_role, init.clone()),
            control_sender_2: WorkletThread::spawn(cold_backup_role, init),
        }
    }

    /// Loads a worklet module into every worklet thread.
    /// If all of the threads load successfully, the promise is resolved.
    /// If any of the threads fails to load, the promise is rejected.
    /// https://drafts.css-houdini.org/worklets/#fetch-and-invoke-a-worklet-script
    fn fetch_and_invoke_a_worklet_script(&self,
                                         pipeline_id: PipelineId,
                                         worklet_id: WorkletId,
                                         global_type: WorkletGlobalScopeType,
                                         origin: ImmutableOrigin,
                                         base_url: ServoUrl,
                                         script_url: ServoUrl,
                                         credentials: RequestCredentials,
                                         pending_tasks_struct: PendingTasksStruct,
                                         promise: &Rc<Promise>)
    {
        // Send each thread a control message asking it to load the script.
        for sender in &[&self.control_sender_0, &self.control_sender_1, &self.control_sender_2] {
            let _ = sender.send(WorkletControl::FetchAndInvokeAWorkletScript {
                pipeline_id: pipeline_id,
                worklet_id: worklet_id,
                global_type: global_type,
                origin: origin.clone(),
                base_url: base_url.clone(),
                script_url: script_url.clone(),
                credentials: credentials,
                pending_tasks_struct: pending_tasks_struct.clone(),
                promise: TrustedPromise::new(promise.clone()),
            });
        }
        // If any of the threads are blocked waiting on data, wake them up.
        let _ = self.cold_backup_sender.send(WorkletData::WakeUp);
        let _ = self.hot_backup_sender.send(WorkletData::WakeUp);
        let _ = self.primary_sender.send(WorkletData::WakeUp);
    }

    /// For testing.
    pub fn test_worklet_lookup(&self, id: WorkletId, key: String) -> Option<String> {
        let (sender, receiver) = mpsc::channel();
        let msg = WorkletData::Task(id, WorkletTask::Test(TestWorkletTask::Lookup(key, sender)));
        let _ = self.primary_sender.send(msg);
        receiver.recv().expect("Test worklet has died?")
    }
}

/// The data messages sent to worklet threads
enum WorkletData {
    Task(WorkletId, WorkletTask),
    StartSwapRoles(Sender<WorkletData>),
    FinishSwapRoles(Swapper<WorkletThreadRole>),
    WakeUp,
    Quit,
}

/// The control message sent to worklet threads
enum WorkletControl {
    FetchAndInvokeAWorkletScript {
        pipeline_id: PipelineId,
        worklet_id: WorkletId,
        global_type: WorkletGlobalScopeType,
        origin: ImmutableOrigin,
        base_url: ServoUrl,
        script_url: ServoUrl,
        credentials: RequestCredentials,
        pending_tasks_struct: PendingTasksStruct,
        promise: TrustedPromise,
    },
}

/// A role that a worklet thread can be playing.
///
/// These roles are used as tokens or capabilities, we track unique
/// ownership using Rust's types, and use atomic swapping to exchange
/// them between worklet threads. This ensures that each thread pool has
/// exactly one primary, one hot backup and one cold backup.
struct WorkletThreadRole {
    receiver: Receiver<WorkletData>,
    sender: Sender<WorkletData>,
    is_hot_backup: bool,
    is_cold_backup: bool,
}

impl WorkletThreadRole {
    fn new(is_hot_backup: bool, is_cold_backup: bool) -> WorkletThreadRole {
        let (sender, receiver) = mpsc::channel();
        WorkletThreadRole {
            sender: sender,
            receiver: receiver,
            is_hot_backup: is_hot_backup,
            is_cold_backup: is_cold_backup,
        }
    }
}

/// Data to initialize a worklet thread.
#[derive(Clone)]
struct WorkletThreadInit {
    /// Senders
    hot_backup_sender: Sender<WorkletData>,
    cold_backup_sender: Sender<WorkletData>,
    script_sender: Sender<MainThreadScriptMsg>,

