#line 1 /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #define PST_TOP_LEFT 0 #define PST_TOP 1 #define PST_TOP_RIGHT 2 #define PST_RIGHT 3 #define PST_BOTTOM_RIGHT 4 #define PST_BOTTOM 5 #define PST_BOTTOM_LEFT 6 #define PST_LEFT 7 #define BORDER_LEFT 0 #define BORDER_TOP 1 #define BORDER_RIGHT 2 #define BORDER_BOTTOM 3 #define UV_NORMALIZED uint(0) #define UV_PIXEL uint(1) // Border styles as defined in webrender_traits/types.rs #define BORDER_STYLE_NONE 0 #define BORDER_STYLE_SOLID 1 #define BORDER_STYLE_DOUBLE 2 #define BORDER_STYLE_DOTTED 3 #define BORDER_STYLE_DASHED 4 #define BORDER_STYLE_HIDDEN 5 #define BORDER_STYLE_GROOVE 6 #define BORDER_STYLE_RIDGE 7 #define BORDER_STYLE_INSET 8 #define BORDER_STYLE_OUTSET 9 #define MAX_STOPS_PER_ANGLE_GRADIENT 8 uniform sampler2DArray sCache; #ifdef WR_VERTEX_SHADER #define VECS_PER_LAYER 13 #define VECS_PER_RENDER_TASK 2 #define VECS_PER_PRIM_GEOM 2 #define GRADIENT_HORIZONTAL 0 #define GRADIENT_VERTICAL 1 #define GRADIENT_ROTATED 2 uniform sampler2D sLayers; uniform sampler2D sRenderTasks; uniform sampler2D sPrimGeometry; uniform sampler2D sClips; uniform sampler2D sData16; uniform sampler2D sData32; uniform sampler2D sData64; uniform sampler2D sData128; ivec2 get_fetch_uv(int index, int vecs_per_item) { int items_per_row = WR_MAX_VERTEX_TEXTURE_WIDTH / vecs_per_item; int y = index / items_per_row; int x = vecs_per_item * (index % items_per_row); return ivec2(x, y); } ivec2 get_fetch_uv_1(int index) { return get_fetch_uv(index, 1); } ivec2 get_fetch_uv_2(int index) { return get_fetch_uv(index, 2); } ivec2 get_fetch_uv_4(int index) { return get_fetch_uv(index, 4); } ivec2 get_fetch_uv_8(int index) { return get_fetch_uv(index, 8); } struct Layer { mat4 transform; mat4 inv_transform; vec4 local_clip_rect; vec4 screen_vertices[4]; }; layout(std140) uniform Data { ivec4 int_data[WR_MAX_UBO_VECTORS]; }; Layer fetch_layer(int index) { Layer layer; // Create a UV base coord for each 8 texels. // This is required because trying to use an offset // of more than 8 texels doesn't work on some versions // of OSX. ivec2 uv = get_fetch_uv(index, VECS_PER_LAYER); ivec2 uv0 = ivec2(uv.x + 0, uv.y); ivec2 uv1 = ivec2(uv.x + 8, uv.y); layer.transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(0, 0)); layer.transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(1, 0)); layer.transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(2, 0)); layer.transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(3, 0)); layer.inv_transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(4, 0)); layer.inv_transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(5, 0)); layer.inv_transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(6, 0)); layer.inv_transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(7, 0)); layer.local_clip_rect = texelFetchOffset(sLayers, uv1, 0, ivec2(0, 0)); layer.screen_vertices[0] = texelFetchOffset(sLayers, uv1, 0, ivec2(1, 0)); layer.screen_vertices[1] = texelFetchOffset(sLayers, uv1, 0, ivec2(2, 0)); layer.screen_vertices[2] = texelFetchOffset(sLayers, uv1, 0, ivec2(3, 0)); layer.screen_vertices[3] = texelFetchOffset(sLayers, uv1, 0, ivec2(4, 0)); return layer; } struct RenderTaskData { vec4 data0; vec4 data1; }; RenderTaskData fetch_render_task(int