/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ use std::cell::OnceCell; use std::mem; use app_units::Au; use gfx::font::FontMetrics; use gfx::text::glyph::GlyphStore; use gfx::text::text_run::GlyphRun; use log::warn; use serde::Serialize; use servo_arc::Arc; use style::computed_values::white_space::T as WhiteSpace; use style::context::QuirksMode; use style::logical_geometry::WritingMode; use style::properties::ComputedValues; use style::values::computed::{Length, LengthPercentage}; use style::values::generics::box_::{GenericVerticalAlign, VerticalAlignKeyword}; use style::values::generics::text::LineHeight; use style::values::specified::text::{TextAlignKeyword, TextDecorationLine}; use style::values::specified::{TextAlignLast, TextJustify}; use style::Zero; use webrender_api::FontInstanceKey; use xi_unicode::{linebreak_property, LineBreakLeafIter}; use super::float::PlacementAmongFloats; use super::line::{ layout_line_items, AbsolutelyPositionedLineItem, AtomicLineItem, FloatLineItem, InlineBoxLineItem, LineItem, LineItemLayoutState, LineMetrics, TextRunLineItem, }; use super::CollapsibleWithParentStartMargin; use crate::cell::ArcRefCell; use crate::context::LayoutContext; use crate::flow::float::{FloatBox, SequentialLayoutState}; use crate::flow::FlowLayout; use crate::formatting_contexts::IndependentFormattingContext; use crate::fragment_tree::{ AnonymousFragment, BaseFragmentInfo, BoxFragment, CollapsedBlockMargins, CollapsedMargin, Fragment, }; use crate::geom::{LogicalRect, LogicalVec2}; use crate::positioned::{AbsolutelyPositionedBox, PositioningContext}; use crate::sizing::ContentSizes; use crate::style_ext::{ComputedValuesExt, PaddingBorderMargin}; use crate::ContainingBlock; // These constants are the xi-unicode line breaking classes that are defined in // `table.rs`. Unfortunately, they are only identified by number. const XI_LINE_BREAKING_CLASS_GL: u8 = 12; const XI_LINE_BREAKING_CLASS_WJ: u8 = 30; const XI_LINE_BREAKING_CLASS_ZWJ: u8 = 40; // From gfxFontConstants.h in Firefox. static FONT_SUBSCRIPT_OFFSET_RATIO: f32 = 0.20; static FONT_SUPERSCRIPT_OFFSET_RATIO: f32 = 0.34; #[derive(Debug, Serialize)] pub(crate) struct InlineFormattingContext { pub(super) inline_level_boxes: Vec>, pub(super) text_decoration_line: TextDecorationLine, // Whether this IFC contains the 1st formatted line of an element // https://www.w3.org/TR/css-pseudo-4/#first-formatted-line pub(super) has_first_formatted_line: bool, pub(super) contains_floats: bool, /// Whether this IFC being constructed currently ends with whitespace. This is used to /// implement rule 4 of : /// /// > Any collapsible space immediately following another collapsible space—even one /// > outside the boundary of the inline containing that space, provided both spaces are /// > within the same inline formatting context—is collapsed to have zero advance width. /// > (It is invisible, but retains its soft wrap opportunity, if any.) pub(super) ends_with_whitespace: bool, } #[derive(Debug, Serialize)] pub(crate) enum InlineLevelBox { InlineBox(InlineBox), TextRun(TextRun), OutOfFlowAbsolutelyPositionedBox(ArcRefCell), OutOfFlowFloatBox(FloatBox), Atomic(IndependentFormattingContext), } #[derive(Debug, Serialize)] pub(crate) struct InlineBox { pub base_fragment_info: BaseFragmentInfo, #[serde(skip_serializing)] pub style: Arc, pub is_first_fragment: bool, pub is_last_fragment: bool, pub children: Vec>, } /// https://www.w3.org/TR/css-display-3/#css-text-run #[derive(Debug, Serialize)] pub(crate) struct TextRun { pub base_fragment_info: BaseFragmentInfo, #[serde(skip_serializing)] pub parent_style: Arc, pub text: String, pub has_uncollapsible_content: bool, } /// Information about the current line under construction for a particular /// [`InlineFormattingContextState`]. This tracks position and size information while /// [`LineItem`]s are collected and is used as input when those [`LineItem`]s are /// converted into [`Fragment`]s during the final phase of line layout. Note that this /// does not store the [`LineItem`]s themselves, as they are stored as part of the /// nesting state in the [`InlineFormattingContextState`]. struct LineUnderConstruction { /// The position where this line will start once it is laid out. This includes any /// offset from `text-indent`. start_position: LogicalVec2, /// The current inline position in the line being laid out into [`LineItems`] in this /// [`InlineFormattingContext`] independent of the depth in the nesting level. inline_position: Length, /// The maximum block size of all boxes that ended and are in progress in this line. /// This uses [`LineBlockSizes`] instead of a simple value, because the final block size /// depends on vertical alignment. max_block_size: LineBlockSizes, /// Whether any active linebox has added a glyph or atomic element to this line, which /// indicates that the next run that exceeds the line length can cause a line break. has_content: bool, /// Whether or not there are floats that did not fit on the current line. Before /// the [`LineItems`] of this line are laid out, these floats will need to be /// placed directly below this line, but still as children of this line's Fragments. has_floats_waiting_to_be_placed: bool, /// A rectangular area (relative to the containing block / inline formatting /// context boundaries) where we can fit the line box without overlapping floats. /// Note that when this is not empty, its start corner takes precedence over /// [`LineUnderConstruction::start_position`]. placement_among_floats: OnceCell>, /// The LineItems for the current line under construction that have already /// been committed to this line. line_items: Vec, /// The number of justification opportunities in this line. justification_opportunities: usize, } impl LineUnderConstruction { fn new(start_position: LogicalVec2) -> Self { Self { inline_position: start_position.inline.clone(), start_position: start_position, max_block_size: LineBlockSizes::zero(), has_content: false, has_floats_waiting_to_be_placed: false, placement_among_floats: OnceCell::new(), line_items: Vec::new(), justification_opportunities: 0, } } fn line_block_start_considering_placement_among_floats(&self) -> Length { match self.placement_among_floats.get() { Some(placement_among_floats) => placement_among_floats.start_corner.block, None => self.start_position.block, } } fn replace_placement_among_floats(&mut self, new_placement: LogicalRect) { self.placement_among_floats.take(); let _ = self.placement_among_floats.set(new_placement); } /// Trim the trailing whitespace in this line and return the width of the whitespace trimmed. fn trim_trailing_whitespace(&mut self) -> Length { // From : // > 3. A sequence of collapsible spaces at the end of a line is removed, // > as well as any trailing U+1680   OGHAM SPACE MARK whose white-space // > property is normal, nowrap, or pre-line. let mut whitespace_trimmed = Length::zero(); let mut spaces_trimmed = 0; for item in self.line_items.iter_mut().rev() { if !item.trim_whitespace_at_end(&mut whitespace_trimmed, &mut spaces_trimmed) { break; } } self.justification_opportunities -= spaces_trimmed; whitespace_trimmed } } /// A block size relative to a line's final baseline. This is to track the size /// contribution of a particular element of a line above and below the baseline. /// These sizes can be combined with other baseline relative sizes before the /// final baseline position is known. The values here are relative to the /// overall line's baseline and *not* the nested baseline of an inline box. #[derive(Clone, Debug)] struct BaselineRelativeSize { /// The ascent above the baseline, where a positive value means a larger /// ascent. Thus, the top of this size contribution is `baseline_offset - /// ascent`. ascent: Au, /// The descent below the baseline, where a positive value means a larger /// descent. Thus, the bottom of this size contribution is `baseline_offset + /// descent`. descent: Au, } impl BaselineRelativeSize { fn zero() -> Self { Self { ascent: Au::zero(), descent: Au::zero(), } } fn max(&self, other: &Self) -> Self { BaselineRelativeSize { ascent: self.ascent.max(other.ascent), descent: self.descent.max(other.descent), } } /// Given an offset from the line's root baseline, adjust this [`BaselineRelativeSize`] /// by that offset. This is used to adjust a [`BaselineRelativeSize`] for different kinds /// of baseline-relative `vertical-align`. This will "move" measured size of a particular /// inline box's block size. For example, in the following HTML: /// /// ```html ///
/// child content ///