    /// Data for initializing new worklet global scopes
    global_init: WorkletGlobalScopeInit,
}

/// A thread for executing worklets.
#[must_root]
struct WorkletThread {
    /// Which role the thread is currently playing
    role: WorkletThreadRole,

    /// The thread's receiver for control messages
    control_receiver: Receiver<WorkletControl>,

    /// Senders
    hot_backup_sender: Sender<WorkletData>,
    cold_backup_sender: Sender<WorkletData>,
    script_sender: Sender<MainThreadScriptMsg>,

    /// Data for initializing new worklet global scopes
    global_init: WorkletGlobalScopeInit,

    /// The global scopes created by this thread
    global_scopes: HashMap<WorkletId, JS<WorkletGlobalScope>>,

    /// A one-place buffer for control messages
    control_buffer: Option<WorkletControl>,

    /// The JS runtime
    runtime: Runtime,
    should_gc: bool,
    gc_threshold: u32,
}

#[allow(unsafe_code)]
unsafe impl JSTraceable for WorkletThread {
    unsafe fn trace(&self, trc: *mut JSTracer) {
        debug!("Tracing worklet thread.");
        self.global_scopes.trace(trc);
    }
}

impl WorkletThread {
    /// Spawn a new worklet thread, returning the channel to send it control messages.
    #[allow(unsafe_code)]
    #[allow(unrooted_must_root)]
    fn spawn(role: WorkletThreadRole, init: WorkletThreadInit) -> Sender<WorkletControl> {
        let (control_sender, control_receiver) = mpsc::channel();
        // TODO: name this thread
        thread::spawn(move || {
            // TODO: add a new IN_WORKLET thread state?
            // TODO: set interrupt handler?
            // TODO: configure the JS runtime (e.g. discourage GC, encourage agressive JIT)
            debug!("Initializing worklet thread.");
            thread_state::initialize(thread_state::SCRIPT | thread_state::IN_WORKER);
            let roots = RootCollection::new();
            let _stack_roots_tls = StackRootTLS::new(&roots);
            let mut thread = RootedTraceableBox::new(WorkletThread {
                role: role,
                control_receiver: control_receiver,
                hot_backup_sender: init.hot_backup_sender,
                cold_backup_sender: init.cold_backup_sender,
                script_sender: init.script_sender,
                global_init: init.global_init,
                global_scopes: HashMap::new(),
                control_buffer: None,
                runtime: unsafe { new_rt_and_cx() },
                should_gc: false,
                gc_threshold: MIN_GC_THRESHOLD,
            });
            thread.run();
        });
        control_sender
    }