index) { RenderTaskData task; ivec2 uv = get_fetch_uv(index, VECS_PER_RENDER_TASK); task.data0 = texelFetchOffset(sRenderTasks, uv, 0, ivec2(0, 0)); task.data1 = texelFetchOffset(sRenderTasks, uv, 0, ivec2(1, 0)); return task; } struct Tile { vec4 screen_origin_task_origin; vec4 size_target_index; }; Tile fetch_tile(int index) { RenderTaskData task = fetch_render_task(index); Tile tile; tile.screen_origin_task_origin = task.data0; tile.size_target_index = task.data1; return tile; } struct Gradient { vec4 start_end_point; vec4 kind; }; Gradient fetch_gradient(int index) { Gradient gradient; ivec2 uv = get_fetch_uv_2(index); gradient.start_end_point = texelFetchOffset(sData32, uv, 0, ivec2(0, 0)); gradient.kind = texelFetchOffset(sData32, uv, 0, ivec2(1, 0)); return gradient; } struct GradientStop { vec4 color; vec4 offset; }; GradientStop fetch_gradient_stop(int index) { GradientStop stop; ivec2 uv = get_fetch_uv_2(index); stop.color = texelFetchOffset(sData32, uv, 0, ivec2(0, 0)); stop.offset = texelFetchOffset(sData32, uv, 0, ivec2(1, 0)); return stop; } struct Glyph { vec4 offset; vec4 uv_rect; }; Glyph fetch_glyph(int index) { Glyph glyph; ivec2 uv = get_fetch_uv_2(index); glyph.offset = texelFetchOffset(sData32, uv, 0, ivec2(0, 0)); glyph.uv_rect = texelFetchOffset(sData32, uv, 0, ivec2(1, 0)); return glyph; } struct Border { vec4 style; vec4 widths; vec4 colors[4]; vec4 radii[2]; }; Border fetch_border(int index) { Border border; ivec2 uv = get_fetch_uv_8(index); border.style = texelFetchOffset(sData128, uv, 0, ivec2(0, 0)); border.widths = texelFetchOffset(sData128, uv, 0, ivec2(1, 0)); border.colors[0] = texelFetchOffset(sData128, uv, 0, ivec2(2, 0)); border.colors[1] = texelFetchOffset(sData128, uv, 0, ivec2(3, 0)); border.colors[2] = texelFetchOffset(sData128, uv, 0, ivec2(4, 0)); border.colors[3] = texelFetchOffset(sData128, uv, 0, ivec2(5, 0)); border.radii[0] = texelFetchOffset(sData128, uv, 0, ivec2(6, 0)); border.radii[1] = texelFetchOffset(sData128, uv, 0, ivec2(7, 0)); return border; } vec4 fetch_instance_geometry(int index) { ivec2 uv = get_fetch_uv_1(index); vec4 rect = texelFetchOffset(sData16, uv, 0, ivec2(0, 0)); return rect; } struct PrimitiveGeometry { vec4 local_rect; vec4 local_clip_rect; }; PrimitiveGeometry fetch_prim_geometry(int index) { PrimitiveGeometry pg; ivec2 uv = get_fetch_uv(index, VECS_PER_PRIM_GEOM); pg.local_rect = texelFetchOffset(sPrimGeometry, uv, 0, ivec2(0, 0)); pg.local_clip_rect = texelFetchOffset(sPrimGeometry, uv, 0, ivec2(1, 0)); return pg; } struct PrimitiveInstance { int global_prim_index; int specific_prim_index; int render_task_index; int layer_index; int clip_address; int sub_index; ivec2 user_data; }; PrimitiveInstance fetch_instance(int index) { PrimitiveInstance pi; int offset = index * 2; ivec4 data0 = int_data[offset + 0]; ivec4 data1 = int_data[offset + 1]; pi.global_prim_index = data0.x; pi.specific_prim_index = data0.y; pi.render_task_index = data0.z; pi.layer_index = data0.w; pi.clip_address = data1.x; pi.sub_index = data1.y; pi.user_data = data1.zw; return pi; } struct BlurCommand { int task_id; int src_task_id; int dir; }; BlurCommand fetch_blur(int index) { BlurCommand blur; int offset = index * 1; ivec4 data0 = int_data[offset + 0]; blur.task_id = data0.x; blur.src_task_id = data0.y; blur.dir = data0.z; return blur; } struct CachePrimitiveInstance { int global_prim_index; int specific_prim_index; int render_task_index; int sub_index; }; CachePrimitiveInstance fetch_cache_instance(int index) { CachePrimitiveInstance cpi; int offset = index * 1; ivec4 data0 = int_data[offset + 0]; cpi.global_prim_index = data0.x; cpi.specific_prim_index = data0.y; cpi.render_task_index = data0.z; cpi.sub_index = data0.w; return cpi; } struct Primitive { Layer layer; Tile tile; vec4 local_rect; vec4 local_clip_rect; int prim_index; int clip_index; // when sending multiple primitives of the same type (e.g. border segments) // this index allows the vertex shader to recognize the difference int sub_index; ivec2 user_data; }; Primitive load_primitive(int index) { Primitive prim; PrimitiveInstance pi = fetch_instance(index); prim.layer = fetch_layer(pi.layer_index); prim.tile = fetch_tile(pi.render_task_index); PrimitiveGeometry pg = fetch_prim_geometry(pi.global_prim_index); prim.local_rect = pg.local_rect; prim.local_clip_rect = pg.local_clip_rect; prim.prim_index = pi.specific_prim_index; prim.clip_index = pi.clip_address; prim.sub_index = pi.sub_index; prim.user_data = pi.user_data; return prim; } struct ClipRect { vec4 rect; vec4 dummy; }; ClipRect fetch_clip_rect(int index) { ClipRect rect; ivec2 uv = get_fetch_uv_2(index); rect.rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0)); //rect.dummy = texelFetchOffset(sData32, uv, 0, ivec2(1, 0)); rect.dummy = vec4(0.0, 0.0, 0.0, 0.0); return rect; } struct ImageMaskData { vec4 uv_rect; vec4 local_rect; }; ImageMaskData fetch_mask_data(int index) { ImageMaskData info; ivec2 uv = get_fetch_uv_2(index); info.uv_rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0)); info.local_rect = texelFetchOffset(sData32, uv, 0, ivec2(1, 0)); return info; } struct ClipCorner { vec4 rect; vec4 outer_inner_radius; }; ClipCorner fetch_clip_corner(int index) { ClipCorner corner; ivec2 uv = get_fetch_uv_2(index); corner.rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0)); corner.outer_inner_radius = texelFetchOffset(sData32, uv, 0, ivec2(1, 0)); return corner; } struct ClipData { ClipRect rect; ClipCorner top_left; ClipCorner top_right; ClipCorner bottom_left; ClipCorner bottom_right; ImageMaskData mask_data; }; ClipData fetch_clip(int index) { ClipData clip; clip.rect = fetch_clip_rect(index + 0); clip.top_left = fetch_clip_corner(index + 1); clip.top_right = fetch_clip_corner(index + 2); clip.bottom_left = fetch_clip_corner(index + 3); clip.bottom_right = fetch_clip_corner(index + 4); clip.mask_data = fetch_mask_data(index + 5); return clip; } // Return the intersection of the plane (set up by "normal" and "point") // with the ray (set up by "ray_origin" and "ray_dir"), // writing the resulting scaler into "t". bool ray_plane(vec3 normal, vec3 point, vec3 ray_origin, vec3 ray_dir, out float t) { float denom = dot(normal, ray_dir); if (denom > 1e-6) { vec3 d = point - ray_origin; t = dot(d, normal) / denom; return t >= 0.0; } return false; } // Apply the inverse transform "inv_transform" // to the reference point "ref" in CSS space, // producing a local point on a layer plane, // set by a base point "a" and a normal "n". vec4 untransform(vec2 ref, vec3 n, vec3 a, mat4 