/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Support for [custom properties for cascading variables][custom]. //! //! [custom]: https://drafts.csswg.org/css-variables/ use Atom; use cssparser::{Delimiter, Parser, ParserInput, SourcePosition, Token, TokenSerializationType}; use hash::map::Entry; use precomputed_hash::PrecomputedHash; use properties::{CSSWideKeyword, CustomDeclarationValue}; use selector_map::{PrecomputedHashMap, PrecomputedHashSet}; use selectors::parser::SelectorParseErrorKind; use servo_arc::Arc; use smallvec::SmallVec; use std::borrow::{Borrow, Cow}; use std::cmp; use std::fmt::{self, Write}; use std::hash::Hash; use style_traits::{CssWriter, ParseError, StyleParseErrorKind, ToCss}; /// A custom property name is just an `Atom`. /// /// Note that this does not include the `--` prefix pub type Name = Atom; /// Parse a custom property name. /// /// pub fn parse_name(s: &str) -> Result<&str, ()> { if s.starts_with("--") { Ok(&s[2..]) } else { Err(()) } } /// A value for a custom property is just a set of tokens. /// /// We preserve the original CSS for serialization, and also the variable /// references to other custom property names. #[derive(Clone, Debug, MallocSizeOf, PartialEq)] pub struct VariableValue { css: String, first_token_type: TokenSerializationType, last_token_type: TokenSerializationType, /// Custom property names in var() functions. references: PrecomputedHashSet, } impl ToCss for SpecifiedValue { fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { dest.write_str(&self.css) } } /// A map from CSS variable names to CSS variable computed values, used for /// resolving. /// /// A consistent ordering is required for CSSDeclaration objects in the /// DOM. CSSDeclarations expose property names as indexed properties, which /// need to be stable. So we keep an array of property names which order is /// determined on the order that they are added to the name-value map. /// /// The variable values are guaranteed to not have references to other /// properties. pub type CustomPropertiesMap = OrderedMap>; /// Both specified and computed values are VariableValues, the difference is /// whether var() functions are expanded. pub type SpecifiedValue = VariableValue; /// Both specified and computed values are VariableValues, the difference is /// whether var() functions are expanded. pub type ComputedValue = VariableValue; /// A map that preserves order for the keys, and that is easily indexable. #[derive(Clone, Debug, Eq, PartialEq)] pub struct OrderedMap where K: PrecomputedHash + Hash + Eq + Clone, { /// Key index. index: Vec, /// Key-value map. values: PrecomputedHashMap, } impl OrderedMap where K: Eq + PrecomputedHash + Hash + Clone, { /// Creates a new ordered map. pub fn new() -> Self { OrderedMap { index: Vec::new(), values: PrecomputedHashMap::default(), } } /// Insert a new key-value pair. /// /// TODO(emilio): Remove unused_mut when Gecko and Servo agree in whether /// it's necessary. #[allow(unused_mut)] pub fn insert(&mut self, key: K, value: V) { let OrderedMap { ref mut index, ref mut values, } = *self; match values.entry(key) { Entry::Vacant(mut entry) => { index.push(entry.key().clone()); entry.insert(value); }, Entry::Occupied(mut entry) => { entry.insert(value); }, } } /// Get a value given its key. pub fn get(&self, key: &K) -> Option<&V> { let value = self.values.get(key); debug_assert_eq!(value.is_some(), self.index.contains(key)); value } /// Get whether there's a value on the map for `key`. pub fn contains_key(&self, key: &K) -> bool { self.values.contains_key(key) } /// Get the key located at the given index. pub fn get_key_at(&self, index: u32) -> Option<&K> { self.index.get(index as usize) } /// Get an ordered map iterator. pub fn iter<'a>(&'a self) -> OrderedMapIterator<'a, K, V> { OrderedMapIterator { inner: self, pos: 0, } } /// Get the count of items in the map. pub fn len(&self) -> usize { debug_assert_eq!