    /// The main event loop for a worklet thread
    fn run(&mut self) {
        loop {
            // The handler for data messages
            let message = self.role.receiver.recv().unwrap();
            match message {
                // The whole point of this thread pool is to perform tasks!
                WorkletData::Task(id, task) => {
                    self.perform_a_worklet_task(id, task);
                }
                // To start swapping roles, get ready to perform an atomic swap,
                // and block waiting for the other end to finish it.
                // NOTE: the cold backup can block on the primary or the hot backup;
                //       the hot backup can block on the primary;
                //       the primary can block on nothing;
                //       this total ordering on thread roles is what guarantees deadlock-freedom.
                WorkletData::StartSwapRoles(sender) => {
                    let (our_swapper, their_swapper) = swapper();
                    sender.send(WorkletData::FinishSwapRoles(their_swapper)).unwrap();
                    let _ = our_swapper.swap(&mut self.role);
                }
                // To finish swapping roles, perform the atomic swap.
                // The other end should have already started the swap, so this shouldn't block.
                WorkletData::FinishSwapRoles(swapper) => {
                    let _ = swapper.swap(&mut self.role);
                }
                // Wake up! There may be control messages to process.
                WorkletData::WakeUp => {
                }
                // Quit!
                WorkletData::Quit => {
                    return;
                }
            }
            // Only process control messages if we're the cold backup,
            // otherwise if there are outstanding control messages,
            // try to become the cold backup.
            if self.role.is_cold_backup {
                if let Some(control) = self.control_buffer.take() {
                    self.process_control(control);
                }
                while let Ok(control) = self.control_receiver.try_recv() {
                    self.process_control(control);
                }
                self.gc();
            } else if self.control_buffer.is_none() {
                if let Ok(control) = self.control_receiver.try_recv() {
                    self.control_buffer = Some(control);
                    let msg = WorkletData::StartSwapRoles(self.role.sender.clone());
                    let _ = self.cold_backup_sender.send(msg);
                }
            }
            // If we are tight on memory, and we're a backup then perform a gc.
            // If we are tight on memory, and we're the primary then try to become the hot backup.
            // Hopefully this happens soon!
            if self.current_memory_usage() > self.gc_threshold {
                if self.role.is_hot_backup || self.role.is_cold_backup {
                    self.should_gc = false;
                    self.gc();
                } else if !self.should_gc {
                    self.should_gc = true;
                    let msg = WorkletData::StartSwapRoles(self.role.sender.clone());
                    let _ = self.hot_backup_sender.send(msg);
                }
            }
        }
    }

    /// The current memory usage of the thread
    #[allow(unsafe_code)]
    fn current_memory_usage(&self) -> u32 {
        unsafe { JS_GetGCParameter(self.runtime.rt(), JSGCParamKey::JSGC_BYTES) }
    }

    /// Perform a GC.
    #[allow(unsafe_code)]
    fn gc(&mut self) {
        debug!("BEGIN GC (usage = {}, threshold = {}).", self.current_memory_usage(), self.gc_threshold);
        unsafe { JS_GC(self.runtime.rt()) };
        self.gc_threshold = max(MIN_GC_THRESHOLD, self.current_memory_usage() * 2);
        debug!("END GC (usage = {}, threshold = {}).", self.current_memory_usage(), self.gc_threshold);
    }

    /// Get the worklet global scope for a given worklet.
    /// Creates the worklet global scope if it doesn't exist.
    fn get_worklet_global_scope(&mut self,
                                pipeline_id: PipelineId,
                                worklet_id: WorkletId,
                                global_type: WorkletGlobalScopeType,
                                base_url: ServoUrl)
                                -> Root<WorkletGlobalScope>
    {
        match self.global_scopes.entry(worklet_id) {
            hash_map::Entry::Occupied(entry) => Root::from_ref(entry.get()),
            hash_map::Entry::Vacant(entry) => {
                let result = global_type.new(&self.runtime, pipeline_id, base_url, &self.global_init);
                entry.insert(JS::from_ref(&*result));
                result
            },
        }
    }

    /// Fetch and invoke a worklet script.
    /// https://drafts.css-houdini.org/worklets/#fetch-and-invoke-a-worklet-script
    fn fetch_and_invoke_a_worklet_script(&self,
                                         global_scope: &WorkletGlobalScope,
                                         origin: ImmutableOrigin,
                                         script_url: ServoUrl,
                                         credentials: RequestCredentials,
                                         pending_tasks_struct: PendingTasksStruct,
                                         promise: TrustedPromise)
    {
        debug!("Fetching from {}.", script_url);
        // Step 1.
        // TODO: Settings object?