/// ```` /// /// If this [`BaselineRelativeSize`] is for the `` then the adjustment /// passed here would be equivalent to -5px. fn adjust_for_nested_baseline_offset(&mut self, baseline_offset: Au) { self.ascent -= baseline_offset; self.descent += baseline_offset; } } #[derive(Clone, Debug)] struct LineBlockSizes { line_height: Length, baseline_relative_size_for_line_height: Option, size_for_baseline_positioning: BaselineRelativeSize, } impl LineBlockSizes { fn zero() -> Self { LineBlockSizes { line_height: Length::zero(), baseline_relative_size_for_line_height: None, size_for_baseline_positioning: BaselineRelativeSize::zero(), } } fn resolve(&self) -> Length { let height_from_ascent_and_descent = self .baseline_relative_size_for_line_height .as_ref() .map(|size| Length::from((size.ascent + size.descent).abs())) .unwrap_or_else(Length::zero); self.line_height.max(height_from_ascent_and_descent) } fn max(&self, other: &LineBlockSizes) -> LineBlockSizes { let baseline_relative_size = match ( self.baseline_relative_size_for_line_height.as_ref(), other.baseline_relative_size_for_line_height.as_ref(), ) { (Some(our_size), Some(other_size)) => Some(our_size.max(&other_size)), (our_size, other_size) => our_size.or(other_size).cloned(), }; Self { line_height: self.line_height.max(other.line_height), baseline_relative_size_for_line_height: baseline_relative_size, size_for_baseline_positioning: self .size_for_baseline_positioning .max(&other.size_for_baseline_positioning), } } fn max_assign(&mut self, other: &LineBlockSizes) { *self = self.max(other); } fn adjust_for_baseline_offset(&mut self, baseline_offset: Au) { self.baseline_relative_size_for_line_height .as_mut() .map(|size| size.adjust_for_nested_baseline_offset(baseline_offset)); self.size_for_baseline_positioning .adjust_for_nested_baseline_offset(baseline_offset); } /// From https://drafts.csswg.org/css2/visudet.html#line-height: /// > The inline-level boxes are aligned vertically according to their 'vertical-align' /// > property. In case they are aligned 'top' or 'bottom', they must be aligned so as /// > to minimize the line box height. If such boxes are tall enough, there are multiple /// > solutions and CSS 2 does not define the position of the line box's baseline (i.e., /// > the position of the strut, see below). fn find_baseline_offset(&self) -> Length { match self.baseline_relative_size_for_line_height.as_ref() { Some(size) => size.ascent.into(), None => { // This is the case mentinoned above where there are multiple solutions. // This code is putting the baseline roughly in the middle of the line. let leading = self.resolve() - (self.size_for_baseline_positioning.ascent + self.size_for_baseline_positioning.descent) .into(); leading.scale_by(0.5) + self.size_for_baseline_positioning.ascent.into() }, } } } /// The current unbreakable segment under construction for an inline formatting context. /// Items accumulate here until we reach a soft line break opportunity during processing /// of inline content or we reach the end of the formatting context. struct UnbreakableSegmentUnderConstruction { /// The size of this unbreakable segment in both dimension. inline_size: Length, /// The maximum block size that this segment has. This uses [`LineBlockSizes`] instead of a /// simple value, because the final block size depends on vertical alignment. max_block_size: LineBlockSizes, /// The LineItems for the segment under construction line_items: Vec, /// The depth in the inline box hierarchy at the start of this segment. This is used /// to prefix this segment when it is pushed to a new line. inline_box_hierarchy_depth: Option, /// Whether any active linebox has added a glyph or atomic element to this line /// segment, which indicates that the next run that exceeds the line length can cause /// a line break. has_content: bool, /// The inline size of any trailing whitespace in this segment. trailing_whitespace_size: Length, /// The number of justification opportunities in this unbreakable segment. justification_opportunities: usize, } impl UnbreakableSegmentUnderConstruction { fn new() -> Self { Self { inline_size: Length::zero(), max_block_size: LineBlockSizes { line_height: Length::zero(), baseline_relative_size_for_line_height: None, size_for_baseline_positioning: BaselineRelativeSize::zero(), }, line_items: Vec::new(), inline_box_hierarchy_depth: None, has_content: false, trailing_whitespace_size: Length::zero(), justification_opportunities: 0, } } /// Reset this segment after its contents have been committed to a line. fn reset(&mut self) { assert!(self.line_items.is_empty()); // Preserve allocated memory. self.inline_size = Length::zero(); self.max_block_size = LineBlockSizes::zero(); self.inline_box_hierarchy_depth = None; self.has_content = false; self.trailing_whitespace_size = Length::zero(); self.justification_opportunities = 0; } /// Push a single line item to this segment. In addition, record the inline box /// hierarchy depth if this is the first segment. The hierarchy depth is used to /// duplicate the necessary `StartInlineBox` tokens if this segment is ultimately /// placed on a new empty line. fn push_line_item(&mut self, line_item: LineItem, inline_box_hierarchy_depth: usize) { if self.line_items.is_empty() { self.inline_box_hierarchy_depth = Some(inline_box_hierarchy_depth); } self.line_items.push(line_item); } /// Trim whitespace from the beginning of this UnbreakbleSegmentUnderConstruction. /// /// From : /// /// > Then, the entire block is rendered. Inlines are laid out, taking bidi /// > reordering into account, and wrapping as specified by the text-wrap /// > property. As each line is laid out, /// > 1. A sequence of collapsible spaces at the beginning of a line is removed. /// /// This prevents whitespace from being added to the beginning of a line. fn trim_leading_whitespace(&mut self) { let mut whitespace_trimmed = Length::zero(); let mut spaces_trimmed = 0; for item in self.line_items.iter_mut() { if !item.trim_whitespace_at_start(&mut whitespace_trimmed, &mut spaces_trimmed) { break; } } self.inline_size -= whitespace_trimmed; self.justification_opportunities -= spaces_trimmed; } /// Prepare this segment for placement on a new and empty line. This happens when the /// segment is too large to fit on the current line and needs to be placed on a new /// one. fn prepare_for_placement_on_empty_line( &mut self, line: &LineUnderConstruction, current_hierarchy_depth: usize, ) { self.trim_leading_whitespace(); // The segment may start in the middle of an already processed inline box. In that // case we need to duplicate the `StartInlineBox` tokens as a prefix of the new // lines. For instance if the following segment is going to be placed on a new line: // // line = [StartInlineBox "every"] // segment = ["good" EndInlineBox "boy"] // // Then the segment must be prefixed with `StartInlineBox` before it is committed // to the empty line. let mut hierarchy_depth = self .inline_box_hierarchy_depth .unwrap_or(current_hierarchy_depth); if hierarchy_depth == 0 { return; } let mut hierarchy = Vec::new(); let mut skip_depth = 0; for item in line.line_items.iter().rev() { match item { // We need to skip over any inline boxes that are not in our hierarchy. If // any inline box ends, we skip until it starts. LineItem::StartInlineBox(_) if skip_depth > 0 => skip_depth -= 1, LineItem::EndInlineBox => skip_depth += 1, // Otherwise copy the inline box to the hierarchy we are collecting. LineItem::StartInlineBox(inline_box) => { let mut cloned_inline_box = inline_box.clone(); cloned_inline_box.is_first_fragment = false; hierarchy.push(LineItem::StartInlineBox(cloned_inline_box)); hierarchy_depth -= 1; if hierarchy_depth == 0 { break; } }, _ => {}, } } let segment_items = mem::take(&mut self.line_items); self.line_items = hierarchy .into_iter() .rev() .chain(segment_items.into_iter()) .collect(); } } struct InlineContainerState { /// The style of this inline container. style: Arc, /// Whether or not we have processed any content (an atomic element or text) for /// this inline box on the current line OR any previous line. has_content: bool, /// Indicates whether this nesting level have text decorations in effect. /// From https://drafts.csswg.org/css-text-decor/#line-decoration // "When specified on or propagated to a block container that establishes // an IFC..." text_decoration_line: TextDecorationLine, /// The block size contribution of this container's default font ie the size of the /// "strut." Whether this is integrated into the [`Self::nested_strut_block_sizes`] /// depends on the line-height quirk described in /// https://quirks.spec.whatwg.org/#the-line-height-calculation-quirk. strut_block_sizes: LineBlockSizes, /// The strut block size of this inline container maxed with the strut block /// sizes of all inline container ancestors. In quirks mode, this will be /// zero, until we know that an element has inline content. nested_strut_block_sizes: LineBlockSizes, /// The baseline offset of this container from the baseline of the line. The is the /// cumulative offset of this container and all of its parents. In contrast to the /// `vertical-align` property a positive value indicates an offset "below" the /// baseline while a negative value indicates one "above" it (when the block direction /// is vertical). baseline_offset: Au, /// The font metrics of the non-fallback font for this container. font_metrics: FontMetrics, } struct InlineBoxContainerState { /// The container state common to both [`InlineBox`] and the root of the /// [`InlineFormattingContext`]. base: InlineContainerState, /// The [`BaseFragmentInfo`] of the [`InlineBox`] that this state tracks. base_fragment_info: BaseFragmentInfo, /// The [`PaddingBorderMargin`] of the [`InlineBox`] that this state tracks. pbm: PaddingBorderMargin, /// Whether this is the last fragment of this InlineBox. This may not be the case if /// the InlineBox is split due to an block-in-inline-split and this is not the last of /// that split. is_last_fragment: bool, } struct InlineFormattingContextState<'a, 'b> { positioning_context: &'a mut PositioningContext, containing_block: &'b ContainingBlock<'b>, sequential_layout_state: Option<&'a mut SequentialLayoutState>, layout_context: &'b LayoutContext<'b>, /// The [`InlineContainerState`] for the container formed by the root of the /// [`InlineFormattingContext`]. This is effectively the "root inline box" described /// by https://drafts.csswg.org/css-inline/#model: /// /// > The block container also generates a root inline box, which is an anonymous /// > inline box that holds all of its inline-level contents. (Thus, all text in an /// > inline formatting context is directly contained by an inline box, whether the root /// > inline box or one of its descendants.) The root inline box inherits from its /// > parent block container, but is otherwise unstyleable. root_nesting_level: InlineContainerState, /// A stack of [`InlineBoxContainerState`] that is used to produce [`LineItem`]s either when we /// reach the end of an inline box or when we reach the end of a line. Only at the end /// of the inline box is the state popped from the stack. inline_box_state_stack: Vec, /// A vector of fragment that are laid out. This includes one [`Fragment::Anonymous`] /// per line that is currently laid out plus fragments for all floats, which /// are currently laid out at the top-level of each [`InlineFormattingContext`]. fragments: Vec, /// Information about the line currently being laid out into [`LineItems`]s. current_line: LineUnderConstruction, /// Information about the unbreakable line segment currently being laid out into [`LineItems`]s. current_line_segment: UnbreakableSegmentUnderConstruction, /// The line breaking state for this inline formatting context. linebreaker: Option, /// After a forced line break (for instance from a `