(self.values.len(), self.index.len()); self.values.len() } /// Returns whether this map is empty. pub fn is_empty(&self) -> bool { self.len() == 0 } /// Remove an item given its key. fn remove(&mut self, key: &Q) -> Option where K: Borrow, Q: PrecomputedHash + Hash + Eq, { let index = self.index.iter().position(|k| k.borrow() == key)?; self.index.remove(index); self.values.remove(key) } fn remove_set(&mut self, set: &::hash::HashSet) where S: ::std::hash::BuildHasher, { if set.is_empty() { return; } self.index.retain(|key| !set.contains(key)); self.values.retain(|key, _| !set.contains(key)); debug_assert_eq!(self.values.len(), self.index.len()); } } /// An iterator for OrderedMap. /// /// The iteration order is determined by the order that the values are /// added to the key-value map. pub struct OrderedMapIterator<'a, K, V> where K: 'a + Eq + PrecomputedHash + Hash + Clone, V: 'a, { /// The OrderedMap itself. inner: &'a OrderedMap, /// The position of the iterator. pos: usize, } impl<'a, K, V> Iterator for OrderedMapIterator<'a, K, V> where K: Eq + PrecomputedHash + Hash + Clone, { type Item = (&'a K, &'a V); fn next(&mut self) -> Option { let key = self.inner.index.get(self.pos)?; self.pos += 1; let value = &self.inner.values[key]; Some((key, value)) } } impl VariableValue { fn empty() -> Self { Self { css: String::new(), last_token_type: TokenSerializationType::nothing(), first_token_type: TokenSerializationType::nothing(), references: PrecomputedHashSet::default(), } } fn push( &mut self, css: &str, css_first_token_type: TokenSerializationType, css_last_token_type: TokenSerializationType, ) { // This happens e.g. between two subsequent var() functions: // `var(--a)var(--b)`. // // In that case, css_*_token_type is nonsensical. if css.is_empty() { return; } self.first_token_type.set_if_nothing(css_first_token_type); // If self.first_token_type was nothing, // self.last_token_type is also nothing and this will be false: if self .last_token_type .needs_separator_when_before(css_first_token_type) { self.css.push_str("/**/") } self.css.push_str(css); self.last_token_type = css_last_token_type } fn push_from( &mut self, position: (SourcePosition, TokenSerializationType), input: &Parser, last_token_type: TokenSerializationType, ) { self.push(input.slice_from(position.0), position.1, last_token_type) } fn push_variable(&mut self, variable: &ComputedValue) { debug_assert!(variable.references.is_empty()); self.push( &variable.css, variable.first_token_type, variable.last_token_type, ) } /// Parse a custom property value. pub fn parse<'i, 't>(input: &mut Parser<'i, 't>) -> Result, ParseError<'i>> { let mut references = PrecomputedHashSet::default(); let (first_token_type, css, last_token_type) = parse_self_contained_declaration_value(input, Some(&mut references))?; Ok(Arc::new(VariableValue { css: css.into_owned(), first_token_type, last_token_type, references, })) } } /// Parse the value of a non-custom property that contains `var()` references. pub fn parse_non_custom_with_var<'i, 't>( input: &mut Parser<'i, 't>, ) -> Result<(TokenSerializationType, Cow<'i, str>), ParseError<'i>> { let (first_token_type, css, _) = parse_self_contained_declaration_value(input, None)?; Ok((first_token_type, css)) } fn parse_self_contained_declaration_value<'i, 't>( input: &mut Parser<'i, 't>, references: Option<&mut PrecomputedHashSet>, ) -> Result<(TokenSerializationType, Cow<'i, str>, TokenSerializationType), ParseError<'i>> { let start_position = input.position(); let mut missing_closing_characters = String::new(); let (first, last) = parse_declaration_value(input, references, &mut missing_closing_characters)?; let mut css: Cow = input.slice_from(start_position).into(); if !missing_closing_characters.is_empty() { // Unescaped backslash at EOF in a quoted string is ignored. if css.ends_with("\\") && matches!