/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use dom::bindings::cell::DOMRefCell;
use dom::bindings::codegen::Bindings::DOMMatrixBinding::{DOMMatrixInit, DOMMatrixMethods};
use dom::bindings::codegen::Bindings::DOMMatrixReadOnlyBinding::{DOMMatrixReadOnlyMethods, Wrap};
use dom::bindings::codegen::Bindings::DOMPointBinding::DOMPointInit;
use dom::bindings::error;
use dom::bindings::error::Fallible;
use dom::bindings::global::GlobalRef;
use dom::bindings::js::Root;
use dom::bindings::reflector::{reflect_dom_object, Reflectable, Reflector};
use dom::dommatrix::DOMMatrix;
use dom::dompoint::DOMPoint;
use euclid::{Matrix4D, Point4D, Radians};
use std::cell::Cell;
use std::f64;
use style::refcell::Ref;

#[dom_struct]
pub struct DOMMatrixReadOnly {
    reflector_: Reflector,
    matrix: DOMRefCell<Matrix4D<f64>>,
    is2D: Cell<bool>,
}

impl DOMMatrixReadOnly {
    #[allow(unrooted_must_root)]
    pub fn new(global: GlobalRef, is2D: bool, matrix: Matrix4D<f64>) -> Root<Self> {
        let dommatrix = Self::new_inherited(is2D, matrix);
        reflect_dom_object(box dommatrix, global, Wrap)
    }

    pub fn new_inherited(is2D: bool, matrix: Matrix4D<f64>) -> Self {
        DOMMatrixReadOnly {
            reflector_: Reflector::new(),
            matrix: DOMRefCell::new(matrix),
            is2D: Cell::new(is2D),
         }
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly
    pub fn Constructor(global: GlobalRef) -> Fallible<Root<Self>> {
        Ok(Self::new(global, true, Matrix4D::identity()))
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
    pub fn Constructor_(global: GlobalRef, entries: Vec<f64>) -> Fallible<Root<Self>> {
        entries_to_matrix(&entries[..])
            .map(|(is2D, matrix)| {
                Self::new(global, is2D, matrix)
            })
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-frommatrix
    pub fn FromMatrix(global: GlobalRef, other: &DOMMatrixInit) -> Fallible<Root<Self>> {
        dommatrixinit_to_matrix(&other)
            .map(|(is2D, matrix)| {
                Self::new(global, is2D, matrix)
            })
    }

    pub fn matrix(&self) -> Ref<Matrix4D<f64>> {
        self.matrix.borrow()
    }

    pub fn is_2d(&self) -> bool {
        self.is2D.get()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11
    pub fn set_m11(&self, value: f64) {
        self.matrix.borrow_mut().m11 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12
    pub fn set_m12(&self, value: f64) {
        self.matrix.borrow_mut().m12 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13
    pub fn set_m13(&self, value: f64) {
        self.matrix.borrow_mut().m13 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14
    pub fn set_m14(&self, value: f64) {
        self.matrix.borrow_mut().m14 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21
    pub fn set_m21(&self, value: f64) {
        self.matrix.borrow_mut().m21 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22
    pub fn set_m22(&self, value: f64) {
        self.matrix.borrow_mut().m22 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23
    pub fn set_m23(&self, value: f64) {
        self.matrix.borrow_mut().m23 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24
    pub fn set_m24(&self, value: f64) {
        self.matrix.borrow_mut().m24 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31
    pub fn set_m31(&self, value: f64) {
        self.matrix.borrow_mut().m31 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32
    pub fn set_m32(&self, value: f64) {
        self.matrix.borrow_mut().m32 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33
    pub fn set_m33(&self, value: f64) {
        self.matrix.borrow_mut().m33 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34
    pub fn set_m34(&self, value: f64) {
        self.matrix.borrow_mut().m34 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41
    pub fn set_m41(&self, value: f64) {
        self.matrix.borrow_mut().m41 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42
    pub fn set_m42(&self, value: f64) {
        self.matrix.borrow_mut().m42 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43
    pub fn set_m43(&self, value: f64) {
        self.matrix.borrow_mut().m43 = value;
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44
    pub fn set_m44(&self, value: f64) {
        self.matrix.borrow_mut().m44 = value;
    }