` element) we wait to actually /// break the line until seeing more content. This allows ongoing inline boxes to finish, /// since in the case where they have no more content they should not be on the next /// line. /// /// For instance: /// /// ``` html /// /// first line
///
/// second line /// ``` /// /// In this case, the `` should not extend to the second line. If we linebreak /// as soon as we encounter the `
` the ``'s ending inline borders would be /// placed on the second line, because we add those borders in /// [`InlineFormattingContextState::finish_inline_box()`]. linebreak_before_new_content: bool, /// Whether or not a soft wrap opportunity is queued. Soft wrap opportunities are /// queued after replaced content and they are processed when the next text content /// is encountered. have_deferred_soft_wrap_opportunity: bool, /// Whether or not a soft wrap opportunity should be prevented before the next atomic /// element encountered in the inline formatting context. See /// `char_prevents_soft_wrap_opportunity_when_before_or_after_atomic` for more /// details. prevent_soft_wrap_opportunity_before_next_atomic: bool, /// Whether or not this InlineFormattingContext has processed any in flow content at all. had_inflow_content: bool, /// The currently white-space setting of this line. This is stored on the /// [`InlineFormattingContextState`] because when a soft wrap opportunity is defined /// by the boundary between two characters, the white-space property of their nearest /// common ancestor is used. white_space: WhiteSpace, /// The offset of the last baseline in the inline formatting context that we /// are laying out. This is used to propagate baselines to the ancestors of /// `display: inline-block` elements. last_baseline_offset: Option, } impl<'a, 'b> InlineFormattingContextState<'a, 'b> { fn current_inline_container_state(&self) -> &InlineContainerState { match self.inline_box_state_stack.last() { Some(inline_box_state) => &inline_box_state.base, None => &self.root_nesting_level, } } fn current_inline_container_state_mut(&mut self) -> &mut InlineContainerState { match self.inline_box_state_stack.last_mut() { Some(inline_box_state) => &mut inline_box_state.base, None => &mut self.root_nesting_level, } } fn current_line_max_block_size_including_nested_containers(&self) -> LineBlockSizes { self.current_inline_container_state() .nested_strut_block_sizes .max(&self.current_line.max_block_size) } fn propagate_current_nesting_level_white_space_style(&mut self) { let style = match self.inline_box_state_stack.last() { Some(inline_box_state) => &inline_box_state.base.style, None => self.containing_block.style, }; self.white_space = style.get_inherited_text().white_space; } /// Start laying out a particular [`InlineBox`] into line items. This will push /// a new [`InlineBoxContainerState`] onto [`Self::inline_box_state_stack`]. fn start_inline_box(&mut self, inline_box: &InlineBox) { let mut inline_box_state = InlineBoxContainerState::new( inline_box, &self.containing_block, self.layout_context, self.current_inline_container_state(), inline_box.is_last_fragment, ); if inline_box.is_first_fragment { self.current_line.inline_position += inline_box_state.pbm.padding.inline_start + inline_box_state.pbm.border.inline_start + inline_box_state .pbm .margin .inline_start .auto_is(Length::zero); } let line_item = inline_box_state .layout_into_line_item(inline_box.is_first_fragment, inline_box.is_last_fragment); self.push_line_item_to_unbreakable_segment(LineItem::StartInlineBox(line_item)); self.inline_box_state_stack.push(inline_box_state); } /// Finish laying out a particular [`InlineBox`] into line items. This will add the /// final [`InlineBoxLineItem`] to the state and pop its state off of /// [`Self::inline_box_state_stack`]. fn finish_inline_box(&mut self) { let inline_box_state = match self.inline_box_state_stack.pop() { Some(inline_box_state) => inline_box_state, None => return, // We are at the root. }; self.push_line_item_to_unbreakable_segment(LineItem::EndInlineBox); self.current_line_segment .max_block_size .max_assign(&inline_box_state.base.nested_strut_block_sizes); // If the inline box that we just finished had any content at all, we want to propagate // the `white-space` property of its parent to future inline children. This is because // when a soft wrap opportunity is defined by the boundary between two elements, the // `white-space` used is that of their nearest common ancestor. if inline_box_state.base.has_content { self.propagate_current_nesting_level_white_space_style(); } if inline_box_state.is_last_fragment { let pbm_end = inline_box_state.pbm.padding.inline_end + inline_box_state.pbm.border.inline_end + inline_box_state.pbm.margin.inline_end.auto_is(Length::zero); self.current_line_segment.inline_size += pbm_end; } } fn finish_last_line(&mut self) { // We are at the end of the IFC, and we need to do a few things to make sure that // the current segment is committed and that the final line is finished. // // A soft wrap opportunity makes it so the current segment is placed on a new line // if it doesn't fit on the current line under construction. self.process_soft_wrap_opportunity(); // `process_soft_line_wrap_opportunity` does not commit the segment to a line if // there is no line wrapping, so this forces the segment into the current line. self.commit_current_segment_to_line(); // Finally we finish the line itself and convert all of the LineItems into // fragments. self.finish_current_line_and_reset(true /* last_line_or_forced_line_break */); } /// Finish layout of all inline boxes for the current line. This will gather all /// [`LineItem`]s and turn them into [`Fragment`]s, then reset the /// [`InlineFormattingContextState`] preparing it for laying out a new line. fn finish_current_line_and_reset(&mut self, last_line_or_forced_line_break: bool) { let whitespace_trimmed = self.current_line.trim_trailing_whitespace(); let (inline_start_position, justification_adjustment) = self .calculate_current_line_inline_start_and_justification_adjustment( whitespace_trimmed, last_line_or_forced_line_break, ); let block_start_position = self .current_line .line_block_start_considering_placement_among_floats(); let had_inline_advance = self.current_line.inline_position != self.current_line.start_position.inline; let effective_block_advance = if self.current_line.has_content || had_inline_advance || self.linebreak_before_new_content { self.current_line_max_block_size_including_nested_containers() } else { LineBlockSizes::zero() }; let block_end_position = block_start_position + effective_block_advance.resolve(); if let Some(sequential_layout_state) = self.sequential_layout_state.as_mut() { // This amount includes both the block size of the line and any extra space // added to move the line down in order to avoid overlapping floats. let increment = block_end_position - self.current_line.start_position.block; sequential_layout_state.advance_block_position(increment); } let mut line_items = std::mem::take(&mut self.current_line.line_items); if self.current_line.has_floats_waiting_to_be_placed { place_pending_floats(self, &mut line_items); } // Set up the new line now that we no longer need the old one. self.current_line = LineUnderConstruction::new(LogicalVec2 { inline: Length::zero(), block: block_end_position, }); let baseline_offset = effective_block_advance.find_baseline_offset(); let mut state = LineItemLayoutState { inline_position: inline_start_position, parent_offset: LogicalVec2::zero(), baseline_offset, ifc_containing_block: self.containing_block, positioning_context: &mut self.positioning_context, justification_adjustment, line_metrics: &LineMetrics { block_offset: block_start_position, block_size: effective_block_advance.resolve(), baseline_block_offset: baseline_offset, }, }; let positioning_context_length = state.positioning_context.len(); let mut saw_end = false; let fragments = layout_line_items( &mut line_items.into_iter(), self.layout_context, &mut state, &mut saw_end, ); let line_had_content = !fragments.is_empty() || state.positioning_context.len() != positioning_context_length; // If the line doesn't have any fragments, we don't need to add a containing fragment for it. if !line_had_content { return; } self.last_baseline_offset = Some(baseline_offset + block_start_position); let line_rect = LogicalRect { // The inline part of this start offset was taken into account when determining // the inline start of the line in `calculate_inline_start_for_current_line` so // we do not need to include it in the `start_corner` of the line's main Fragment. start_corner: LogicalVec2 { inline: Length::zero(), block: block_start_position, }, size: LogicalVec2 { inline: self.containing_block.inline_size, block: effective_block_advance.resolve(), }, }; state .positioning_context .adjust_static_position_of_hoisted_fragments_with_offset( &line_rect.start_corner, positioning_context_length, ); self.fragments .push(Fragment::Anonymous(AnonymousFragment::new( line_rect, fragments, self.containing_block.style.writing_mode, ))); } /// Given the amount of whitespace trimmed from the line and taking into consideration /// the `text-align` property, calculate where the line under construction starts in /// the inline axis as well as the adjustment needed for every justification opportunity /// to account for `text-align: justify`. fn calculate_current_line_inline_start_and_justification_adjustment( &self, whitespace_trimmed: Length, last_line_or_forced_line_break: bool, ) -> (Length, Length) { enum TextAlign { Start, Center, End, } let style = self.containing_block.style; let line_left_is_inline_start = style.writing_mode.line_left_is_inline_start(); let mut text_align_keyword = style.clone_text_align(); if last_line_or_forced_line_break { text_align_keyword = match style.clone_text_align_last() { TextAlignLast::Auto if text_align_keyword == TextAlignKeyword::Justify => { TextAlignKeyword::Start }, TextAlignLast::Auto => text_align_keyword, TextAlignLast::Start => TextAlignKeyword::Start, TextAlignLast::End => TextAlignKeyword::End, TextAlignLast::Left => TextAlignKeyword::Left, TextAlignLast::Right => TextAlignKeyword::Right, TextAlignLast::Center => TextAlignKeyword::Center, TextAlignLast::Justify => TextAlignKeyword::Justify, }; } let text_align = match text_align_keyword { TextAlignKeyword::Start => TextAlign::Start, TextAlignKeyword::Center => TextAlign::Center, TextAlignKeyword::End => TextAlign::End, TextAlignKeyword::Left => { if line_left_is_inline_start { TextAlign::Start } else { TextAlign::End } }, TextAlignKeyword::Right => { if line_left_is_inline_start { TextAlign::End } else { TextAlign::Start } }, TextAlignKeyword::Justify => TextAlign::Start, TextAlignKeyword::ServoCenter | TextAlignKeyword::ServoLeft | TextAlignKeyword::ServoRight => { // TODO: Implement these modes which seem to be used by quirks mode. TextAlign::Start }, }; let (line_start, available_space) = match self.current_line.placement_among_floats.get() { Some(placement_among_floats) => ( placement_among_floats.start_corner.inline, placement_among_floats.size.inline, ), None => (Length::zero(), self.containing_block.inline_size), }; // Properly handling text-indent requires that we do not align the text // into the text-indent. // See // "This property specifies the indentation applied to lines of inline content in // a block. The indent is treated as a margin applied to the start edge of the // line box." let text_indent = self.current_line.start_position.inline; let line_length = self.current_line.inline_position - whitespace_trimmed - text_indent; let adjusted_line_start = line_start + match text_align { TextAlign::Start => text_indent, TextAlign::End => (available_space - line_length).max(text_indent), TextAlign::Center => (available_space - line_length + text_indent) / 2., }; // Calculate the justification adjustment. This is simply the remaining space on the line, // dividided by the number of justficiation opportunities that we recorded when building // the line. let num_justification_opportunities = self.current_line.justification_opportunities as f32; let text_justify = self.containing_block.style.clone_text_justify(); let justification_adjustment = match (text_align_keyword, text_justify) { // `text-justify: none` should disable text justification. // TODO: Handle more `text-justify` values. (TextAlignKeyword::Justify, TextJustify::None) => Length::zero(), (TextAlignKeyword::Justify, _) if num_justification_opportunities > 0. => { (available_space - line_length) / num_justification_opportunities }, _ => Length::zero(), }; (adjusted_line_start, justification_adjustment) } fn place_float_fragment(&mut self, fragment: &mut BoxFragment) { let state = self .sequential_layout_state .as_mut() .expect("Tried to lay out a float with no sequential placement state!"); let block_offset_from_containining_block_top = state .current_block_position_including_margins() - state.current_containing_block_offset(); state.place_float_fragment( fragment, CollapsedMargin::zero(), block_offset_from_containining_block_top, ); } /// Place a FloatLineItem. This is done when an unbreakable segment is committed to /// the current line. Placement of FloatLineItems might need to be deferred until the /// line is complete in the case that floats stop fitting on the current line. /// /// When placing floats we do not want to take into account any trailing whitespace on /// the line, because that whitespace will be trimmed in the case that the line is /// broken. Thus this function takes as an argument the new size (without whitespace) of /// the line that these floats are joining. fn place_float_line_item_for_commit_to_line( &mut self, float_item: &mut FloatLineItem, line_inline_size_without_trailing_whitespace: Length, ) { let margin_box = float_item .fragment .border_rect() .inflate(&float_item.fragment.margin); let inline_size = margin_box.size.inline.max(Length::zero()); let available_inline_size = match self.current_line.placement_among_floats.get() { Some(placement_among_floats) => placement_among_floats.size.inline, None => self.containing_block.inline_size, } - line_inline_size_without_trailing_whitespace; // If this float doesn't fit on the current line or a previous float didn't fit on // the current line, we need to place it starting at the next line BUT still as // children of this line's hierarchy of inline boxes (for the purposes of properly // parenting in their stacking contexts). Once all the line content is gathered we // will place them later. let has_content = self.current_line.has_content || self.current_line_segment.has_content; let fits_on_line = !has_content || inline_size <= available_inline_size; let needs_placement_later = self.current_line.has_floats_waiting_to_be_placed || !fits_on_line; if needs_placement_later { self.current_line.has_floats_waiting_to_be_placed = true; } else { self.place_float_fragment(&mut float_item.fragment); float_item.needs_placement = false; } // We've added a new float to the IFC, but this may have actually changed the // position of the current line. In order to determine that we regenerate the // placement among floats for the current line, which may adjust its inline // start position. let new_placement = self.place_line_among_floats(&LogicalVec2 { inline: line_inline_size_without_trailing_whitespace, block: self.current_line.max_block_size.resolve(), }); self.current_line .replace_placement_among_floats(new_placement); } /// Given a new potential line size for the current line, create a "placement" for that line. /// This tells us whether or not the new potential line will fit in the current block position /// or need to be moved. In addition, the placement rect determines the inline start and end /// of the line if it's used as the final placement among floats. fn place_line_among_floats( &self, potential_line_size: &LogicalVec2, ) -> LogicalRect { let sequential_layout_state = self .sequential_layout_state .as_ref() .expect("Should not have called this function without having floats."); let ifc_offset_in_float_container = LogicalVec2 { inline: sequential_layout_state .floats .containing_block_info .inline_start, block: sequential_layout_state.current_containing_block_offset(), }; let ceiling = self .current_line .line_block_start_considering_placement_among_floats(); let mut placement = PlacementAmongFloats::new( &sequential_layout_state.floats, ceiling + ifc_offset_in_float_container.block, potential_line_size.clone(), &PaddingBorderMargin::zero(), ); let mut placement_rect = placement.place(); placement_rect.start_corner = &placement_rect.start_corner - &ifc_offset_in_float_container; placement_rect } /// Returns true if a new potential line size for the current line would require a line /// break. This takes into account floats and will also update the "placement among /// floats" for this line if the potential line size would not cause a line break. /// Thus, calling this method has side effects and should only be done while in the /// process of laying out line content that is always going to be committed to this /// line or the next. fn new_potential_line_size_causes_line_break( &mut self, potential_line_size: &LogicalVec2, ) -> bool { let available_line_space = if self.sequential_layout_state.is_some() { self.current_line .placement_among_floats .get_or_init(|| self.place_line_among_floats(potential_line_size)) .size .clone() } else { LogicalVec2 { inline: self.containing_block.inline_size, block: Length::new(f32::INFINITY), } }; let inline_would_overflow = potential_line_size.inline > available_line_space.inline; let block_would_overflow = potential_line_size.block > available_line_space.block; // The first content that is added to a line cannot trigger a line break and // the `white-space` propertly can also prevent all line breaking. let can_break = self.current_line.has_content; // If this is the first content on the line and we already have a float placement, // that means that the placement was initialized by a leading float in the IFC. // This placement needs to be updated, because the first line content might push // the block start of the line downward. If there is no float placement, we want // to make one to properly set the block position of the line. if !can_break { // Even if we cannot break, adding content to this line might change its position. // In that case we need to redo our placement among floats. if self.sequential_layout_state.is_some() && (inline_would_overflow || block_would_overflow) { let new_placement = self.place_line_among_floats(potential_line_size); self.current_line .replace_placement_among_floats(new_placement); } return false; } // If the potential line is larger than the containing block we do not even need to consider // floats. We definitely have to do a linebreak. if potential_line_size.inline > self.containing_block.inline_size { return true; } // Not fitting in the block space means that our block size has changed and we had a // placement among floats that is no longer valid. This same placement might just // need to be expanded or perhaps we need to line break. if block_would_overflow { // If we have a limited block size then we are wedging this line between floats. assert!