/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Smart pointers for the JS-managed DOM objects. //! //! The DOM is made up of DOM objects whose lifetime is entirely controlled by //! the whims of the SpiderMonkey garbage collector. The types in this module //! are designed to ensure that any interactions with said Rust types only //! occur on values that will remain alive the entire time. //! //! Here is a brief overview of the important types: //! //! - `Root<T>`: a stack-based reference to a rooted DOM object. //! - `JS<T>`: a reference to a DOM object that can automatically be traced by //! the GC when encountered as a field of a Rust structure. //! //! `JS<T>` does not allow access to their inner value without explicitly //! creating a stack-based root via the `root` method. This returns a `Root<T>`, //! which causes the JS-owned value to be uncollectable for the duration of the //! `Root` object's lifetime. A reference to the object can then be obtained //! from the `Root` object. These references are not allowed to outlive their //! originating `Root<T>`. //! use dom::bindings::trace::JSTraceable; use dom::bindings::trace::trace_reflector; use dom::bindings::utils::{Reflector, Reflectable}; use dom::node::Node; use js::jsapi::{JSObject, Heap, JSTracer}; use js::jsval::JSVal; use layout_interface::TrustedNodeAddress; use script_task::STACK_ROOTS; use core::nonzero::NonZero; use std::cell::{Cell, UnsafeCell}; use std::default::Default; use std::ops::Deref; /// A traced reference to a DOM object. Must only be used as a field in other /// DOM objects. #[must_root] pub struct JS<T> { ptr: NonZero<*const T> } impl<T> JS<T> { /// Returns `LayoutJS<T>` containing the same pointer. pub unsafe fn to_layout(self) -> LayoutJS<T> { LayoutJS { ptr: self.ptr.clone() } } } impl<T: Reflectable> JS<T> { /// Root this JS-owned value to prevent its collection as garbage. pub fn root(&self) -> Root<T> { Root::new(self.ptr) } /// Create a JS<T> from a Root<T> /// XXX Not a great API. Should be a call on Root<T> instead pub fn from_rooted(root: &Root<T>) -> JS<T> { JS { ptr: unsafe { NonZero::new(&**root) } } } /// Create a JS<T> from a &T pub fn from_ref(obj: &T) -> JS<T> { JS { ptr: unsafe { NonZero::new(&*obj) } } } /// Store an rooted value in this field. This is safe under the /// assumption that JS<T> values are only used as fields in DOM types that /// are reachable in the GC graph, so this unrooted value becomes /// transitively rooted for the lifetime of its new owner. pub fn assign(&mut self, val: Root<T>) { self.ptr = val.ptr.clone(); } } /// An unrooted reference to a DOM object for use in layout. `Layout*Helpers` /// traits must be implemented on this. pub struct LayoutJS<T> { ptr: NonZero<*const T> } impl<T: Reflectable> LayoutJS<T> { /// Get the reflector. pub unsafe fn get_jsobject(&self) -> *mut JSObject { (**self.ptr).reflector().get_jsobject().get() } } impl<T> Copy for JS<T> {} impl<T> Copy for LayoutJS<T> {} impl<T> PartialEq for JS<T> { fn eq(&self, other: &JS<T>) -> bool { self.ptr == other.ptr } } impl<T> PartialEq for LayoutJS<T> { fn eq(&self, other: &LayoutJS<T>) -> bool { self.ptr == other.ptr } } impl <T> Clone for JS<T> { #[inline] fn clone(&self) -> JS<T> { JS { ptr: self.ptr.clone() } } } impl <T> Clone for LayoutJS<T> { #[inline] fn clone(&self) -> LayoutJS<T> { LayoutJS { ptr: self.ptr.clone() } } } impl LayoutJS<Node> { /// Create a new JS-owned value wrapped from an address known to be a /// `Node` pointer. pub unsafe fn from_trusted_node_address(inner: TrustedNodeAddress) -> LayoutJS<Node> { let TrustedNodeAddress(addr) = inner; LayoutJS { ptr: NonZero::new(addr as *const Node) } } } impl<T: Reflectable> Reflectable for JS<T> { fn reflector<'a>(&'a self) -> &'a Reflector { unsafe { (**self.ptr).reflector() } } } /// A trait to be implemented for