    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-multiplyself
    pub fn multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> {
        // Step 1.
        dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| {
            // Step 2.
            let mut matrix = self.matrix.borrow_mut();
            *matrix = other_matrix.post_mul(&matrix);
            // Step 3.
            if !is2D {
                self.is2D.set(false);
            }
            // Step 4 in DOMMatrix.MultiplySelf
        })
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-premultiplyself
    pub fn pre_multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> {
        // Step 1.
        dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| {
            // Step 2.
            let mut matrix = self.matrix.borrow_mut();
            *matrix = other_matrix.pre_mul(&matrix);
            // Step 3.
            if !is2D {
                self.is2D.set(false);
            }
            // Step 4 in DOMMatrix.PreMultiplySelf
        })
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-translateself
    pub fn translate_self(&self, tx: f64, ty: f64, tz: f64) {
        // Step 1.
        let translation = Matrix4D::create_translation(tx, ty, tz);
        let mut matrix = self.matrix.borrow_mut();
        *matrix = translation.post_mul(&matrix);
        // Step 2.
        if tz != 0.0 {
            self.is2D.set(false);
        }
        // Step 3 in DOMMatrix.TranslateSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scaleself
    pub fn scale_self(&self, scaleX: f64, scaleY: Option<f64>, scaleZ: f64,
                      mut originX: f64, mut originY: f64, mut originZ: f64) {
        // Step 1.
        self.translate_self(originX, originY, originZ);
        // Step 2.
        let scaleY = scaleY.unwrap_or(scaleX);
        // Step 3.
        {
            let scale3D = Matrix4D::create_scale(scaleX, scaleY, scaleZ);
            let mut matrix = self.matrix.borrow_mut();
            *matrix = scale3D.post_mul(&matrix);
        }
        // Step 4.
        originX = -originX;
        originY = -originY;
        originZ = -originZ;
        // Step 5.
        self.translate_self(originX, originY, originZ);
        // Step 6.
        if scaleZ != 1.0 || originZ != 0.0 {
            self.is2D.set(false);
        }
        // Step 7 in DOMMatrix.ScaleSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scale3dself
    pub fn scale_3d_self(&self, scale: f64, originX: f64, originY: f64, originZ: f64) {
        // Step 1.
        self.translate_self(originX, originY, originZ);
        // Step 2.
        {
            let scale3D = Matrix4D::create_scale(scale, scale, scale);
            let mut matrix = self.matrix.borrow_mut();
            *matrix = scale3D.post_mul(&matrix);
        }
        // Step 3.
        self.translate_self(-originX, -originY, -originZ);
        // Step 4.
        if scale != 1.0 {
            self.is2D.set(false);
        }
        // Step 5 in DOMMatrix.Scale3dSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateself
    pub fn rotate_self(&self, mut rotX: f64, mut rotY: Option<f64>, mut rotZ: Option<f64>) {
        // Step 1.
        if rotY.is_none() && rotZ.is_none() {
            rotZ = Some(rotX);
            rotX = 0.0;
            rotY = Some(0.0);
        }
        // Step 2.
        let rotY = rotY.unwrap_or(0.0);
        // Step 3.