(self.sequential_layout_state.is_some()); let new_placement = self.place_line_among_floats(potential_line_size); if new_placement.start_corner.block != self.current_line .line_block_start_considering_placement_among_floats() { return true; } else { self.current_line .replace_placement_among_floats(new_placement); return false; } } // Otherwise the new potential line size will require a newline if it fits in the // inline space available for this line. This space may be smaller than the // containing block if floats shrink the available inline space. inline_would_overflow } fn defer_forced_line_break(&mut self) { // If this hard line break happens in the middle of an unbreakable segment, there are two // scenarios: // 1. The current portion of the unbreakable segment fits on the current line in which // case we commit it. // 2. The current portion of the unbreakable segment does not fit in which case we // need to put it on a new line *before* actually triggering the hard line break. // // `process_soft_wrap_opportunity` handles both of these cases. self.process_soft_wrap_opportunity(); // Defer the actual line break until we've cleared all ending inline boxes. self.linebreak_before_new_content = true; // We need to ensure that the appropriate space for a linebox is created even if there // was no other content on this line. We mark the line as having content (needing a // advance) and having at least the height associated with this nesting of inline boxes. self.current_line .max_block_size .max_assign(&self.current_line_max_block_size_including_nested_containers()); self.had_inflow_content = true; } fn possibly_flush_deferred_forced_line_break(&mut self) { if !self.linebreak_before_new_content { return; } self.commit_current_segment_to_line(); self.process_line_break(true /* forced_line_break */); self.linebreak_before_new_content = false; } fn push_line_item_to_unbreakable_segment(&mut self, line_item: LineItem) { self.current_line_segment .push_line_item(line_item, self.inline_box_state_stack.len()); } fn push_glyph_store_to_unbreakable_segment( &mut self, glyph_store: std::sync::Arc, base_fragment_info: BaseFragmentInfo, parent_style: &Arc, font_metrics: &FontMetrics, font_key: FontInstanceKey, ) { self.current_line_segment.justification_opportunities += glyph_store.total_word_separators() as usize; let inline_advance = Length::from(glyph_store.total_advance()); let preserve_spaces = parent_style .get_inherited_text() .white_space .preserve_spaces(); let is_collapsible_whitespace = glyph_store.is_whitespace() && !preserve_spaces; // Normally, the strut is incorporated into the nested block size. In quirks mode though // if we find any text that isn't collapsed whitespace, we need to incorporate the strut. // TODO(mrobinson): This isn't quite right for situations where collapsible white space // ultimately does not collapse because it is between two other pieces of content. // TODO(mrobinson): When we have font fallback, this should be calculating the // block sizes of the fallback font. let quirks_mode = self.layout_context.style_context.quirks_mode() != QuirksMode::NoQuirks; let strut_size = if quirks_mode && !is_collapsible_whitespace { self.current_inline_container_state() .strut_block_sizes .clone() } else { LineBlockSizes::zero() }; self.update_unbreakable_segment_for_new_content( &strut_size, inline_advance, is_collapsible_whitespace, ); match self.current_line_segment.line_items.last_mut() { Some(LineItem::TextRun(text_run)) => { debug_assert!(font_key == text_run.font_key); text_run.text.push(glyph_store); return; }, _ => {}, } self.push_line_item_to_unbreakable_segment(LineItem::TextRun(TextRunLineItem { text: vec![glyph_store], base_fragment_info: base_fragment_info.into(), parent_style: parent_style.clone(), font_metrics: font_metrics.clone(), font_key, text_decoration_line: self.current_inline_container_state().text_decoration_line, })); } fn update_unbreakable_segment_for_new_content( &mut self, block_sizes_of_content: &LineBlockSizes, inline_size: Length, is_collapsible_whitespace: bool, ) { if !is_collapsible_whitespace { self.current_line_segment.trailing_whitespace_size = Length::zero(); self.current_line_segment.has_content = true; self.had_inflow_content = true; } else { self.current_line_segment.trailing_whitespace_size = inline_size; } // This may or may not include the size of the strut depending on the quirks mode setting. let container_max_block_size = &self .current_inline_container_state() .nested_strut_block_sizes .clone(); self.current_line_segment .max_block_size .max_assign(container_max_block_size); self.current_line_segment .max_block_size .max_assign(block_sizes_of_content); self.current_line_segment.inline_size += inline_size; // Propagate the whitespace setting to the current nesting level. let current_nesting_level = self.current_inline_container_state_mut(); current_nesting_level.has_content = true; self.propagate_current_nesting_level_white_space_style(); } fn process_line_break(&mut self, forced_line_break: bool) { self.current_line_segment .prepare_for_placement_on_empty_line( &self.current_line, self.inline_box_state_stack.len(), ); self.finish_current_line_and_reset(forced_line_break); } /// Process a soft wrap opportunity. This will either commit the current unbreakble /// segment to the current line, if it fits within the containing block and float /// placement boundaries, or do a line break and then commit the segment. fn process_soft_wrap_opportunity(&mut self) { if self.current_line_segment.line_items.is_empty() { return; } if !self.white_space.allow_wrap() { return; } let potential_line_size = LogicalVec2 { inline: self.current_line.inline_position + self.current_line_segment.inline_size - self.current_line_segment.trailing_whitespace_size, block: self .current_line_max_block_size_including_nested_containers() .max(&self.current_line_segment.max_block_size) .resolve(), }; if self.new_potential_line_size_causes_line_break(&potential_line_size) { self.process_line_break(false /* forced_line_break */); } self.commit_current_segment_to_line(); } /// Commit the current unbrekable segment to the current line. In addition, this will /// place all floats in the unbreakable segment and expand the line dimensions. fn commit_current_segment_to_line(&mut self) { if self.current_line_segment.line_items.is_empty() { return; } if !self.current_line.has_content { self.current_line_segment.trim_leading_whitespace(); } self.current_line.inline_position += self.current_line_segment.inline_size; self.current_line.max_block_size = self .current_line_max_block_size_including_nested_containers() .max(&self.current_line_segment.max_block_size); self.current_line.justification_opportunities += self.current_line_segment.justification_opportunities; let line_inline_size_without_trailing_whitespace = self.current_line.inline_position - self.current_line_segment.trailing_whitespace_size; // Place all floats in this unbreakable segment. let mut segment_items = mem::take(&mut self.current_line_segment.line_items); for item in segment_items.iter_mut() { match item { LineItem::Float(float_item) => { self.place_float_line_item_for_commit_to_line( float_item, line_inline_size_without_trailing_whitespace, ); }, _ => {}, } } // If the current line was never placed among floats, we need to do that now based on the // new size. Calling `new_potential_line_size_causes_line_break()` here triggers the // new line to be positioned among floats. This should never ask for a line // break because it is the first content on the line. if self.current_line.line_items.is_empty() { let will_break = self.new_potential_line_size_causes_line_break(&LogicalVec2 { inline: line_inline_size_without_trailing_whitespace, block: self.current_line_segment.max_block_size.resolve(), }); assert!(!will_break); } // Try to merge all TextRuns in the line. let to_skip = match ( self.current_line.line_items.last_mut(), segment_items.first_mut(), ) { ( Some(LineItem::TextRun(last_line_item)), Some(LineItem::TextRun(first_segment_item)), ) => { last_line_item.text.append(&mut first_segment_item.text); 1 }, _ => 0, }; self.current_line .line_items .extend(segment_items.into_iter().skip(to_skip)); self.current_line.has_content |= self.current_line_segment.has_content; self.current_line_segment.reset(); } } impl InlineFormattingContext { pub(super) fn new( text_decoration_line: TextDecorationLine, has_first_formatted_line: bool, ends_with_whitespace: bool, ) -> InlineFormattingContext { InlineFormattingContext { inline_level_boxes: Default::default(), text_decoration_line, has_first_formatted_line, contains_floats: false, ends_with_whitespace, } } // This works on an already-constructed `InlineFormattingContext`, // Which would have to change if/when // `BlockContainer::construct` parallelize their construction. pub(super) fn inline_content_sizes( &self, layout_context: &LayoutContext, containing_block_writing_mode: WritingMode, ) -> ContentSizes { struct Computation<'a> { layout_context: &'a LayoutContext<'a>, containing_block_writing_mode: WritingMode, paragraph: ContentSizes, current_line: ContentSizes, /// Size for whitepsace pending to be added to this line. pending_whitespace: Length, /// Whether or not this IFC has seen any non-whitespace content. had_non_whitespace_content_yet: bool, /// The global linebreaking state. linebreaker: Option, } impl Computation<'_> { fn traverse(&mut self, inline_level_boxes: &[ArcRefCell]) { for inline_level_box in inline_level_boxes { match &mut *inline_level_box.borrow_mut() { InlineLevelBox::InlineBox(inline_box) => { let padding = inline_box.style.padding(self.containing_block_writing_mode); let border = inline_box .style .border_width(self.containing_block_writing_mode); let margin = inline_box.style.margin(self.containing_block_writing_mode); macro_rules! add { ($condition: ident, $side: ident) => { if inline_box.$condition { // For margins and paddings, a cyclic percentage is resolved against zero // for determining intrinsic size contributions. // https://drafts.csswg.org/css-sizing-3/#min-percentage-contribution let zero = Length::zero(); let mut length = padding.$side.percentage_relative_to(zero) + border.$side; if let Some(lp) = margin.$side.non_auto() { length += lp.percentage_relative_to(zero) } self.add_length(length); } }; } add!(is_first_fragment, inline_start); self.traverse(&inline_box.children); add!