inv_transform) { vec3 p = vec3(ref, -10000.0); vec3 d = vec3(0, 0, 1.0); float t = 0.0; // get an intersection of the layer plane with Z axis vector, // originated from the "ref" point ray_plane(n, a, p, d, t); float z = p.z + d.z * t; // Z of the visible point on the layer vec4 r = inv_transform * vec4(ref, z, 1.0); return r; } // Given a CSS space position, transform it back into the layer space. vec4 get_layer_pos(vec2 pos, Layer layer) { // get 3 of the layer corners in CSS space vec3 a = layer.screen_vertices[0].xyz / layer.screen_vertices[0].w; vec3 b = layer.screen_vertices[3].xyz / layer.screen_vertices[3].w; vec3 c = layer.screen_vertices[2].xyz / layer.screen_vertices[2].w; // get the normal to the layer plane vec3 n = normalize(cross(b-a, c-a)); return untransform(pos, n, a, layer.inv_transform); } vec2 clamp_rect(vec2 point, vec4 rect) { return clamp(point, rect.xy, rect.xy + rect.zw); } struct Rect { vec2 p0; vec2 p1; }; struct VertexInfo { Rect local_rect; vec2 local_clamped_pos; vec2 global_clamped_pos; }; VertexInfo write_vertex(vec4 instance_rect, vec4 local_clip_rect, Layer layer, Tile tile) { vec2 p0 = floor(0.5 + instance_rect.xy * uDevicePixelRatio) / uDevicePixelRatio; vec2 p1 = floor(0.5 + (instance_rect.xy + instance_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio; vec2 local_pos = mix(p0, p1, aPosition.xy); vec2 cp0 = floor(0.5 + local_clip_rect.xy * uDevicePixelRatio) / uDevicePixelRatio; vec2 cp1 = floor(0.5 + (local_clip_rect.xy + local_clip_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio; local_pos = clamp(local_pos, cp0, cp1); local_pos = clamp_rect(local_pos, layer.local_clip_rect); vec4 world_pos = layer.transform * vec4(local_pos, 0, 1); world_pos.xyz /= world_pos.w; vec2 device_pos = world_pos.xy * uDevicePixelRatio; vec2 clamped_pos = clamp(device_pos, tile.screen_origin_task_origin.xy, tile.screen_origin_task_origin.xy + tile.size_target_index.xy); vec4 local_clamped_pos = layer.inv_transform * vec4(clamped_pos / uDevicePixelRatio, world_pos.z, 1); local_clamped_pos.xyz /= local_clamped_pos.w; vec2 final_pos = clamped_pos + tile.screen_origin_task_origin.zw - tile.screen_origin_task_origin.xy; gl_Position = uTransform * vec4(final_pos, 0, 1); VertexInfo vi = VertexInfo(Rect(p0, p1), local_clamped_pos.xy, clamped_pos.xy); return vi; } #ifdef WR_FEATURE_TRANSFORM struct TransformVertexInfo { vec3 local_pos; vec4 clipped_local_rect; }; TransformVertexInfo write_transform_vertex(vec4 instance_rect, vec4 local_clip_rect, Layer layer, Tile tile) { vec2 lp0_base = instance_rect.xy; vec2 lp1_base = instance_rect.xy + instance_rect.zw; vec2 lp0 = clamp_rect(clamp_rect(lp0_base, local_clip_rect), layer.local_clip_rect); vec2 lp1 = clamp_rect(clamp_rect(lp1_base, local_clip_rect), layer.local_clip_rect); vec4 clipped_local_rect = vec4(lp0, lp1 - lp0); vec2 p0 = lp0; vec2 p1 = vec2(lp1.x, lp0.y); vec2 p2 = vec2(lp0.x, lp1.y); vec2 p3 = lp1; vec4 t0 = layer.transform * vec4(p0, 0, 1); vec4 t1 = layer.transform * vec4(p1, 0, 1); vec4 t2 = layer.transform * vec4(p2, 0, 1); vec4 t3 = layer.transform * vec4(p3, 0, 1); vec2 tp0 = t0.xy / t0.w; vec2 tp1 = t1.xy / t1.w; vec2 tp2 = t2.xy / t2.w; vec2 tp3 = t3.xy / t3.w; // compute a CSS space aligned bounding box vec2 min_pos = min(min(tp0.xy, tp1.xy), min(tp2.xy, tp3.xy)); vec2 max_pos = max(max(tp0.xy, tp1.xy), max(tp2.xy, tp3.xy)); // clamp to the tile boundaries, in device space vec2 min_pos_clamped = clamp(min_pos * uDevicePixelRatio, tile.screen_origin_task_origin.xy, tile.screen_origin_task_origin.xy + tile.size_target_index.xy); vec2 max_pos_clamped = clamp(max_pos * uDevicePixelRatio, tile.screen_origin_task_origin.xy, tile.screen_origin_task_origin.xy + tile.size_target_index.xy); // compute the device space position of this vertex vec2 clamped_pos = mix(min_pos_clamped, max_pos_clamped, aPosition.xy); // compute the point position in side the layer, in CSS space vec4 layer_pos = get_layer_pos(clamped_pos / uDevicePixelRatio, layer); // apply the task offset vec2 final_pos = clamped_pos + tile.screen_origin_task_origin.zw - tile.screen_origin_task_origin.xy; gl_Position = uTransform * vec4(final_pos, 0, 1); return TransformVertexInfo(layer_pos.xyw, clipped_local_rect); } #endif //WR_FEATURE_TRANSFORM struct Rectangle { vec4 color; }; Rectangle fetch_rectangle(int index) { Rectangle rect; ivec2 uv = get_fetch_uv_1(index); rect.color = texelFetchOffset(sData16, uv, 0, ivec2(0, 0)); return rect; } struct TextRun { vec4 color; }; TextRun fetch_text_run(int index) { TextRun text; ivec2 uv = get_fetch_uv_1(index); text.color = texelFetchOffset(sData16, uv, 0, ivec2(0, 0)); return text; } struct Image { vec4 st_rect; // Location of the image texture in the texture atlas. vec4 stretch_size_and_tile_spacing; // Size of the actual image and amount of space between // tiled instances of this image. }; Image fetch_image(int index) { Image image; ivec2 uv = get_fetch_uv_2(index); image.st_rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0)); image.stretch_size_and_tile_spacing = texelFetchOffset(sData32, uv, 0, ivec2(1, 0)); return image; } struct BoxShadow { vec4 src_rect; vec4 bs_rect; vec4 color; vec4 border_radius_edge_size_blur_radius_inverted; }; BoxShadow fetch_boxshadow(int index) { BoxShadow bs; ivec2 uv = get_fetch_uv_4(index); bs.src_rect = texelFetchOffset(sData64, uv, 0, ivec2(0, 0)); bs.bs_rect = texelFetchOffset(sData64, uv, 0, ivec2(1, 0)); bs.color = texelFetchOffset(sData64, uv, 0, ivec2(2, 0)); bs.border_radius_edge_size_blur_radius_inverted = texelFetchOffset(sData64, uv, 0, ivec2(3, 0)); return bs; } struct Blend { ivec4 src_id_target_id_op_amount; }; Blend fetch_blend(int index) { Blend blend; int offset = index * 1; blend.src_id_target_id_op_amount = int_data[offset + 0]; return blend; } struct Composite { ivec4 src0_src1_target_id_op; }; Composite fetch_composite(int index) { Composite composite; int offset = index * 1; composite.src0_src1_target_id_op = int_data[offset + 0]; return composite; } #endif #ifdef WR_FRAGMENT_SHADER float distance_from_rect(vec2 p, vec2 origin, vec2 size) { vec2 clamped = clamp(p, origin, origin + size); return distance(clamped, p); } vec2 init_transform_fs(vec3 local_pos, vec4 local_rect, out float fragment_alpha) { fragment_alpha = 1.0; vec2 pos = local_pos.xy / local_pos.z; float border_distance = distance_from_rect(pos, local_rect.xy, local_rect.zw); if (border_distance != 0.0) { float delta = length(fwidth(local_pos.xy)); fragment_alpha = 1.0 - smoothstep(0.0, 1.0, border_distance / delta * 2.0); } return pos; } #endif