        let rotZ = rotZ.unwrap_or(0.0);
        // Step 4.
        if rotX != 0.0 || rotY != 0.0 {
            self.is2D.set(false);
        }
        if rotZ != 0.0 {
            // Step 5.
            let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, Radians::new(rotZ.to_radians()));
            let mut matrix = self.matrix.borrow_mut();
            *matrix = rotation.post_mul(&matrix);
        }
        if rotY != 0.0 {
            // Step 6.
            let rotation = Matrix4D::create_rotation(0.0, 1.0, 0.0, Radians::new(rotY.to_radians()));
            let mut matrix = self.matrix.borrow_mut();
            *matrix = rotation.post_mul(&matrix);
        }
        if rotX != 0.0 {
            // Step 7.
            let rotation = Matrix4D::create_rotation(1.0, 0.0, 0.0, Radians::new(rotX.to_radians()));
            let mut matrix = self.matrix.borrow_mut();
            *matrix = rotation.post_mul(&matrix);
        }
        // Step 8 in DOMMatrix.RotateSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotatefromvectorself
    pub fn rotate_from_vector_self(&self, x: f64, y: f64) {
        // don't do anything when the rotation angle is zero or undefined
        if y != 0.0 || x < 0.0 {
            // Step 1.
            let rotZ = Radians::new(f64::atan2(y, x));
            let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, rotZ);
            let mut matrix = self.matrix.borrow_mut();
            *matrix = rotation.post_mul(&matrix);
        }
        // Step 2 in DOMMatrix.RotateFromVectorSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateaxisangleself
    pub fn rotate_axis_angle_self(&self, x: f64, y: f64, z: f64, angle: f64) {
        // Step 1.
        let (norm_x, norm_y, norm_z) = normalize_point(x, y, z);
        let rotation = Matrix4D::create_rotation(norm_x, norm_y, norm_z, Radians::new(angle.to_radians()));
        let mut matrix = self.matrix.borrow_mut();
        *matrix = rotation.post_mul(&matrix);
        // Step 2.
        if x != 0.0 || y != 0.0 {
            self.is2D.set(false);
        }
        // Step 3 in DOMMatrix.RotateAxisAngleSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewxself
    pub fn skew_x_self(&self, sx: f64) {
        // Step 1.
        let skew = Matrix4D::create_skew(Radians::new(sx.to_radians()), Radians::new(0.0));
        let mut matrix = self.matrix.borrow_mut();
        *matrix = skew.post_mul(&matrix);
        // Step 2 in DOMMatrix.SkewXSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewyself
    pub fn skew_y_self(&self, sy: f64) {
        // Step 1.
        let skew = Matrix4D::create_skew(Radians::new(0.0), Radians::new(sy.to_radians()));
        let mut matrix = self.matrix.borrow_mut();
        *matrix = skew.post_mul(&matrix);
        // Step 2 in DOMMatrix.SkewYSelf
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-invertself
    pub fn invert_self(&self) {
        let mut matrix = self.matrix.borrow_mut();
        // Step 1.
        *matrix = matrix.inverse().unwrap_or_else(|| {
            // Step 2.
            self.is2D.set(false);
            Matrix4D::row_major(f64::NAN, f64::NAN, f64::NAN, f64::NAN,
                                f64::NAN, f64::NAN, f64::NAN, f64::NAN,
                                f64::NAN, f64::NAN, f64::NAN, f64::NAN,
                                f64::NAN, f64::NAN, f64::NAN, f64::NAN)
        })
        // Step 3 in DOMMatrix.InvertSelf
    }
}