(is_last_fragment, inline_end); }, InlineLevelBox::TextRun(text_run) => { let result = text_run .break_and_shape(self.layout_context, &mut self.linebreaker); let BreakAndShapeResult { runs, break_at_start, .. } = match result { Ok(result) => result, Err(_) => return, }; if break_at_start { self.line_break_opportunity() } for run in &runs { let advance = Length::from(run.glyph_store.total_advance()); if !run.glyph_store.is_whitespace() { self.had_non_whitespace_content_yet = true; self.current_line.min_content += advance; self.current_line.max_content += self.pending_whitespace + advance; self.pending_whitespace = Length::zero(); } else { // If this run is a forced line break, we *must* break the line // and start measuring from the inline origin once more. if text_run .glyph_run_is_whitespace_ending_with_preserved_newline(run) { self.had_non_whitespace_content_yet = true; self.forced_line_break(); self.current_line = ContentSizes::zero(); continue; } // Discard any leading whitespace in the IFC. This will always be trimmed. if !self.had_non_whitespace_content_yet { continue; } // Wait to take into account other whitespace until we see more content. // Whitespace at the end of the IFC will always be trimmed. self.line_break_opportunity(); self.pending_whitespace += advance; } } }, InlineLevelBox::Atomic(atomic) => { let outer = atomic.outer_inline_content_sizes( self.layout_context, self.containing_block_writing_mode, ); self.current_line.min_content += self.pending_whitespace + outer.min_content; self.current_line.max_content += outer.max_content; self.pending_whitespace = Length::zero(); self.had_non_whitespace_content_yet = true; }, InlineLevelBox::OutOfFlowFloatBox(_) | InlineLevelBox::OutOfFlowAbsolutelyPositionedBox(_) => {}, } } } fn add_length(&mut self, l: Length) { self.current_line.min_content += l; self.current_line.max_content += l; } fn line_break_opportunity(&mut self) { self.paragraph .min_content .max_assign(take(&mut self.current_line.min_content)); } fn forced_line_break(&mut self) { self.line_break_opportunity(); self.paragraph .max_content .max_assign(take(&mut self.current_line.max_content)); } } fn take(x: &mut T) -> T { std::mem::replace(x, T::zero()) } let mut computation = Computation { layout_context, containing_block_writing_mode, paragraph: ContentSizes::zero(), current_line: ContentSizes::zero(), pending_whitespace: Length::zero(), had_non_whitespace_content_yet: false, linebreaker: None, }; computation.traverse(&self.inline_level_boxes); computation.forced_line_break(); computation.paragraph } pub(super) fn layout( &self, layout_context: &LayoutContext, positioning_context: &mut PositioningContext, containing_block: &ContainingBlock, sequential_layout_state: Option<&mut SequentialLayoutState>, collapsible_with_parent_start_margin: CollapsibleWithParentStartMargin, ) -> FlowLayout { let first_line_inline_start = if self.has_first_formatted_line { containing_block .style .get_inherited_text() .text_indent .to_used_value(containing_block.inline_size.into()) .into() } else { Length::zero() }; let style = containing_block.style; let mut ifc = InlineFormattingContextState { positioning_context, containing_block, sequential_layout_state, layout_context, fragments: Vec::new(), current_line: LineUnderConstruction::new(LogicalVec2 { inline: first_line_inline_start, block: Length::zero(), }), root_nesting_level: InlineContainerState::new( style.to_arc(), layout_context, None, /* parent_container */ self.text_decoration_line, inline_container_needs_strut(style, layout_context, None), ), linebreaker: None, inline_box_state_stack: Vec::new(), current_line_segment: UnbreakableSegmentUnderConstruction::new(), linebreak_before_new_content: false, have_deferred_soft_wrap_opportunity: false, prevent_soft_wrap_opportunity_before_next_atomic: false, had_inflow_content: false, white_space: containing_block.style.get_inherited_text().white_space, last_baseline_offset: None, }; // FIXME(pcwalton): This assumes that margins never collapse through inline formatting // contexts (i.e. that inline formatting contexts are never empty). Is that right? // FIXME(mrobinson): This should not happen if the IFC collapses through. if let Some(ref mut sequential_layout_state) = ifc.sequential_layout_state { sequential_layout_state.collapse_margins(); // FIXME(mrobinson): Collapse margins in the containing block offsets as well?? } let mut iterator = InlineBoxChildIter::from_formatting_context(self); let mut parent_iterators = Vec::new(); loop { let next = iterator.next(); // Any new box should flush a pending hard line break. if next.is_some() { ifc.possibly_flush_deferred_forced_line_break(); } match next { Some(child) => match &mut *child.borrow_mut() { InlineLevelBox::InlineBox(inline_box) => { ifc.start_inline_box(inline_box); parent_iterators.push(iterator); iterator = InlineBoxChildIter::from_inline_level_box(child.clone()); }, InlineLevelBox::TextRun(run) => { run.layout_into_line_items(layout_context, &mut ifc) }, InlineLevelBox::Atomic(atomic_formatting_context) => { atomic_formatting_context.layout_into_line_items(layout_context, &mut ifc); }, InlineLevelBox::OutOfFlowAbsolutelyPositionedBox(box_) => ifc .push_line_item_to_unbreakable_segment(LineItem::AbsolutelyPositioned( AbsolutelyPositionedLineItem { absolutely_positioned_box: box_.clone(), }, )), InlineLevelBox::OutOfFlowFloatBox(float_box) => { float_box.layout_into_line_items(layout_context, &mut ifc); }, }, None => { match parent_iterators.pop() { // If we have a parent iterator, then we are working on an // InlineBox and we just finished it. Some(parent_iterator) => { ifc.finish_inline_box(); iterator = parent_iterator; continue; }, // If we have no more parents, we are at the end of the root // iterator ie at the end of this InlineFormattingContext. None => break, }; }, } } ifc.finish_last_line(); let mut collapsible_margins_in_children = CollapsedBlockMargins::zero(); let content_block_size = ifc.current_line.start_position.block; collapsible_margins_in_children.collapsed_through = !ifc.had_inflow_content && content_block_size == Length::zero() && collapsible_with_parent_start_margin.0; return FlowLayout { fragments: ifc.fragments, content_block_size, collapsible_margins_in_children, last_inflow_baseline_offset: ifc.last_baseline_offset, }; } /// Return true if this [InlineFormattingContext] is empty for the purposes of ignoring /// during box tree construction. An IFC is empty if it only contains TextRuns with /// completely collapsible whitespace. When that happens it can be ignored completely. pub fn is_empty(&self) -> bool { fn inline_level_boxes_are_empty(boxes: &[ArcRefCell]) -> bool { boxes .iter() .all(|inline_level_box| inline_level_box_is_empty(&*inline_level_box.borrow())) } fn inline_level_box_is_empty(inline_level_box: &InlineLevelBox) -> bool { match inline_level_box { InlineLevelBox::InlineBox(_) => false, InlineLevelBox::TextRun(text_run) => !text_run.has_uncollapsible_content, InlineLevelBox::OutOfFlowAbsolutelyPositionedBox(_) => false, InlineLevelBox::OutOfFlowFloatBox(_) => false, InlineLevelBox::Atomic(_) => false, } } inline_level_boxes_are_empty(&self.inline_level_boxes) } } impl InlineContainerState { fn new( style: Arc, layout_context: &LayoutContext, parent_container: Option<&InlineContainerState>, parent_text_decoration_line: TextDecorationLine, create_strut: bool, ) -> Self { let text_decoration_line = parent_text_decoration_line | style.clone_text_decoration_line(); let font_metrics = font_metrics_from_style(layout_context, &style); let line_height = line_height(&style, &font_metrics); let mut baseline_offset = Au::zero(); let mut strut_block_sizes = Self::get_block_sizes_with_style(&style, &font_metrics, line_height); if let Some(parent_container) = parent_container { // The baseline offset from `vertical-align` might adjust where our block size contribution is // within the line. baseline_offset = parent_container.get_cumulative_baseline_offset_for_child( style.effective_vertical_align_for_inline_layout(), &strut_block_sizes, ); strut_block_sizes.adjust_for_baseline_offset(baseline_offset); } let mut nested_block_sizes = parent_container .map(|container| container.nested_strut_block_sizes.clone()) .unwrap_or_else(LineBlockSizes::zero); if create_strut { nested_block_sizes.max_assign(&strut_block_sizes); } Self { style, has_content: false, text_decoration_line, nested_strut_block_sizes: nested_block_sizes, strut_block_sizes, baseline_offset, font_metrics, } } fn get_block_sizes_with_style( style: &ComputedValues, font_metrics: &FontMetrics, line_height: Length, ) -> LineBlockSizes { let vertical_align = style.effective_vertical_align_for_inline_layout(); if !is_baseline_relative(vertical_align) { return LineBlockSizes { line_height, baseline_relative_size_for_line_height: None, size_for_baseline_positioning: BaselineRelativeSize::zero(), }; } // From https://drafts.csswg.org/css-inline/#inline-height // > If line-height computes to `normal` and either `text-box-edge` is `leading` or this // > is the root inline box, the font’s line gap metric may also be incorporated // > into A and D by adding half to each side as half-leading. // // `text-box-edge` isn't implemented (and this is a draft specification), so it's // always effectively `leading`, which means we always take into account the line gap // when `line-height` is normal. let mut ascent = font_metrics.ascent; let mut descent = font_metrics.descent; if style.get_inherited_text().line_height == LineHeight::Normal { let half_leading_from_line_gap = (font_metrics.line_gap - descent - ascent).scale_by(0.5); ascent += half_leading_from_line_gap; descent += half_leading_from_line_gap; } // The ascent and descent we use for computing the line's final line height isn't // the same the ascent and descent we use for finding the baseline. For finding // the baseline we want the content rect. let size_for_baseline_positioning = BaselineRelativeSize { ascent, descent }; // From https://drafts.csswg.org/css-inline/#inline-height // > When its computed line-height is