/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! High-level interface to CSS selector matching. #![allow(unsafe_code)] use {Atom, LocalName}; use animation; use atomic_refcell::AtomicRefMut; use cache::LRUCache; use cascade_info::CascadeInfo; use context::{SharedStyleContext, StyleContext}; use data::{ElementData, ElementStyles, PseudoStyles}; use dom::{TElement, TNode, TRestyleDamage, UnsafeNode}; use properties::{CascadeFlags, ComputedValues, SHAREABLE, cascade}; use properties::longhands::display::computed_value as display; use rule_tree::StrongRuleNode; use selector_parser::{PseudoElement, RestyleDamage, SelectorImpl}; use selectors::MatchAttr; use selectors::bloom::BloomFilter; use selectors::matching::{AFFECTED_BY_PSEUDO_ELEMENTS, MatchingReason, StyleRelations}; use sink::ForgetfulSink; use std::collections::HashMap; use std::hash::BuildHasherDefault; use std::mem; use std::slice::IterMut; use std::sync::Arc; use stylist::ApplicableDeclarationBlock; use util::opts; fn create_common_style_affecting_attributes_from_element(element: &E) -> CommonStyleAffectingAttributes { let mut flags = CommonStyleAffectingAttributes::empty(); for attribute_info in &common_style_affecting_attributes() { match attribute_info.mode { CommonStyleAffectingAttributeMode::IsPresent(flag) => { if element.has_attr(&ns!(), &attribute_info.attr_name) { flags.insert(flag) } } CommonStyleAffectingAttributeMode::IsEqual(ref target_value, flag) => { if element.attr_equals(&ns!(), &attribute_info.attr_name, target_value) { flags.insert(flag) } } } } flags } type PseudoRuleNodes = HashMap>; pub struct MatchResults { pub primary: StrongRuleNode, pub relations: StyleRelations, pub per_pseudo: PseudoRuleNodes, } impl MatchResults { /// Returns true if the primary rule node is shareable with other nodes. pub fn primary_is_shareable(&self) -> bool { use traversal::relations_are_shareable; relations_are_shareable(&self.relations) } } /// Information regarding a candidate. /// /// TODO: We can stick a lot more info here. #[derive(Debug)] struct StyleSharingCandidate { /// The node, guaranteed to be an element. node: UnsafeNode, /// The cached common style affecting attribute info. common_style_affecting_attributes: Option, /// the cached class names. class_attributes: Option>, } impl PartialEq for StyleSharingCandidate { fn eq(&self, other: &Self) -> bool { self.node == other.node && self.common_style_affecting_attributes == other.common_style_affecting_attributes } } /// An LRU cache of the last few nodes seen, so that we can aggressively try to /// reuse their styles. /// /// Note that this cache is flushed every time we steal work from the queue, so /// storing nodes here temporarily is safe. /// /// NB: We store UnsafeNode's, but this is not unsafe. It's a shame being /// generic over elements is unfeasible (you can make compile style without much /// difficulty, but good luck with layout and all the types with assoc. /// lifetimes). pub struct StyleSharingCandidateCache { cache: LRUCache, } #[derive(Clone, Debug)] pub enum CacheMiss { Parent, LocalName, Namespace, Link, State, IdAttr, StyleAttr, Class, CommonStyleAffectingAttributes, PresHints, SiblingRules, NonCommonAttrRules, } fn element_matches_candidate(element: &E, candidate: &mut StyleSharingCandidate, candidate_element: &E, shared_context: &SharedStyleContext) -> Result<(Arc, StrongRuleNode), CacheMiss> { macro_rules! miss { ($miss: ident) => { return Err(CacheMiss::$miss); } } if element.parent_element() != candidate_element.parent_element() { miss!(Parent) } if *element.get_local_name() != *candidate_element.get_local_name() { miss!(LocalName) } if *element.get_namespace() != *candidate_element.get_namespace() { miss!(Namespace) } if element.is_link() != candidate_element.is_link() { miss!(Link) } if element.get_state() != candidate_element.get_state() { miss!(State) } if element.get_id().is_some() { miss!(IdAttr) } if element.style_attribute().is_some() { miss!(StyleAttr) } if !have_same_class(element, candidate, candidate_element) { miss!(Class) } if !have_same_common_style_affecting_attributes(element, candidate, candidate_element) { miss!