impl DOMMatrixReadOnlyMethods for DOMMatrixReadOnly {
    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11
    fn M11(&self) -> f64 {
        self.matrix.borrow().m11
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12
    fn M12(&self) -> f64 {
        self.matrix.borrow().m12
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13
    fn M13(&self) -> f64 {
        self.matrix.borrow().m13
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14
    fn M14(&self) -> f64 {
        self.matrix.borrow().m14
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21
    fn M21(&self) -> f64 {
        self.matrix.borrow().m21
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22
    fn M22(&self) -> f64 {
        self.matrix.borrow().m22
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23
    fn M23(&self) -> f64 {
        self.matrix.borrow().m23
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24
    fn M24(&self) -> f64 {
        self.matrix.borrow().m24
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31
    fn M31(&self) -> f64 {
        self.matrix.borrow().m31
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32
    fn M32(&self) -> f64 {
        self.matrix.borrow().m32
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33
    fn M33(&self) -> f64 {
        self.matrix.borrow().m33
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34
    fn M34(&self) -> f64 {
        self.matrix.borrow().m34
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41
    fn M41(&self) -> f64 {
        self.matrix.borrow().m41
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42
    fn M42(&self) -> f64 {
        self.matrix.borrow().m42
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43
    fn M43(&self) -> f64 {
        self.matrix.borrow().m43
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44
    fn M44(&self) -> f64 {
        self.matrix.borrow().m44
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-a
    fn A(&self) -> f64 {
        self.M11()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-b
    fn B(&self) -> f64 {
        self.M12()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-c
    fn C(&self) -> f64 {
        self.M21()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-d
    fn D(&self) -> f64 {
        self.M22()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-e
    fn E(&self) -> f64 {
        self.M41()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-f
    fn F(&self) -> f64 {
        self.M42()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-is2d
    fn Is2D(&self) -> bool {
        self.is2D.get()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-isidentity
    fn IsIdentity(&self) -> bool {
        let matrix = self.matrix.borrow();
        matrix.m12 == 0.0 && matrix.m13 == 0.0 && matrix.m14 == 0.0 && matrix.m21 == 0.0 &&
            matrix.m23 == 0.0 && matrix.m24 == 0.0 && matrix.m31 == 0.0 && matrix.m32 == 0.0 &&
            matrix.m34 == 0.0 && matrix.m41 == 0.0 && matrix.m42 == 0.0 && matrix.m43 == 0.0 &&
            matrix.m11 == 1.0 && matrix.m22 == 1.0 && matrix.m33 == 1.0 && matrix.m44 == 1.0
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-translate
    fn Translate(&self, tx: f64, ty: f64, tz: f64) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).TranslateSelf(tx, ty, tz)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale
    fn Scale(&self, scaleX: f64, scaleY: Option<f64>, scaleZ: f64,
                    originX: f64, originY: f64, originZ: f64) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).ScaleSelf(scaleX, scaleY, scaleZ, originX, originY, originZ)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale3d
    fn Scale3d(&self, scale: f64, originX: f64, originY: f64, originZ: f64) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).Scale3dSelf(scale, originX, originY, originZ)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotate
    fn Rotate(&self, rotX: f64, rotY: Option<f64>, rotZ: Option<f64>) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).RotateSelf(rotX, rotY, rotZ)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotatefromvector
    fn RotateFromVector(&self, x: f64, y: f64) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).RotateFromVectorSelf(x, y)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotateaxisangle
    fn RotateAxisAngle(&self, x: f64, y: f64, z: f64, angle: f64) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).RotateAxisAngleSelf(x, y, z, angle)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewx
    fn SkewX(&self, sx: f64) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).SkewXSelf(sx)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewy
    fn SkewY(&self, sy: f64) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).SkewYSelf(sy)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-multiply
    fn Multiply(&self, other: &DOMMatrixInit) -> Fallible<Root<DOMMatrix>> {
        DOMMatrix::from_readonly(self.global().r(), self).MultiplySelf(&other)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipx
    fn FlipX(&self) -> Root<DOMMatrix> {
        let is2D = self.is2D.get();
        let flip = Matrix4D::row_major(-1.0, 0.0, 0.0, 0.0,
                                        0.0, 1.0, 0.0, 0.0,
                                        0.0, 0.0, 1.0, 0.0,
                                        0.0, 0.0, 0.0, 1.0);
        let matrix = flip.post_mul(&self.matrix.borrow());
        DOMMatrix::new(self.global().r(), is2D, matrix)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipy
    fn FlipY(&self) -> Root<DOMMatrix> {
        let is2D = self.is2D.get();
        let flip = Matrix4D::row_major(1.0,  0.0, 0.0, 0.0,
                                       0.0, -1.0, 0.0, 0.0,
                                       0.0,  0.0, 1.0, 0.0,
                                       0.0,  0.0, 0.0, 1.0);
        let matrix = flip.post_mul(&self.matrix.borrow());
        DOMMatrix::new(self.global().r(), is2D, matrix)
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-inverse
    fn Inverse(&self) -> Root<DOMMatrix> {
        DOMMatrix::from_readonly(self.global().r(), self).InvertSelf()
    }

    // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-transformpoint
    fn TransformPoint(&self, point: &DOMPointInit) -> Root<DOMPoint> {
        let matrix = self.matrix.borrow();
        let result = matrix.transform_point4d(&Point4D::new(point.x, point.y, point.z, point.w));
        DOMPoint::new(self.global().r(), result.x as f64, result.y as f64, result.z as f64, result.w as f64)
    }
}


// https://drafts.fxtf.org/geometry-1/#create-a-2d-matrix
fn create_2d_matrix(entries: &[f64]) -> Matrix4D<f64> {
    Matrix4D::row_major(entries[0], entries[1], 0.0, 0.0,
                        entries[2], entries[3], 0.0, 0.0,
                        0.0,        0.0,        1.0, 0.0,
                        entries[4], entries[5], 0.0, 1.0)
}


// https://drafts.fxtf.org/geometry-1/#create-a-3d-matrix
fn create_3d_matrix(entries: &[f64]) -> Matrix4D<f64> {
    Matrix4D::row_major(entries[0],  entries[1],  entries[2],  entries[3],
                        entries[4],  entries[5],  entries[6],  entries[7],
                        entries[8],  entries[9],  entries[10], entries[11],
                        entries[12], entries[13], entries[14], entries[15])
}

// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
pub fn entries_to_matrix(entries: &[f64]) -> Fallible<(bool, Matrix4D<f64>)> {
    if entries.len() == 6 {
        Ok((true, create_2d_matrix(&entries)))
    } else if entries.len() == 16 {
        Ok((false, create_3d_matrix(&entries)))
    } else {
        let err_msg = format!("Expected 6 or 16 entries, but found {}.", entries.len());
        Err(error::Error::Type(err_msg.to_owned()))
    }
}


// https://drafts.fxtf.org/geometry-1/#validate-and-fixup
pub fn dommatrixinit_to_matrix(dict: &DOMMatrixInit) -> Fallible<(bool, Matrix4D<f64>)> {
    // Step 1.
    if dict.a.is_some() && dict.m11.is_some() && dict.a.unwrap() != dict.m11.unwrap() ||
       dict.b.is_some() && dict.m12.is_some() && dict.b.unwrap() != dict.m12.unwrap() ||
       dict.c.is_some() && dict.m21.is_some() && dict.c.unwrap() != dict.m21.unwrap() ||
       dict.d.is_some() && dict.m22.is_some() && dict.d.unwrap() != dict.m22.unwrap() ||
       dict.e.is_some() && dict.m41.is_some() && dict.e.unwrap() != dict.m41.unwrap() ||
       dict.f.is_some() && dict.m42.is_some() && dict.f.unwrap() != dict.m42.unwrap() ||
       dict.is2D.is_some() && dict.is2D.unwrap() &&
       (dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 || dict.m23 != 0.0 ||
        dict.m43 != 0.0 || dict.m14 != 0.0 || dict.m24 != 0.0 || dict.m34 != 0.0 ||
        dict.m33 != 1.0 || dict.m44 != 1.0) {
            Err(error::Error::Type("Invalid matrix initializer.".to_owned()))
    } else {
        let mut is2D = dict.is2D;
        // Step 2.
        let m11 = dict.m11.unwrap_or(dict.a.unwrap_or(1.0));
        // Step 3.
        let m12 = dict.m12.unwrap_or(dict.b.unwrap_or(0.0));
        // Step 4.
        let m21 = dict.m21.unwrap_or(dict.c.unwrap_or(0.0));
        // Step 5.
        let m22 = dict.m22.unwrap_or(dict.d.unwrap_or(1.0));
        // Step 6.
        let m41 = dict.m41.unwrap_or(dict.e.unwrap_or(0.0));
        // Step 7.
        let m42 = dict.m42.unwrap_or(dict.f.unwrap_or(0.0));
        // Step 8.
        if is2D.is_none() &&
            (dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 ||
             dict.m23 != 0.0 || dict.m43 != 0.0 || dict.m14 != 0.0 ||
             dict.m24 != 0.0 || dict.m34 != 0.0 ||
             dict.m33 != 1.0 || dict.m44 != 1.0) {
                 is2D = Some(false);
        }
        // Step 9.
        if is2D.is_none() {
            is2D = Some(true);
        }
        let matrix = Matrix4D::row_major(m11,      m12,      dict.m13, dict.m14,
                                         m21,      m22,      dict.m23, dict.m24,
                                         dict.m31, dict.m32, dict.m33, dict.m34,
                                         m41,      m42,      dict.m43, dict.m44);
        Ok((is2D.unwrap(), matrix))
    }
}


#[inline]
fn normalize_point(x: f64, y: f64, z: f64) -> (f64, f64, f64) {
    let len = (x * x + y * y + z * z).sqrt();
    if len == 0.0 {
        (0.0, 0.0, 0.0)
    } else {
        (x / len, y / len, z / len)
    }
}