not normal, its layout bounds are derived solely // > from metrics of its first available font (ignoring glyphs from other fonts), and // > leading is used to adjust the effective A and D to add up to the used line-height. // > Calculate the leading L as L = line-height - (A + D). Half the leading (its // > half-leading) is added above A of the first available font, and the other half // > below D of the first available font, giving an effective ascent above the baseline // > of A′ = A + L/2, and an effective descent of D′ = D + L/2. // // Note that leading might be negative here and the line-height might be zero. In // the case where the height is zero, ascent and descent will move to the same // point in the block axis. Even though the contribution to the line height is // zero in this case, the line may get some height when taking them into // considering with other zero line height boxes that converge on other block axis // locations when using the above formula. if style.get_inherited_text().line_height != LineHeight::Normal { let half_leading = (Au::from_f32_px(line_height.px()) - (ascent + descent)).scale_by(0.5); ascent = ascent + half_leading; descent = descent + half_leading; } LineBlockSizes { line_height, baseline_relative_size_for_line_height: Some(BaselineRelativeSize { ascent, descent }), size_for_baseline_positioning, } } fn get_block_size_contribution(&self, font_metrics: &FontMetrics) -> LineBlockSizes { Self::get_block_sizes_with_style( &self.style, font_metrics, line_height(&self.style, &font_metrics), ) } fn get_cumulative_baseline_offset_for_child( &self, child_vertical_align: GenericVerticalAlign, child_block_size: &LineBlockSizes, ) -> Au { let block_size = self.get_block_size_contribution(&self.font_metrics); self.baseline_offset + match child_vertical_align { // `top` and `bottom are not actually relative to the baseline, but this value is unused // in those cases. // TODO: We should distinguish these from `baseline` in order to implement "aligned subtrees" properly. // See https://drafts.csswg.org/css2/#aligned-subtree. GenericVerticalAlign::Keyword(VerticalAlignKeyword::Baseline) | GenericVerticalAlign::Keyword(VerticalAlignKeyword::Top) | GenericVerticalAlign::Keyword(VerticalAlignKeyword::Bottom) => Au::zero(), GenericVerticalAlign::Keyword(VerticalAlignKeyword::Sub) => Au::from_f32_px( block_size .resolve() .scale_by(FONT_SUBSCRIPT_OFFSET_RATIO) .px(), ), GenericVerticalAlign::Keyword(VerticalAlignKeyword::Super) => -Au::from_f32_px( block_size .resolve() .scale_by(FONT_SUPERSCRIPT_OFFSET_RATIO) .px(), ), GenericVerticalAlign::Keyword(VerticalAlignKeyword::TextTop) => { child_block_size.size_for_baseline_positioning.ascent - self.font_metrics.ascent }, GenericVerticalAlign::Keyword(VerticalAlignKeyword::Middle) => { // "Align the vertical midpoint of the box with the baseline of the parent // box plus half the x-height of the parent." (child_block_size.size_for_baseline_positioning.ascent - child_block_size.size_for_baseline_positioning.descent - self.font_metrics.x_height) .scale_by(0.5) }, GenericVerticalAlign::Keyword(VerticalAlignKeyword::TextBottom) => { (self.font_metrics.descent - child_block_size.size_for_baseline_positioning.descent) .into() }, GenericVerticalAlign::Length(length_percentage) => { Au::from_f32_px(-length_percentage.resolve(child_block_size.line_height).px()) }, } } } impl InlineBoxContainerState { fn new( inline_box: &InlineBox, containing_block: &ContainingBlock, layout_context: &LayoutContext, parent_container: &InlineContainerState, is_last_fragment: bool, ) -> Self { let style = inline_box.style.clone(); let pbm = style.padding_border_margin(containing_block); let create_strut = inline_container_needs_strut(&style, layout_context, Some(&pbm)); Self { base: InlineContainerState::new( style, layout_context, Some(parent_container), parent_container.text_decoration_line, create_strut, ), base_fragment_info: inline_box.base_fragment_info, pbm, is_last_fragment, } } fn layout_into_line_item( &mut self, is_first_fragment: bool, is_last_fragment_of_ib_split: bool, ) -> InlineBoxLineItem { InlineBoxLineItem { base_fragment_info: self.base_fragment_info, style: self.base.style.clone(), pbm: self.pbm.clone(), is_first_fragment, is_last_fragment_of_ib_split, font_metrics: self.base.font_metrics.clone(), baseline_offset: self.base.baseline_offset, } } } impl IndependentFormattingContext { fn layout_into_line_items( &mut self, layout_context: &LayoutContext, ifc: &mut InlineFormattingContextState, ) { let style = self.style(); let pbm = style.padding_border_margin(&ifc.containing_block); let margin = pbm.margin.auto_is(Length::zero); let pbm_sums = &(&pbm.padding + &pbm.border) + &margin; let mut child_positioning_context = None; // We need to know the inline size of the atomic before deciding whether to do the line break. let fragment = match self { IndependentFormattingContext::Replaced(replaced) => { let size = replaced.contents.used_size_as_if_inline_element( ifc.containing_block, &replaced.style, None, &pbm, ); let fragments = replaced .contents .make_fragments(&replaced.style, size.clone()); let content_rect = LogicalRect { start_corner: pbm_sums.start_offset(), size, }; BoxFragment::new( replaced.base_fragment_info, replaced.style.clone(), fragments, content_rect, pbm.padding, pbm.border, margin, None, /* clearance */ None, /* last_inflow_baseline_offset */ CollapsedBlockMargins::zero(), ) }, IndependentFormattingContext::NonReplaced(non_replaced) => { let box_size = non_replaced .style .content_box_size(&ifc.containing_block, &pbm); let max_box_size = non_replaced .style .content_max_box_size(&ifc.containing_block, &pbm); let min_box_size = non_replaced .style .content_min_box_size(&ifc.containing_block, &pbm) .auto_is(Length::zero); // https://drafts.csswg.org/css2/visudet.html#inlineblock-width let tentative_inline_size = box_size.inline.auto_is(|| { let available_size = ifc.containing_block.inline_size - pbm_sums.inline_sum(); non_replaced .inline_content_sizes(layout_context) .shrink_to_fit(available_size) }); // https://drafts.csswg.org/css2/visudet.html#min-max-widths // In this case “applying the rules above again” with a non-auto inline-size // always results in that size. let inline_size = tentative_inline_size .clamp_between_extremums(min_box_size.inline, max_box_size.inline); let containing_block_for_children = ContainingBlock { inline_size, block_size: box_size.block, style: &non_replaced.style, }; assert_eq!( ifc.containing_block.style.writing_mode, containing_block_for_children.style.writing_mode, "Mixed writing modes are not supported yet" ); // This always collects for the nearest positioned ancestor even if the parent positioning // context doesn't. The thing is we haven't kept track up to this point and there isn't // any harm in keeping the hoisted boxes separate. child_positioning_context = Some(PositioningContext::new_for_subtree( true, /* collects_for_nearest_positioned_ancestor */ )); let independent_layout = non_replaced.layout( layout_context, child_positioning_context.as_mut().unwrap(), &containing_block_for_children, ); // https://drafts.csswg.org/css2/visudet.html#block-root-margin let tentative_block_size = box_size .block .auto_is(|| independent_layout.content_block_size.into()); // https://drafts.csswg.org/css2/visudet.html#min-max-heights // In this case “applying the rules above again” with a non-auto block-size // always results in that size. let block_size = tentative_block_size .clamp_between_extremums(min_box_size.block, max_box_size.block); let content_rect = LogicalRect { start_corner: pbm_sums.start_offset(), size: LogicalVec2 { block: block_size, inline: inline_size, }, }; BoxFragment::new( non_replaced.base_fragment_info, non_replaced.style.clone(), independent_layout.fragments, content_rect, pbm.padding, pbm.border, margin, None, independent_layout .last_inflow_baseline_offset .map(|t| t.into()), CollapsedBlockMargins::zero(), ) }, }; let soft_wrap_opportunity_prevented = mem::replace( &mut ifc.prevent_soft_wrap_opportunity_before_next_atomic, false, ); if ifc.white_space.allow_wrap() && !soft_wrap_opportunity_prevented { ifc.process_soft_wrap_opportunity(); } let size = &pbm_sums.sum() + &fragment.content_rect.size; let baseline_offset = fragment .last_baseline_offset .map(|baseline_offset| pbm_sums.block_start + baseline_offset) .unwrap_or(size.block); let baseline_offset = Au::from_f32_px(baseline_offset.px()); let (block_sizes, baseline_offset_in_parent) = self.get_block_sizes_and_baseline_offset(ifc, size.block, baseline_offset); ifc.update_unbreakable_segment_for_new_content(&block_sizes, size.inline, false); ifc.push_line_item_to_unbreakable_segment(LineItem::Atomic(AtomicLineItem { fragment, size, positioning_context: child_positioning_context, baseline_offset_in_parent, baseline_offset_in_item: baseline_offset, })); // Defer a soft wrap opportunity for when we next process text content. ifc.have_deferred_soft_wrap_opportunity = true; } fn get_block_sizes_and_baseline_offset( &self, ifc: &InlineFormattingContextState, block_size: Length, baseline_offset_in_content_area: Au, ) -> (LineBlockSizes, Au) { let mut contribution = if !is_baseline_relative(self.style().clone_vertical_align()) { LineBlockSizes { line_height: block_size, baseline_relative_size_for_line_height: None, size_for_baseline_positioning: BaselineRelativeSize::zero(), } } else { let baseline_relative_size = BaselineRelativeSize { ascent: baseline_offset_in_content_area, descent: Au::from_f32_px(block_size.px()) - baseline_offset_in_content_area, }; LineBlockSizes { line_height: block_size, baseline_relative_size_for_line_height: Some(baseline_relative_size.clone()), size_for_baseline_positioning: baseline_relative_size, } }; let baseline_offset = ifc .current_inline_container_state() .get_cumulative_baseline_offset_for_child( self.style().clone_vertical_align(), &contribution, ); contribution.adjust_for_baseline_offset(baseline_offset); (contribution, baseline_offset) } } struct BreakAndShapeResult { font_metrics: FontMetrics, font_key: FontInstanceKey, runs: Vec, break_at_start: bool, } impl TextRun { fn break_and_shape( &self, layout_context: &LayoutContext, linebreaker: &mut Option, ) -> Result { use gfx::font::ShapingFlags; use style::computed_values::text_rendering::T as TextRendering; use style::computed_values::word_break::T as WordBreak; let font_style = self.parent_style.clone_font(); let inherited_text_style = self.parent_style.get_inherited_text(); let letter_spacing = if inherited_text_style.letter_spacing.0.px() != 0. { Some(app_units::Au::from(inherited_text_style.letter_spacing.0)) } else { None }; let mut flags = ShapingFlags::empty(); if letter_spacing.is_some() { flags.insert(ShapingFlags::IGNORE_LIGATURES_SHAPING_FLAG); } if inherited_text_style.text_rendering == TextRendering::Optimizespeed { flags.insert(ShapingFlags::IGNORE_LIGATURES_SHAPING_FLAG); flags.insert(ShapingFlags::DISABLE_KERNING_SHAPING_FLAG) } if inherited_text_style.word_break == WordBreak::KeepAll { flags.insert(ShapingFlags::KEEP_ALL_FLAG); } crate::context::with_thread_local_font_context(layout_context, |font_context| { let font_group = font_context.font_group(font_style); let font = match font_group.borrow_mut().first(font_context) { Some(font) => font, None => return Err("Could not find find for TextRun."), }; let mut font = font.borrow_mut(); let word_spacing = &inherited_text_style.word_spacing; let word_spacing = word_spacing .to_length() .map(|l| l.into()) .unwrap_or_else(|| { let space_width = font .glyph_index(' ') .map(|glyph_id| font.glyph_h_advance(glyph_id)) .unwrap_or(gfx::font::LAST_RESORT_GLYPH_ADVANCE); word_spacing.to_used_value(Au::from_f64_px(space_width)) }); let shaping_options = gfx::font::ShapingOptions { letter_spacing, word_spacing, script: unicode_script::Script::Common, flags, }; let (runs, break_at_start) = gfx::text::text_run::TextRun::break_and_shape( &mut font, &self.text, &shaping_options, linebreaker, ); Ok(BreakAndShapeResult { font_metrics: font.metrics.clone(), font_key: font.font_key, runs, break_at_start, }) }) } fn glyph_run_is_whitespace_ending_with_preserved_newline(&self, run: &GlyphRun) -> bool { if !run.glyph_store.is_whitespace() { return false; } if !self .parent_style .get_inherited_text() .white_space .preserve_newlines() { return false; } let last_byte = self.text.as_bytes().get(run.range.end().to_usize() - 1); last_byte == Some(&b'\n') } fn layout_into_line_items( &self, layout_context: &LayoutContext, ifc: &mut InlineFormattingContextState, ) { let result = self.break_and_shape(layout_context, &mut ifc.linebreaker); let BreakAndShapeResult { font_metrics, font_key, runs, break_at_start, } = match result { Ok(result) => result, Err(string) => { warn!("Could not render TextRun: {string}"); return; }, }; // We either have a soft wrap opportunity if specified by the breaker or if we are // following replaced content. let have_deferred_soft_wrap_opportunity = mem::replace(&mut ifc.have_deferred_soft_wrap_opportunity, false); let mut break_at_start = break_at_start || have_deferred_soft_wrap_opportunity; if have_deferred_soft_wrap_opportunity { if let Some(first_character) = self.text.chars().nth(0) { break_at_start = break_at_start && !char_prevents_soft_wrap_opportunity_when_before_or_after_atomic( first_character, ) } } if let Some(last_character) = self.text.chars().last() { ifc.prevent_soft_wrap_opportunity_before_next_atomic = char_prevents_soft_wrap_opportunity_when_before_or_after_atomic(last_character); } for (run_index, run) in runs.into_iter().enumerate() { ifc.possibly_flush_deferred_forced_line_break(); // If this whitespace forces a line break, queue up a hard line break the next time we // see any content. We don't line break immediately, because we'd like to finish processing // any ongoing inline boxes before ending the line. if self.glyph_run_is_whitespace_ending_with_preserved_newline(&run) { ifc.defer_forced_line_break(); continue; } // Break before each unbrekable run in this TextRun, except the first unless the // linebreaker was set to break before the first run. if run_index != 0 || break_at_start { ifc.process_soft_wrap_opportunity(); } ifc.push_glyph_store_to_unbreakable_segment( run.glyph_store, self.base_fragment_info, &self.parent_style, &font_metrics, font_key, ); } } } impl FloatBox { fn layout_into_line_items( &mut self, layout_context: &LayoutContext, ifc: &mut InlineFormattingContextState, ) { let fragment = self.layout( layout_context, ifc.positioning_context, ifc.containing_block, ); ifc.push_line_item_to_unbreakable_segment(LineItem::Float(FloatLineItem { fragment, needs_placement: true, })); } } enum InlineBoxChildIter<'box_tree> { InlineFormattingContext(std::slice::Iter<'box_tree, ArcRefCell>), InlineBox { inline_level_box: ArcRefCell, child_index: usize, }, } impl<'box_tree> InlineBoxChildIter<'box_tree> { fn from_formatting_context( inline_formatting_context: &'box_tree InlineFormattingContext, ) -> InlineBoxChildIter<'box_tree> { InlineBoxChildIter::InlineFormattingContext( inline_formatting_context.inline_level_boxes.iter(), ) } fn from_inline_level_box( inline_level_box: ArcRefCell, ) -> InlineBoxChildIter<'box_tree> { InlineBoxChildIter::InlineBox { inline_level_box, child_index: 0, } } } impl<'box_tree> Iterator for InlineBoxChildIter<'box_tree> { type Item = ArcRefCell; fn next(&mut self) -> Option> { match *self { InlineBoxChildIter::InlineFormattingContext(ref mut iter) => iter.next().cloned(), InlineBoxChildIter::InlineBox { ref inline_level_box, ref mut child_index, } => match *inline_level_box.borrow() { InlineLevelBox::InlineBox(ref inline_box) => { if *child_index >= inline_box.children.len() { return None; } let kid = inline_box.children[*child_index].clone(); *child_index += 1; Some(kid) }, _ => unreachable!(), }, } } } fn place_pending_floats(ifc: &mut InlineFormattingContextState, line_items: &mut Vec) { for item in line_items.into_iter() { match item { LineItem::Float(float_line_item) => { if float_line_item.needs_placement { ifc.place_float_fragment(&mut float_line_item.fragment); } }, _ => {}, } } } fn line_height(parent_style: &ComputedValues, font_metrics: &FontMetrics) -> Length { let font_size = parent_style.get_font().font_size.computed_size(); match parent_style.get_inherited_text().line_height { LineHeight::Normal => Length::from(font_metrics.line_gap), LineHeight::Number(number) => font_size * number.0, LineHeight::Length(length) => length.0, } } fn font_metrics_from_style(layout_context: &LayoutContext, style: &ComputedValues) -> FontMetrics { crate::context::with_thread_local_font_context(layout_context, |font_context| { let font_group = font_context.font_group(style.clone_font()); let font = match font_group.borrow_mut().first(font_context) { Some(font) => font, None => { warn!("Could not find find for TextRun."); return FontMetrics::empty(); }, }; let font = font.borrow(); font.metrics.clone() }) } /// comes before or after an atomic inline element. /// /// From https://www.w3.org/TR/css-text-3/#line-break-details: /// /// > For Web-compatibility there is a soft wrap opportunity before and after each /// > replaced element or other atomic inline, even when adjacent to a character that /// > would normally suppress them, including U+00A0 NO-BREAK SPACE. However, with /// > the exception of U+00A0 NO-BREAK SPACE, there must be no soft wrap opportunity /// > between atomic inlines and adjacent characters belonging to the Unicode GL, WJ, /// > or ZWJ line breaking classes. fn char_prevents_soft_wrap_opportunity_when_before_or_after_atomic(character: char) -> bool { if character == '\u{00A0}' { return false; } let class = linebreak_property(character); class == XI_LINE_BREAKING_CLASS_GL || class == XI_LINE_BREAKING_CLASS_WJ || class == XI_LINE_BREAKING_CLASS_ZWJ } fn is_baseline_relative(vertical_align: GenericVerticalAlign) -> bool { match vertical_align { GenericVerticalAlign::Keyword(VerticalAlignKeyword::Top) | GenericVerticalAlign::Keyword(VerticalAlignKeyword::Bottom) => false, _ => true, } } /// Whether or not a strut should be created for an inline container. Normally /// all inline containers get struts. In quirks mode this isn't always the case /// though. /// /// From https://quirks.spec.whatwg.org/#the-line-height-calculation-quirk /// /// > ### § 3.3. The line height calculation quirk /// > In quirks mode and limited-quirks mode, an inline box that matches the following /// > conditions, must, for the purpose of line height calculation, act as if the box had a /// > line-height of zero. /// > /// > - The border-top-width, border-bottom-width, padding-top and padding-bottom /// > properties have a used value of zero and the box has a vertical writing mode, or the /// > border-right-width, border-left-width, padding-right and padding-left properties have /// > a used value of zero and the box has a horizontal writing mode. /// > - It either contains no text or it contains only collapsed whitespace. /// > /// > ### § 3.4. The blocks ignore line-height quirk /// > In quirks mode and limited-quirks mode, for a block container element whose content is /// > composed of inline-level elements, the element’s line-height must be ignored for the /// > purpose of calculating the minimal height of line boxes within the element. /// /// Since we incorporate the size of the strut into the line-height calculation when /// adding text, we can simply not incorporate the strut at the start of inline box /// processing. This also works the same for the root of the IFC. fn inline_container_needs_strut( style: &ComputedValues, layout_context: &LayoutContext, pbm: Option<&PaddingBorderMargin>, ) -> bool { if layout_context.style_context.quirks_mode() == QuirksMode::NoQuirks { return true; } // This is not in a standard yet, but all browsers disable this quirk for list items. // See https://github.com/whatwg/quirks/issues/38. if style.get_box().display.is_list_item() { return true; } pbm.map(|pbm| !pbm.padding_border_sums.inline.is_zero()) .unwrap_or(false) }