(CommonStyleAffectingAttributes) } if !have_same_presentational_hints(element, candidate_element) { miss!(PresHints) } if !match_same_sibling_affecting_rules(element, candidate_element, shared_context) { miss!(SiblingRules) } if !match_same_not_common_style_affecting_attributes_rules(element, candidate_element, shared_context) { miss!(NonCommonAttrRules) } let data = candidate_element.borrow_data().unwrap(); let current_styles = data.get_current_styles().unwrap(); Ok((current_styles.primary.clone(), current_styles.rule_node.clone())) } fn have_same_common_style_affecting_attributes(element: &E, candidate: &mut StyleSharingCandidate, candidate_element: &E) -> bool { if candidate.common_style_affecting_attributes.is_none() { candidate.common_style_affecting_attributes = Some(create_common_style_affecting_attributes_from_element(candidate_element)) } create_common_style_affecting_attributes_from_element(element) == candidate.common_style_affecting_attributes.unwrap() } fn have_same_presentational_hints(element: &E, candidate: &E) -> bool { let mut first = ForgetfulSink::new(); element.synthesize_presentational_hints_for_legacy_attributes(&mut first); if cfg!(debug_assertions) { let mut second = vec![]; candidate.synthesize_presentational_hints_for_legacy_attributes(&mut second); debug_assert!(second.is_empty(), "Should never have inserted an element with preshints in the cache!"); } first.is_empty() } bitflags! { pub flags CommonStyleAffectingAttributes: u8 { const HIDDEN_ATTRIBUTE = 0x01, const NO_WRAP_ATTRIBUTE = 0x02, const ALIGN_LEFT_ATTRIBUTE = 0x04, const ALIGN_CENTER_ATTRIBUTE = 0x08, const ALIGN_RIGHT_ATTRIBUTE = 0x10, } } pub struct CommonStyleAffectingAttributeInfo { pub attr_name: LocalName, pub mode: CommonStyleAffectingAttributeMode, } #[derive(Clone)] pub enum CommonStyleAffectingAttributeMode { IsPresent(CommonStyleAffectingAttributes), IsEqual(Atom, CommonStyleAffectingAttributes), } // NB: This must match the order in `selectors::matching::CommonStyleAffectingAttributes`. #[inline] pub fn common_style_affecting_attributes() -> [CommonStyleAffectingAttributeInfo; 5] { [ CommonStyleAffectingAttributeInfo { attr_name: local_name!("hidden"), mode: CommonStyleAffectingAttributeMode::IsPresent(HIDDEN_ATTRIBUTE), }, CommonStyleAffectingAttributeInfo { attr_name: local_name!("nowrap"), mode: CommonStyleAffectingAttributeMode::IsPresent(NO_WRAP_ATTRIBUTE), }, CommonStyleAffectingAttributeInfo { attr_name: local_name!("align"), mode: CommonStyleAffectingAttributeMode::IsEqual(atom!("left"), ALIGN_LEFT_ATTRIBUTE), }, CommonStyleAffectingAttributeInfo { attr_name: local_name!("align"), mode: CommonStyleAffectingAttributeMode::IsEqual(atom!("center"), ALIGN_CENTER_ATTRIBUTE), }, CommonStyleAffectingAttributeInfo { attr_name: local_name!("align"), mode: CommonStyleAffectingAttributeMode::IsEqual(atom!("right"), ALIGN_RIGHT_ATTRIBUTE), } ] } /// Attributes that, if present, disable style sharing. All legacy HTML attributes must be in /// either this list or `common_style_affecting_attributes`. See the comment in /// `synthesize_presentational_hints_for_legacy_attributes`. pub fn rare_style_affecting_attributes() -> [LocalName; 3] { [ local_name!("bgcolor"), local_name!("border"), local_name!("colspan") ] } fn have_same_class(element: &E, candidate: &mut StyleSharingCandidate, candidate_element: &E) -> bool { // XXX Efficiency here, I'm only validating ideas. let mut element_class_attributes = vec![]; element.each_class(|c| element_class_attributes.push(c.clone())); if candidate.class_attributes.is_none() { let mut attrs = vec![]; candidate_element.each_class(|c| attrs.push(c.clone())); candidate.class_attributes = Some(attrs) } element_class_attributes == *candidate.class_attributes.as_ref().unwrap() } // TODO: These re-match the candidate every time, which is suboptimal. #[inline] fn match_same_not_common_style_affecting_attributes_rules(element: &E, candidate: &E, ctx: &SharedStyleContext) -> bool { ctx.stylist.match_same_not_common_style_affecting_attributes_rules(element, candidate) } #[inline] fn match_same_sibling_affecting_rules(element: &E, candidate: &E, ctx: &SharedStyleContext) -> bool { ctx.stylist.match_same_sibling_affecting_rules(element, candidate) } static STYLE_SHARING_CANDIDATE_CACHE_SIZE: usize = 8; impl StyleSharingCandidateCache { pub fn new() -> Self { StyleSharingCandidateCache { cache: LRUCache::new(STYLE_SHARING_CANDIDATE_CACHE_SIZE), } } fn iter_mut(&mut self) -> IterMut<(StyleSharingCandidate, ())> { self.cache.iter_mut() } pub fn insert_if_possible(&mut self, element: &E, style: &Arc, relations: StyleRelations) { use traversal::relations_are_shareable; let parent = match element.parent_element() { Some(element) => element, None => { debug!