(missing_closing_characters.as_bytes()[0], b'"' | b'\'') { css.to_mut().pop(); } css.to_mut().push_str(&missing_closing_characters); } Ok((first, css, last)) } /// fn parse_declaration_value<'i, 't>( input: &mut Parser<'i, 't>, references: Option<&mut PrecomputedHashSet>, missing_closing_characters: &mut String, ) -> Result<(TokenSerializationType, TokenSerializationType), ParseError<'i>> { input.parse_until_before(Delimiter::Bang | Delimiter::Semicolon, |input| { // Need at least one token let start = input.state(); input.next_including_whitespace()?; input.reset(&start); parse_declaration_value_block(input, references, missing_closing_characters) }) } /// Like parse_declaration_value, but accept `!` and `;` since they are only /// invalid at the top level fn parse_declaration_value_block<'i, 't>( input: &mut Parser<'i, 't>, mut references: Option<&mut PrecomputedHashSet>, missing_closing_characters: &mut String, ) -> Result<(TokenSerializationType, TokenSerializationType), ParseError<'i>> { let mut token_start = input.position(); let mut token = match input.next_including_whitespace_and_comments() { // FIXME: remove clone() when borrows are non-lexical Ok(token) => token.clone(), Err(_) => { return Ok(( TokenSerializationType::nothing(), TokenSerializationType::nothing(), )) }, }; let first_token_type = token.serialization_type(); loop { macro_rules! nested { () => { input.parse_nested_block(|input| { parse_declaration_value_block( input, references.as_mut().map(|r| &mut **r), missing_closing_characters, ) })? }; } macro_rules! check_closed { ($closing:expr) => { if !input.slice_from(token_start).ends_with($closing) { missing_closing_characters.push_str($closing) } }; } let last_token_type = match token { Token::Comment(_) => { let token_slice = input.slice_from(token_start); if !token_slice.ends_with("*/") { missing_closing_characters.push_str(if token_slice.ends_with('*') { "/" } else { "*/" }) } token.serialization_type() }, Token::BadUrl(u) => { let e = StyleParseErrorKind::BadUrlInDeclarationValueBlock(u); return Err(input.new_custom_error(e)); }, Token::BadString(s) => { let e = StyleParseErrorKind::BadStringInDeclarationValueBlock(s); return Err(input.new_custom_error(e)); }, Token::CloseParenthesis => { let e = StyleParseErrorKind::UnbalancedCloseParenthesisInDeclarationValueBlock; return Err(input.new_custom_error(e)); }, Token::CloseSquareBracket => { let e = StyleParseErrorKind::UnbalancedCloseSquareBracketInDeclarationValueBlock; return Err(input.new_custom_error(e)); }, Token::CloseCurlyBracket => { let e = StyleParseErrorKind::UnbalancedCloseCurlyBracketInDeclarationValueBlock; return Err(input.new_custom_error(e)); }, Token::Function(ref name) => { if name.eq_ignore_ascii_case("var") { let args_start = input.state(); input.parse_nested_block(|input| { parse_var_function(input, references.as_mut().map(|r| &mut **r)) })?; input.reset(&args_start); } nested!(); check_closed!(")"); Token::CloseParenthesis.serialization_type() }, Token::ParenthesisBlock => { nested!(); check_closed!(")"); Token::CloseParenthesis.serialization_type() }, Token::CurlyBracketBlock => { nested!(); check_closed!("}"); Token::CloseCurlyBracket.serialization_type() }, Token::SquareBracketBlock => { nested!(); check_closed!("]"); Token::CloseSquareBracket.serialization_type() }, Token::QuotedString(_) => { let token_slice = input.slice_from(token_start); let quote = &token_slice[..1]; debug_assert!(matches!(quote, "\"" | "'")); if !(token_slice.ends_with(quote) && token_slice.len() > 1) { missing_closing_characters.push_str(quote) } token.serialization_type() }, Token::Ident(ref value) | Token::AtKeyword(ref value) | Token::Hash(ref value) | Token::IDHash(ref value) | Token::UnquotedUrl(ref value) | Token::Dimension { unit: ref value, .. } => { if value.ends_with("�") && input.slice_from(token_start).ends_with("\\") { // Unescaped backslash at EOF in these contexts is interpreted as U+FFFD // Check the value in case the final backslash was itself escaped. // Serialize as escaped U+FFFD, which is also interpreted as U+FFFD. // (Unescaped U+FFFD would also work, but removing the backslash is annoying.) missing_closing_characters.push_str("�") } if matches!(token, Token::UnquotedUrl(_)) { check_closed!