        // Step 2.
        // TODO: Fetch a module graph, not just a single script.
        // TODO: Fetch the script asynchronously?
        // TODO: Caching.
        // TODO: Avoid re-parsing the origin as a URL.
        let resource_fetcher = self.global_init.resource_threads.sender();
        let origin_url = ServoUrl::parse(&*origin.unicode_serialization())
            .unwrap_or_else(|_| ServoUrl::parse("about:blank").unwrap());
        let request = RequestInit {
            url: script_url,
            type_: RequestType::Script,
            destination: Destination::Script,
            mode: RequestMode::CorsMode,
            origin: origin_url,
            credentials_mode: credentials.into(),
            .. RequestInit::default()
        };
        let script = load_whole_resource(request, &resource_fetcher).ok()
            .and_then(|(_, bytes)| String::from_utf8(bytes).ok());

        // Step 4.
        // NOTE: the spec parses and executes the script in separate steps,
        // but our JS API doesn't separate these, so we do the steps out of order.
        let ok = script.map(|script| global_scope.evaluate_js(&*script)).unwrap_or(false);

        if !ok {
            // Step 3.
            debug!("Failed to load script.");
            let old_counter = pending_tasks_struct.set_counter_to(-1);
            if old_counter > 0 {
                self.run_in_script_thread(promise.reject_runnable(Error::Abort));
            }
        } else {
            // Step 5.
            debug!("Finished adding script.");
            let old_counter = pending_tasks_struct.decrement_counter_by(1);
            if old_counter == 1 {
                // TODO: trigger a reflow?
                self.run_in_script_thread(promise.resolve_runnable(()));
            }
        }
    }

    /// Perform a task.
    fn perform_a_worklet_task(&self, worklet_id: WorkletId, task: WorkletTask) {
        match self.global_scopes.get(&worklet_id) {
            Some(global) => global.perform_a_worklet_task(task),
            None => return warn!("No such worklet as {:?}.", worklet_id),
        }
    }

    /// Process a control message.
    fn process_control(&mut self, control: WorkletControl) {
        match control {
            WorkletControl::FetchAndInvokeAWorkletScript {
                pipeline_id, worklet_id, global_type, origin, base_url,
                script_url, credentials, pending_tasks_struct, promise,
            } => {
                let global = self.get_worklet_global_scope(pipeline_id,
                                                           worklet_id,
                                                           global_type,
                                                           base_url);
                self.fetch_and_invoke_a_worklet_script(&*global,
                                                       origin,
                                                       script_url,
                                                       credentials,
                                                       pending_tasks_struct,
                                                       promise)
            }
        }
    }

    /// Run a runnable in the main script thread.
    fn run_in_script_thread<R>(&self, runnable: R) where
        R: 'static + Send + Runnable,
    {
        let msg = CommonScriptMsg::RunnableMsg(ScriptThreadEventCategory::WorkletEvent, box runnable);
        let msg = MainThreadScriptMsg::Common(msg);
        self.script_sender.send(msg).expect("Worklet thread outlived script thread.");
    }
}

/// An executor of worklet tasks
pub struct WorkletExecutor {
    worklet_id: WorkletId,
    // Rather annoyingly, we have to use a mutex here because
    // layout threads share their context rather than cloning it.
    primary_sender: Mutex<Sender<WorkletData>>,
}

impl WorkletExecutor {
    /// Schedule a worklet task to be peformed by the worklet thread pool.
    fn schedule_a_worklet_task(&self, task: WorkletTask) {
        let _ = self.primary_sender.lock()
            .expect("Locking the worklet channel.")
            .send(WorkletData::Task(self.worklet_id, task));
    }
}

impl PaintWorkletExecutor for WorkletExecutor {
    /// https://drafts.css-houdini.org/css-paint-api/#draw-a-paint-image
    fn draw_a_paint_image(&self,
                          name: Atom,
                          concrete_object_size: Size2D<Au>)
                          -> Result<Image, PaintWorkletError>
    {
        let (sender, receiver) = mpsc::channel();
        let task = WorkletTask::Paint(PaintWorkletTask::DrawAPaintImage(name, concrete_object_size, sender));
        let timeout = Duration::from_millis(PAINT_TIMEOUT_MILLISECONDS);
        self.schedule_a_worklet_task(task);
        receiver.recv_timeout(timeout)?
    }
}