("Failing to insert to the cache: no parent element"); return; } }; // These are things we don't check in the candidate match because they // are either uncommon or expensive. if !relations_are_shareable(&relations) { debug!("Failing to insert to the cache: {:?}", relations); return; } let box_style = style.get_box(); if box_style.transition_property_count() > 0 { debug!("Failing to insert to the cache: transitions"); return; } if box_style.animation_name_count() > 0 { debug!("Failing to insert to the cache: animations"); return; } debug!("Inserting into cache: {:?} with parent {:?}", element.as_node().to_unsafe(), parent.as_node().to_unsafe()); self.cache.insert(StyleSharingCandidate { node: element.as_node().to_unsafe(), common_style_affecting_attributes: None, class_attributes: None, }, ()); } pub fn touch(&mut self, index: usize) { self.cache.touch(index); } pub fn clear(&mut self) { self.cache.evict_all() } } /// The results of attempting to share a style. pub enum StyleSharingResult { /// We didn't find anybody to share the style with. CannotShare, /// The node's style can be shared. The integer specifies the index in the /// LRU cache that was hit and the damage that was done, and the restyle /// result the original result of the candidate's styling, that is, whether /// it should stop the traversal or not. StyleWasShared(usize, RestyleDamage), } // Callers need to pass several boolean flags to cascade_node_pseudo_element. // We encapsulate them in this struct to avoid mixing them up. // // FIXME(pcwalton): Unify with `CascadeFlags`, perhaps? struct CascadeBooleans { shareable: bool, animate: bool, } trait PrivateMatchMethods: TElement { /// Actually cascades style for a node or a pseudo-element of a node. /// /// Note that animations only apply to nodes or ::before or ::after /// pseudo-elements. fn cascade_node_pseudo_element<'a, Ctx>(&self, context: &Ctx, parent_style: Option<&Arc>, old_style: Option<&Arc>, rule_node: &StrongRuleNode, booleans: CascadeBooleans) -> Arc where Ctx: StyleContext<'a> { let shared_context = context.shared_context(); let mut cascade_info = CascadeInfo::new(); let mut cascade_flags = CascadeFlags::empty(); if booleans.shareable { cascade_flags.insert(SHAREABLE) } let this_style = match parent_style { Some(ref parent_style) => { cascade(shared_context.viewport_size, rule_node, Some(&***parent_style), Some(&mut cascade_info), shared_context.error_reporter.clone(), cascade_flags) } None => { cascade(shared_context.viewport_size, rule_node, None, Some(&mut cascade_info), shared_context.error_reporter.clone(), cascade_flags) } }; cascade_info.finish(&self.as_node()); let mut this_style = Arc::new(this_style); if booleans.animate { let new_animations_sender = &context.local_context().new_animations_sender; let this_opaque = self.as_node().opaque(); // Trigger any present animations if necessary. animation::maybe_start_animations(&shared_context, new_animations_sender, this_opaque, &this_style); // Trigger transitions if necessary. This will reset `this_style` back // to its old value if it did trigger a transition. if let Some(ref style) = old_style { animation::start_transitions_if_applicable( new_animations_sender, this_opaque, self.as_node().to_unsafe(), &**style, &mut this_style, &shared_context.timer); } } this_style } fn update_animations_for_cascade(&self, context: &SharedStyleContext, style: &mut Arc) -> bool { // Finish any expired transitions. let this_opaque = self.as_node().opaque(); let had_animations_to_expire = animation::complete_expired_transitions(this_opaque, style, context); // Merge any running transitions into the current style, and cancel them. let had_running_animations = context.running_animations .read() .get(&this_opaque) .is_some(); if had_running_animations { let mut all_running_animations = context.running_animations.write(); for mut running_animation in all_running_animations.get_mut(&this_opaque).unwrap() { // This shouldn't happen frequently, but under some // circumstances mainly huge load or debug builds, the // constellation might be delayed in sending the // `TickAllAnimations` message to layout. // // Thus, we can't assume all the animations have been already // updated by layout, because other restyle due to script might // be triggered by layout before the animation tick. // // See #12171 and the associated PR for an example where this // happened while debugging other release panic. if !running_animation.is_expired() { animation::update_style_for_animation(context, running_animation, style); running_animation.mark_as_expired(); } } } had_animations_to_expire || had_running_animations } fn share_style_with_candidate_if_possible(&self, shared_context: &SharedStyleContext, candidate: &mut StyleSharingCandidate) -> Result<(Arc, StrongRuleNode), CacheMiss> { let candidate_element = unsafe { Self::ConcreteNode::from_unsafe(&candidate.node).as_element().unwrap() }; element_matches_candidate(self, candidate, &candidate_element, shared_context) } } fn compute_rule_node<'a, Ctx>(context: &Ctx, applicable_declarations: &mut Vec) -> StrongRuleNode where Ctx: StyleContext<'a> { let shared_context = context.shared_context(); let rules = applicable_declarations.drain(..).map(|d| (d.source, d.importance)); let rule_node = shared_context.stylist.rule_tree.insert_ordered_rules(rules); rule_node } impl PrivateMatchMethods for E {} pub trait MatchMethods : TElement { fn match_element<'a, Ctx>(&self, context: &Ctx, parent_bf: Option<&BloomFilter>) -> MatchResults where Ctx: StyleContext<'a> { let mut applicable_declarations: Vec = Vec::with_capacity(16); let stylist = &context.shared_context().stylist; let style_attribute = self.style_attribute(); // Compute the primary rule node. let mut primary_relations = stylist.push_applicable_declarations(self, parent_bf, style_attribute, None, &mut applicable_declarations, MatchingReason::ForStyling); let primary_rule_node = compute_rule_node(context, &mut applicable_declarations); // Compute the pseudo rule nodes. let mut per_pseudo: PseudoRuleNodes = HashMap::with_hasher(Default::default()); SelectorImpl::each_eagerly_cascaded_pseudo_element(|pseudo| { debug_assert!(applicable_declarations.is_empty()); stylist.push_applicable_declarations(self, parent_bf, None, Some(&pseudo.clone()), &mut applicable_declarations, MatchingReason::ForStyling); if !applicable_declarations.is_empty() { let rule_node = compute_rule_node(context, &mut applicable_declarations); per_pseudo.insert(pseudo, rule_node); } }); // If we have any pseudo elements, indicate so in the primary StyleRelations. if !per_pseudo.is_empty() { primary_relations |= AFFECTED_BY_PSEUDO_ELEMENTS; } MatchResults { primary: primary_rule_node, relations: primary_relations, per_pseudo: per_pseudo, } } /// Attempts to share a style with another node. This method is unsafe because it depends on /// the `style_sharing_candidate_cache` having only live nodes in it, and we have no way to /// guarantee that at the type system level yet. unsafe fn share_style_if_possible(&self, style_sharing_candidate_cache: &mut StyleSharingCandidateCache, shared_context: &SharedStyleContext, data: &mut AtomicRefMut) -> StyleSharingResult { if opts::get().disable_share_style_cache { return StyleSharingResult::CannotShare } if self.style_attribute().is_some() { return StyleSharingResult::CannotShare } if self.has_attr(&ns!(), &local_name!("id")) { return StyleSharingResult::CannotShare } let mut should_clear_cache = false; for (i, &mut (ref mut candidate, ())) in style_sharing_candidate_cache.iter_mut().enumerate() { let sharing_result = self.share_style_with_candidate_if_possible(shared_context, candidate); match sharing_result { Ok((shared_style, rule_node)) => { // Yay, cache hit. Share the style. // TODO: add the display: none optimisation here too! Even // better, factor it out/make it a bit more generic so Gecko // can decide more easily if it knows that it's a child of // replaced content, or similar stuff! let damage = match self.existing_style_for_restyle_damage(data.previous_styles().map(|x| &x.primary), None) { Some(ref source) => RestyleDamage::compute(source, &shared_style), None => RestyleDamage::rebuild_and_reflow(), }; data.finish_styling(ElementStyles::new(shared_style, rule_node)); return StyleSharingResult::StyleWasShared(i, damage) } Err(miss) => { debug!