(")"); } token.serialization_type() }, _ => token.serialization_type(), }; token_start = input.position(); token = match input.next_including_whitespace_and_comments() { // FIXME: remove clone() when borrows are non-lexical Ok(token) => token.clone(), Err(..) => return Ok((first_token_type, last_token_type)), }; } } // If the var function is valid, return Ok((custom_property_name, fallback)) fn parse_var_function<'i, 't>( input: &mut Parser<'i, 't>, references: Option<&mut PrecomputedHashSet>, ) -> Result<(), ParseError<'i>> { let name = input.expect_ident_cloned()?; let name: Result<_, ParseError> = parse_name(&name).map_err(|()| { input.new_custom_error(SelectorParseErrorKind::UnexpectedIdent(name.clone())) }); let name = name?; if input.try(|input| input.expect_comma()).is_ok() { // Exclude `!` and `;` at the top level // https://drafts.csswg.org/css-syntax/#typedef-declaration-value input.parse_until_before(Delimiter::Bang | Delimiter::Semicolon, |input| { // At least one non-comment token. input.next_including_whitespace()?; // Skip until the end. while let Ok(_) = input.next_including_whitespace_and_comments() {} Ok(()) })?; } if let Some(refs) = references { refs.insert(Atom::from(name)); } Ok(()) } /// A struct that takes care of encapsulating the cascade process for custom /// properties. pub struct CustomPropertiesBuilder<'a> { seen: PrecomputedHashSet<&'a Name>, may_have_cycles: bool, custom_properties: Option, inherited: Option<&'a Arc>, } impl<'a> CustomPropertiesBuilder<'a> { /// Create a new builder, inheriting from a given custom properties map. pub fn new(inherited: Option<&'a Arc>) -> Self { Self { seen: PrecomputedHashSet::default(), may_have_cycles: false, custom_properties: None, inherited, } } /// Cascade a given custom property declaration. pub fn cascade( &mut self, name: &'a Name, specified_value: &CustomDeclarationValue, ) { let was_already_present = !self.seen.insert(name); if was_already_present { return; } if !self.value_may_affect_style(name, specified_value) { return; } if self.custom_properties.is_none() { self.custom_properties = Some(match self.inherited { Some(inherited) => (**inherited).clone(), None => CustomPropertiesMap::new(), }); } let map = self.custom_properties.as_mut().unwrap(); match *specified_value { CustomDeclarationValue::Value(ref unparsed_value) => { self.may_have_cycles |= !unparsed_value.references.is_empty(); map.insert(name.clone(), (*unparsed_value).clone()); }, CustomDeclarationValue::CSSWideKeyword(keyword) => match keyword { CSSWideKeyword::Initial => { map.remove(name); }, // handled in value_may_affect_style CSSWideKeyword::Unset | CSSWideKeyword::Inherit => unreachable!(), }, } } fn value_may_affect_style( &self, name: &Name, value: &CustomDeclarationValue, ) -> bool { match *value { CustomDeclarationValue::CSSWideKeyword(CSSWideKeyword::Unset) | CustomDeclarationValue::CSSWideKeyword(CSSWideKeyword::Inherit) => { // Custom properties are inherited by default. So // explicit 'inherit' or 'unset' means we can just use // any existing value in the inherited CustomPropertiesMap. return false; }, _ => {}, } let existing_value = self .custom_properties .as_ref() .and_then(|m| m.get(name)) .or_else(|| self.inherited.and_then(|m| m.get(name))); match (existing_value, value) { (None, &CustomDeclarationValue::CSSWideKeyword(CSSWideKeyword::Initial)) => { // The initial value of a custom property is the same as it // not existing in the map. return false; }, (Some(existing_value), &CustomDeclarationValue::Value(ref specified_value)) => { // Don't bother overwriting an existing inherited value with // the same specified value. if existing_value == specified_value { return false; } }, _ => {}, } true } /// Returns the final map of applicable custom properties. /// /// If there was any specified property, we've created a new map and now we need /// to remove any potential cycles, and wrap it in an arc. /// /// Otherwise, just use the inherited custom properties map. pub fn build(mut self) -> Option> { let