JS-managed types that can be stored in /// mutable member fields. /// /// Do not implement this trait yourself. pub trait HeapGCValue: JSTraceable { } impl HeapGCValue for Heap<JSVal> { } impl<T: Reflectable> HeapGCValue for JS<T> { } /// A holder that provides interior mutability for GC-managed JSVals. /// /// Must be used in place of traditional interior mutability to ensure proper /// GC barriers are enforced. #[must_root] #[jstraceable] pub struct MutHeapJSVal { val: UnsafeCell<Heap<JSVal>>, } impl MutHeapJSVal { /// Create a new `MutHeapJSVal`. pub fn new() -> MutHeapJSVal { MutHeapJSVal { val: UnsafeCell::new(Heap::default()), } } /// Set this `MutHeapJSVal` to the given value, calling write barriers as /// appropriate. pub fn set(&self, val: JSVal) { unsafe { let cell = self.val.get(); (*cell).set(val); } } /// Set the value in this `MutHeapJSVal`, calling read barriers as appropriate. pub fn get(&self) -> JSVal { unsafe { (*self.val.get()).get() } } } /// A holder that provides interior mutability for GC-managed values such as /// `JS<T>`. #[must_root] #[jstraceable] pub struct MutHeap<T: HeapGCValue+Copy> { val: Cell<T>, } impl<T: HeapGCValue+Copy> MutHeap<T> { /// Create a new `MutHeap`. pub fn new(initial: T) -> MutHeap<T> { MutHeap { val: Cell::new(initial), } } /// Set this `MutHeap` to the given value. pub fn set(&self, val: T) { self.val.set(val) } /// Set the value in this `MutHeap`. pub fn get(&self) -> T { self.val.get() } } /// A mutable holder for GC-managed values such as `JSval` and `JS<T>`, with /// nullability represented by an enclosing Option wrapper. Must be used in /// place of traditional internal mutability to ensure that the proper GC /// barriers are enforced. #[must_root] #[jstraceable] pub struct MutNullableHeap<T: HeapGCValue+Copy> { ptr: Cell<Option<T>> } impl<T: HeapGCValue+Copy> MutNullableHeap<T> { /// Create a new `MutNullableHeap`. pub fn new(initial: Option<T>) -> MutNullableHeap<T> { MutNullableHeap { ptr: Cell::new(initial) } } /// Set this `MutNullableHeap` to the given value. pub fn set(&self, val: Option<T>) { self.ptr.set(val); } /// Retrieve a copy of the current optional inner value. pub fn get(&self) -> Option<T> { self.ptr.get() } } impl<T: Reflectable> MutNullableHeap<JS<T>> { /// Retrieve a copy of the current inner value. If it is `None`, it is /// initialized with the result of `cb` first. pub fn or_init<F>(&self, cb: F) -> Root<T> where F: FnOnce() -> Root<T> { match self.get() { Some(inner) => Root::from_rooted(inner), None => { let inner = cb(); self.set(Some(JS::from_rooted(&inner))); inner }, } } /// Retrieve a copy of the inner optional `JS<T>` as `LayoutJS<T>`. /// For use by layout, which can't use safe types like Temporary. pub unsafe fn get_inner_as_layout(&self) -> Option<LayoutJS<T>> { self.ptr.get().map(|js| js.to_layout()) } } impl<T: HeapGCValue+Copy> Default for MutNullableHeap<T> { fn default() -> MutNullableHeap<T> { MutNullableHeap { ptr: Cell::new(None) } } } impl<T: Reflectable> LayoutJS<T> { /// Returns an unsafe pointer to the interior of this JS object. This is /// the only method that be safely accessed from layout. (The fact that /// this is unsafe is what necessitates the layout wrappers.) pub unsafe fn unsafe_get(&self) -> *const T { *self.ptr } } /// Get an `Option<JSRef<T>>` out of an `Option<Root<T>>` pub trait RootedReference<T> { /// Obtain a safe optional reference to the wrapped JS owned-value that /// cannot outlive the lifetime of this root. fn r<'a>(&'a self) -> Option<&'a T>; } impl<T: Reflectable> RootedReference<T> for Option<Root<T>> { fn r<'a>(&'a self) -> Option<&'a T> { self.as_ref().map(|root| root.r()) } } /// Get an `Option<Option<&T>>` out of an `Option<Option<Root<T>>>` pub trait OptionalRootedReference<T> { /// Obtain a safe optional optional reference to the wrapped JS