("Cache miss: {:?}", miss); // Cache miss, let's see what kind of failure to decide // whether we keep trying or not. match miss { // Cache miss because of parent, clear the candidate cache. CacheMiss::Parent => { should_clear_cache = true; break; }, // Too expensive failure, give up, we don't want another // one of these. CacheMiss::CommonStyleAffectingAttributes | CacheMiss::PresHints | CacheMiss::SiblingRules | CacheMiss::NonCommonAttrRules => break, _ => {} } } } } if should_clear_cache { style_sharing_candidate_cache.clear(); } StyleSharingResult::CannotShare } // The below two functions are copy+paste because I can't figure out how to // write a function which takes a generic function. I don't think it can // be done. // // Ideally, I'd want something like: // // > fn with_really_simple_selectors(&self, f: |&H|); // In terms of `SimpleSelector`s, these two functions will insert and remove: // - `SimpleSelector::LocalName` // - `SimpleSelector::Namepace` // - `SimpleSelector::ID` // - `SimpleSelector::Class` /// Inserts and removes the matching `Descendant` selectors from a bloom /// filter. This is used to speed up CSS selector matching to remove /// unnecessary tree climbs for `Descendant` queries. /// /// A bloom filter of the local names, namespaces, IDs, and classes is kept. /// Therefore, each node must have its matching selectors inserted _after_ /// its own selector matching and _before_ its children start. fn insert_into_bloom_filter(&self, bf: &mut BloomFilter) { bf.insert(&*self.get_local_name()); bf.insert(&*self.get_namespace()); self.get_id().map(|id| bf.insert(&id)); // TODO: case-sensitivity depends on the document type and quirks mode self.each_class(|class| bf.insert(class)); } /// After all the children are done css selector matching, this must be /// called to reset the bloom filter after an `insert`. fn remove_from_bloom_filter(&self, bf: &mut BloomFilter) { bf.remove(&*self.get_local_name()); bf.remove(&*self.get_namespace()); self.get_id().map(|id| bf.remove(&id)); // TODO: case-sensitivity depends on the document type and quirks mode self.each_class(|class| bf.remove(class)); } fn compute_restyle_damage(&self, old_style: Option<&Arc>, new_style: &Arc, pseudo: Option<&PseudoElement>) -> RestyleDamage { match self.existing_style_for_restyle_damage(old_style, pseudo) { Some(ref source) => RestyleDamage::compute(source, new_style), None => { // If there's no style source, two things can happen: // // 1. This is not an incremental restyle (old_style is none). // In this case we can't do too much than sending // rebuild_and_reflow. // // 2. This is an incremental restyle, but the old display value // is none, so there's no effective way for Gecko to get the // style source. In this case, we could return either // RestyleDamage::empty(), in the case both displays are // none, or rebuild_and_reflow, otherwise. The first case // should be already handled when calling this function, so // we can assert that the new display value is not none. // // Also, this can be a text node (in which case we don't // care of watching the new display value). // // Unfortunately we can't strongly assert part of this, since // we style some nodes that in Gecko never generate a frame, // like children of replaced content. Arguably, we shouldn't be // styling those here, but until we implement that we'll have to // stick without the assertions. debug_assert!