mut map = match self.custom_properties.take() { Some(m) => m, None => return self.inherited.cloned(), }; if self.may_have_cycles { substitute_all(&mut map); } Some(Arc::new(map)) } } /// Resolve all custom properties to either substituted or invalid. /// /// It does cycle dependencies removal at the same time as substitution. fn substitute_all(custom_properties_map: &mut CustomPropertiesMap) { // The cycle dependencies removal in this function is a variant // of Tarjan's algorithm. It is mostly based on the pseudo-code // listed in // https://en.wikipedia.org/w/index.php? // title=Tarjan%27s_strongly_connected_components_algorithm&oldid=801728495 // // FIXME This function currently does at least one addref to names // for each variable regardless whether it has reference. Each // variable with any reference would have an additional addref. // There is another addref for each reference. // Strictly speaking, these addrefs are not necessary, because we // don't add/remove entry from custom properties map, and thus keys // should be alive in the whole process until we start removing // invalids. However, there is no safe way for us to prove this to // the compiler. We may be able to fix this issue at some point if // the standard library can provide some kind of hashmap wrapper // with frozen keys. /// Struct recording necessary information for each variable. struct VarInfo { /// The name of the variable. It will be taken to save addref /// when the corresponding variable is popped from the stack. /// This also serves as a mark for whether the variable is /// currently in the stack below. name: Option, /// If the variable is in a dependency cycle, lowlink represents /// a smaller index which corresponds to a variable in the same /// strong connected component, which is known to be accessible /// from this variable. It is not necessarily the root, though. lowlink: usize, } /// Context struct for traversing the variable graph, so that we can /// avoid referencing all the fields multiple times. struct Context<'a> { /// Number of variables visited. This is used as the order index /// when we visit a new unresolved variable. count: usize, /// The map from custom property name to its order index. index_map: PrecomputedHashMap, /// Information of each variable indexed by the order index. var_info: SmallVec<[VarInfo; 5]>, /// The stack of order index of visited variables. It contains /// all unfinished strong connected components. stack: SmallVec<[usize; 5]>, map: &'a mut CustomPropertiesMap, /// The set of invalid custom properties. invalid: &'a mut PrecomputedHashSet, } /// This function combines the traversal for cycle removal and value /// substitution. It returns either a signal None if this variable /// has been fully resolved (to either having no reference or being /// marked invalid), or the order index for the given name. /// /// When it returns, the variable corresponds to the name would be /// in one of the following states: /// * It is still in context.stack, which means it is part of an /// potentially incomplete dependency circle. /// * It has been added into the invalid set. It can be either that /// the substitution failed, or it is inside a dependency circle. /// When this function put a variable into the invalid set because /// of dependency circle, it would put all variables in the same /// strong connected component to the set together. /// * It doesn't have any reference, because either this variable /// doesn't have reference at all in specified value, or it has /// been completely resolved. /// * There is no such variable at all. fn traverse<'a>(name: Name, context: &mut Context<'a>) -> Option { // Some shortcut checks. let (name, value) = if let Some(value) = context.map.get(&name) { // This variable has been resolved. Return the signal value. if value.references.is_empty() || context.invalid.contains(&name) { return None; } // Whether this variable has been visited in this traversal. let key; match context.index_map.entry(name) { Entry::Occupied(entry) => { return Some(*entry.get()); }, Entry::Vacant(entry) => { key = entry.key().clone(); entry.insert(context.count); }, } // Hold a strong reference to the value so that we don't // need to keep reference to context.map. (key, value.clone()) } else { // The variable doesn't exist at all. return None; }; // Add new entry to the information table. let index = context.count; context.count += 1; debug_assert_eq!