owned-value /// that cannot outlive the lifetime of this root. fn r<'a>(&'a self) -> Option<Option<&'a T>>; } impl<T: Reflectable> OptionalRootedReference<T> for Option<Option<Root<T>>> { fn r<'a>(&'a self) -> Option<Option<&'a T>> { self.as_ref().map(|inner| inner.r()) } } /// A rooting mechanism for reflectors on the stack. /// LIFO is not required. /// /// See also [*Exact Stack Rooting - Storing a GCPointer on the CStack*] /// (https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/GC/Exact_Stack_Rooting). #[no_move] pub struct RootCollection { roots: UnsafeCell<Vec<*const Reflector>>, } /// A pointer to a RootCollection, for use in global variables. pub struct RootCollectionPtr(pub *const RootCollection); impl Copy for RootCollectionPtr {} impl Clone for RootCollectionPtr { fn clone(&self) -> RootCollectionPtr { *self } } impl RootCollection { /// Create an empty collection of roots pub fn new() -> RootCollection { RootCollection { roots: UnsafeCell::new(vec!()), } } /// Start tracking a stack-based root fn root<'b>(&self, untracked_reflector: *const Reflector) { unsafe { let mut roots = &mut *self.roots.get(); roots.push(untracked_reflector); assert!(!(*untracked_reflector).get_jsobject().is_null()) } } /// Stop tracking a stack-based root, asserting if the reflector isn't found fn unroot<'b, T: Reflectable>(&self, rooted: &Root<T>) { unsafe { let mut roots = &mut *self.roots.get(); let old_reflector = &*rooted.r().reflector(); match roots.iter().rposition(|r| *r == old_reflector) { Some(idx) => { roots.remove(idx); }, None => panic!("Can't remove a root that was never rooted!") } } } } /// SM Callback that traces the rooted reflectors pub unsafe fn trace_roots(tracer: *mut JSTracer) { STACK_ROOTS.with(|ref collection| { let RootCollectionPtr(collection) = collection.get().unwrap(); let collection = &*(*collection).roots.get(); for root in collection.iter() { trace_reflector(tracer, "reflector", &**root); } }); } /// A rooted reference to a DOM object. /// /// The JS value is pinned for the duration of this object's lifetime; roots /// are additive, so this object's destruction will not invalidate other roots /// for the same JS value. `Root`s cannot outlive the associated /// `RootCollection` object. pub struct Root<T: Reflectable> { /// Reference to rooted value that must not outlive this container ptr: NonZero<*const T>, /// List that ensures correct dynamic root ordering root_list: *const RootCollection, } impl<T: Reflectable> Root<T> { /// Create a new stack-bounded root for the provided JS-owned value. /// It cannot not outlive its associated `RootCollection`, and it gives /// out references which cannot outlive this new `Root`. pub fn new(unrooted: NonZero<*const T>) -> Root<T> { STACK_ROOTS.with(|ref collection| { let RootCollectionPtr(collection) = collection.get().unwrap(); unsafe { (*collection).root(&*(**unrooted).reflector()) } Root { ptr: unrooted, root_list: collection, } }) } /// Generate a new root from a reference pub fn from_ref(unrooted: &T) -> Root<T> { Root::new(unsafe { NonZero::new(&*unrooted) }) } /// Obtain a safe reference to the wrapped JS owned-value that cannot /// outlive the lifetime of this root. pub fn r<'a>(&'a self) -> &'a T { &**self } /// Don't use this. Don't make me find you. pub fn get_unsound_ref_forever<'a, 'b>(&'a self) -> &'b T { unsafe { &**self.ptr } } /// Generate a new root from a JS<T> reference #[allow(unrooted_must_root)] pub fn from_rooted(js: JS<T>) -> Root<T> { js.root() } } impl<T: Reflectable> Deref for Root<T> { type Target = T; fn deref<'a>(&'a self) -> &'a T { unsafe { &**self.ptr.deref() } } } impl<T: Reflectable> PartialEq for Root<T> { fn eq(&self, other: &Root<T>) -> bool { self.ptr == other.ptr } } impl<T: Reflectable> Drop for Root<T> { fn drop(&mut self) { unsafe { (*self.root_list).unroot(self); } } }