(pseudo.is_none() || new_style.get_box().clone_display() != display::T::none); RestyleDamage::rebuild_and_reflow() } } } unsafe fn cascade_node<'a, Ctx>(&self, context: &Ctx, mut data: AtomicRefMut, parent: Option, primary_rule_node: StrongRuleNode, pseudo_rule_nodes: PseudoRuleNodes, primary_is_shareable: bool) where Ctx: StyleContext<'a> { // Get our parent's style. let parent_data = parent.as_ref().map(|x| x.borrow_data().unwrap()); let parent_style = parent_data.as_ref().map(|x| &x.current_styles().primary); let mut new_styles; let damage = { let (old_primary, old_pseudos) = match data.previous_styles_mut() { None => (None, None), Some(previous) => { // Update animations before the cascade. This may modify the // value of the old primary style. self.update_animations_for_cascade(context.shared_context(), &mut previous.primary); (Some(&previous.primary), Some(&mut previous.pseudos)) } }; let new_style = self.cascade_node_pseudo_element(context, parent_style, old_primary, &primary_rule_node, CascadeBooleans { shareable: primary_is_shareable, animate: true, }); new_styles = ElementStyles::new(new_style, primary_rule_node); let damage = self.compute_damage_and_cascade_pseudos(old_primary, old_pseudos, &new_styles.primary, &mut new_styles.pseudos, context, pseudo_rule_nodes); self.as_node().set_can_be_fragmented(parent.map_or(false, |p| { p.as_node().can_be_fragmented() || parent_style.unwrap().is_multicol() })); damage }; data.finish_styling(new_styles); // Drop the mutable borrow early, since Servo's set_restyle_damage also borrows. mem::drop(data); self.set_restyle_damage(damage); } fn compute_damage_and_cascade_pseudos<'a, Ctx>(&self, old_primary: Option<&Arc>, mut old_pseudos: Option<&mut PseudoStyles>, new_primary: &Arc, new_pseudos: &mut PseudoStyles, context: &Ctx, mut pseudo_rule_nodes: PseudoRuleNodes) -> RestyleDamage where Ctx: StyleContext<'a> { // Here we optimise the case of the style changing but both the // previous and the new styles having display: none. In this // case, we can always optimize the traversal, regardless of the // restyle hint. let this_display = new_primary.get_box().clone_display(); if this_display == display::T::none { let old_display = old_primary.map(|old| { old.get_box().clone_display() }); // If display passed from none to something, then we need to reflow, // otherwise, we don't do anything. let damage = match old_display { Some(display) if display == this_display => { RestyleDamage::empty() } _ => RestyleDamage::rebuild_and_reflow() }; debug!("Short-circuiting traversal: {:?} {:?} {:?}", this_display, old_display, damage); return damage } // Compute the damage and sum up the damage related to pseudo-elements. let mut damage = self.compute_restyle_damage(old_primary, new_primary, None); // If the new style is display:none, we don't need pseudo-elements styles. if new_primary.get_box().clone_display() == display::T::none { return damage; } let rebuild_and_reflow = RestyleDamage::rebuild_and_reflow(); debug_assert!(new_pseudos.is_empty()); ::Impl::each_eagerly_cascaded_pseudo_element(|pseudo| { let maybe_rule_node = pseudo_rule_nodes.remove(&pseudo); // Grab the old pseudo style for analysis. let mut maybe_old_pseudo_style_and_rule_node = old_pseudos.as_mut().and_then(|x| x.remove(&pseudo)); if maybe_rule_node.is_some() { let new_rule_node = maybe_rule_node.unwrap(); // We have declarations, so we need to cascade. Compute parameters. let animate = ::Impl::pseudo_is_before_or_after(&pseudo); if animate { if let Some((ref mut old_pseudo_style, _)) = maybe_old_pseudo_style_and_rule_node { // Update animations before the cascade. This may modify // the value of old_pseudo_style. self.update_animations_for_cascade(context.shared_context(), old_pseudo_style); } } let new_pseudo_style = self.cascade_node_pseudo_element(context, Some(new_primary), maybe_old_pseudo_style_and_rule_node.as_ref().map(|s| &s.0), &new_rule_node, CascadeBooleans { shareable: false, animate: animate, }); // Compute restyle damage unless we've already maxed it out. if damage != rebuild_and_reflow { damage = damage | match maybe_old_pseudo_style_and_rule_node { None => rebuild_and_reflow, Some((ref old, _)) => self.compute_restyle_damage(Some(old), &new_pseudo_style, Some(&pseudo)), }; } // Insert the new entry into the map. let existing = new_pseudos.insert(pseudo, (new_pseudo_style, new_rule_node)); debug_assert!(existing.is_none()); } else { if maybe_old_pseudo_style_and_rule_node.is_some() { damage = rebuild_and_reflow; } } }); damage } } impl MatchMethods for E {}