(index, context.var_info.len()); context.var_info.push(VarInfo { name: Some(name), lowlink: index, }); context.stack.push(index); let mut self_ref = false; let mut lowlink = index; for next in value.references.iter() { let next_index = match traverse(next.clone(), context) { Some(index) => index, // There is nothing to do if the next variable has been // fully resolved at this point. None => { continue; }, }; let next_info = &context.var_info[next_index]; if next_index > index { // The next variable has a larger index than us, so it // must be inserted in the recursive call above. We want // to get its lowlink. lowlink = cmp::min(lowlink, next_info.lowlink); } else if next_index == index { self_ref = true; } else if next_info.name.is_some() { // The next variable has a smaller order index and it is // in the stack, so we are at the same component. lowlink = cmp::min(lowlink, next_index); } } context.var_info[index].lowlink = lowlink; if lowlink != index { // This variable is in a loop, but it is not the root of // this strong connected component. We simply return for // now, and the root would add it into the invalid set. // This cannot be added into the invalid set here, because // otherwise the shortcut check at the beginning of this // function would return the wrong value. return Some(index); } // This is the root of a strong-connected component. let mut in_loop = self_ref; let name; loop { let var_index = context .stack .pop() .expect("The current variable should still be in stack"); let var_info = &mut context.var_info[var_index]; // We should never visit the variable again, so it's safe // to take the name away, so that we don't do additional // reference count. let var_name = var_info .name .take() .expect("Variable should not be poped from stack twice"); if var_index == index { name = var_name; break; } // Anything here is in a loop which can traverse to the // variable we are handling, so we should add it into // the invalid set. We should never visit the variable // again so it's safe to just take the name away. context.invalid.insert(var_name); in_loop = true; } if in_loop { // This variable is in loop. Resolve to invalid. context.invalid.insert(name); return None; } // Now we have shown that this variable is not in a loop, and // all of its dependencies should have been resolved. We can // start substitution now. let mut computed_value = ComputedValue::empty(); let mut input = ParserInput::new(&value.css); let mut input = Parser::new(&mut input); let mut position = (input.position(), value.first_token_type); let result = substitute_block( &mut input, &mut position, &mut computed_value, &mut |name, partial_computed_value| { if let Some(value) = context.map.get(name) { if !context.invalid.contains(name) { partial_computed_value.push_variable(value); return Ok(value.last_token_type); } } Err(()) }, ); if let Ok(last_token_type) = result { computed_value.push_from(position, &input, last_token_type); context.map.insert(name, Arc::new(computed_value)); } else { context.invalid.insert(name); } // All resolved, so return the signal value. None } // We have to clone the names so that we can mutably borrow the map // in the context we create for traversal. let names = custom_properties_map.index.clone(); let mut invalid = PrecomputedHashSet::default(); for name in names.into_iter() { let mut context = Context { count: 0, index_map: PrecomputedHashMap::default(), stack: SmallVec::new(), var_info: SmallVec::new(), map: custom_properties_map, invalid: &mut invalid, }; traverse(name, &mut context); } custom_properties_map.remove_set(&invalid); } /// Replace `var()` functions in an arbitrary bit of input. /// /// The `substitute_one` callback is called for each `var()` function in `input`. /// If the variable has its initial value, /// the callback should return `Err(())` and leave `partial_computed_value` unchanged. /// Otherwise, it should push the value of the variable (with its own `var()` functions replaced) /// to `partial_computed_value` and return `Ok(last_token_type of what was pushed)` /// /// Return `Err(())` if `input` is invalid at computed-value time. /// or `Ok(last_token_type that was pushed to partial_computed_value)` otherwise. fn substitute_block<'i, 't, F>( input: &mut Parser<'i, 't>, position: &mut (SourcePosition, TokenSerializationType), partial_computed_value: &mut ComputedValue, substitute_one: &mut F, ) -> Result> where F: FnMut(&Name, &mut ComputedValue) -> Result, { let mut last_token_type = TokenSerializationType::nothing(); let mut set_position_at_next_iteration = false; loop { let before_this_token = input.position(); // FIXME: remove clone() when borrows are non-lexical let next = input .next_including_whitespace_and_comments() .map(|t| t.clone()); if set_position_at_next_iteration { *position = ( before_this_token, match next { Ok(ref token) => token.serialization_type(), Err(_) => TokenSerializationType::nothing(), }, ); set_position_at_next_iteration = false; } let token = match next { Ok(token) => token, Err(..) => break, }; match token { Token::Function(ref name) if name.eq_ignore_ascii_case("var") => { partial_computed_value.push( input.slice(position.0..before_this_token), position.1, last_token_type, ); input.parse_nested_block(|input| { // parse_var_function() ensures neither .unwrap() will fail. let name = input.expect_ident_cloned().unwrap(); let name = Atom::from(parse_name(&name).unwrap()); if let Ok(last) = substitute_one(&name, partial_computed_value) { last_token_type = last; // Skip over the fallback, as `parse_nested_block` would return `Err` // if we don’t consume all of `input`. // FIXME: Add a specialized method to cssparser to do this with less work. while let Ok(_) = input.next() {} } else { input.expect_comma()?; let after_comma = input.state(); let first_token_type = input.next_including_whitespace_and_comments() // parse_var_function() ensures that .unwrap() will not fail. .unwrap() .serialization_type(); input.reset(&after_comma); let mut position = (after_comma.position(), first_token_type); last_token_type = substitute_block( input, &mut position, partial_computed_value, substitute_one, )?; partial_computed_value.push_from(position, input, last_token_type); } Ok(()) })?; set_position_at_next_iteration = true }, Token::Function(_) | Token::ParenthesisBlock | Token::CurlyBracketBlock | Token::SquareBracketBlock => { input.parse_nested_block(|input| { substitute_block(input, position, partial_computed_value, substitute_one) })?; // It’s the same type for CloseCurlyBracket and CloseSquareBracket. last_token_type = Token::CloseParenthesis.serialization_type(); }, _ => last_token_type = token.serialization_type(), } } // FIXME: deal with things being implicitly closed at the end of the input. E.g. // ```html //
//

//
// ``` Ok(last_token_type) } /// Replace `var()` functions for a non-custom property. /// Return `Err(())` for invalid at computed time. pub fn substitute<'i>( input: &'i str, first_token_type: TokenSerializationType, computed_values_map: Option<&Arc>, ) -> Result> { let mut substituted = ComputedValue::empty(); let mut input = ParserInput::new(input); let mut input = Parser::new(&mut input); let mut position = (input.position(), first_token_type); let last_token_type = substitute_block( &mut input, &mut position, &mut substituted, &mut |name, substituted| { if let Some(value) = computed_values_map.and_then(|map| map.get(name)) { substituted.push_variable(value); Ok(value.last_token_type) } else { Err(()) } }, )?; substituted.push_from(position, &input, last_token_type); Ok(substituted.css) }