/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Smart pointers for the JS-managed DOM objects. //! //! The DOM is made up of Rust types whose lifetime is entirely controlled by the whims of //! the SpiderMonkey garbage collector. The types in this module are designed to ensure //! that any interactions with said Rust types only occur on values that will remain alive //! the entire time. //! //! Here is a brief overview of the important types: //! //! - `JSRef<T>`: a freely-copyable reference to a rooted value. //! - `Root<T>`: a stack-based reference to a rooted value. //! - `JS<T>`: a pointer to JS-owned memory that can automatically be traced by the GC when //! encountered as a field of a Rust structure. //! - `Temporary<T>`: a value that will remain rooted for the duration of its lifetime. //! //! The rule of thumb is as follows: //! //! - All methods return `Temporary<T>`, to ensure the value remains alive until it is stored //! somewhere that is reachable by the GC. //! - All functions take `JSRef<T>` arguments, to ensure that they will remain uncollected for //! the duration of their usage. //! - All types contain `JS<T>` fields and derive the `Encodable` trait, to ensure that they are //! transitively marked as reachable by the GC if the enclosing value is reachable. //! - All methods for type `T` are implemented for `JSRef<T>`, to ensure that the self value //! will not be collected for the duration of the method call. //! //! Both `Temporary<T>` and `JS<T>` do not allow access to their inner value without explicitly //! creating a stack-based root via the `root` method. This returns a `Root<T>`, which causes //! the JS-owned value to be uncollectable for the duration of the `Root` object's lifetime. //! A `JSRef<T>` can be obtained from a `Root<T>` either by dereferencing the `Root<T>` (`*rooted`) //! or explicitly calling the `root_ref` method. These `JSRef<T>` values are not allowed to //! outlive their originating `Root<T>`, to ensure that all interactions with the enclosed value //! only occur when said value is uncollectable, and will cause static lifetime errors if //! misused. //! //! Other miscellaneous helper traits: //! //! - `OptionalRootable` and `OptionalRootedRootable`: make rooting `Option` values easy via a `root` method //! - `ResultRootable`: make rooting successful `Result` values easy //! - `TemporaryPushable`: allows mutating vectors of `JS<T>` with new elements of `JSRef`/`Temporary` //! - `OptionalSettable`: allows assigning `Option` values of `JSRef`/`Temporary` to fields of `Option<JS<T>>` //! - `RootedReference`: makes obtaining an `Option<JSRef<T>>` from an `Option<Root<T>>` easy use dom::bindings::trace::JSTraceable; use dom::bindings::utils::{Reflector, Reflectable}; use dom::node::Node; use dom::xmlhttprequest::{XMLHttpRequest, TrustedXHRAddress}; use dom::worker::{Worker, TrustedWorkerAddress}; use js::jsapi::JSObject; use js::jsval::JSVal; use layout_interface::TrustedNodeAddress; use script_task::StackRoots; use servo_util::smallvec::{SmallVec, SmallVec16}; use std::cell::{Cell, UnsafeCell}; use std::default::Default; use std::kinds::marker::ContravariantLifetime; use std::mem; /// A type that represents a JS-owned value that is rooted for the lifetime of this value. /// Importantly, it requires explicit rooting in order to interact with the inner value. /// Can be assigned into JS-owned member fields (i.e. `JS<T>` types) safely via the /// `JS<T>::assign` method or `OptionalSettable::assign` (for `Option<JS<T>>` fields). #[allow(unrooted_must_root)] pub struct Temporary<T> { inner: JS<T>, /// On-stack JS pointer to assuage conservative stack scanner _js_ptr: *mut JSObject, } impl<T> PartialEq for Temporary<T> { fn eq(&self, other: &Temporary<T>) -> bool { self.inner == other.inner } } impl<T: Reflectable> Temporary<T> { /// Create a new `Temporary` value from a JS-owned value. pub fn new(inner: JS<T>) -> Temporary<T> { Temporary { inner: inner, _js_ptr: inner.reflector().get_jsobject(), } } /// Create a new `Temporary` value from a rooted value. pub fn from_rooted<'a>(root: JSRef<'a, T>) -> Temporary<T> { Temporary::new(JS::from_rooted(root)) } /// Create a stack-bounded root for this value. pub fn root<'a, 'b>(self) -> Root<'a, 'b, T> { let collection = StackRoots.get().unwrap(); unsafe { Root::new(&**collection, &self.inner) } } unsafe fn inner(&self) -> JS<T> { self.inner.clone() } //XXXjdm It would be lovely if this could be private. pub unsafe fn transmute<To>(self) -> Temporary<To> { mem::transmute(self) } } /// A rooted, JS-owned value. Must only be used as a field in other JS-owned types. #[must_root] pub struct JS<T> { ptr: *const T } impl<T> PartialEq for JS<T> { #[allow(unrooted_must_root)] fn eq(&self, other: &JS<T>) -> bool { self.ptr == other.ptr } } impl <T> Clone for JS<T> { #[inline] fn clone(&self) -> JS<T> { JS { ptr: self.ptr.clone() } } } impl JS<Node> { /// Create a new JS-owned value wrapped from an address known to be a `Node` pointer. pub unsafe fn from_trusted_node_address(inner: TrustedNodeAddress) -> JS<Node> { let TrustedNodeAddress(addr) = inner; JS { ptr: addr as *const Node } } } impl JS<XMLHttpRequest> { pub unsafe fn from_trusted_xhr_address(inner: TrustedXHRAddress) -> JS<XMLHttpRequest> { let TrustedXHRAddress(addr) = inner; JS { ptr: addr as *const XMLHttpRequest } } } impl JS<Worker> { pub unsafe fn from_trusted_worker_address(inner: TrustedWorkerAddress) -> JS<Worker> { let TrustedWorkerAddress(addr) = inner; JS { ptr: addr as *const Worker } } } impl<T: Reflectable> JS<T> { /// Create a new JS-owned value wrapped from a raw Rust pointer. pub unsafe fn from_raw(raw: *const T) -> JS<T> { JS { ptr: raw } } /// Root this JS-owned value to prevent its collection as garbage. pub fn root<'a, 'b>(&self) -> Root<'a, 'b, T> { let collection = StackRoots.get().unwrap(); unsafe { Root::new(&**collection, self) } } } impl<T: Assignable<U>, U: Reflectable> JS<U> { pub fn from_rooted(root: T) -> JS<U> { unsafe { root.get_js() } } } //XXXjdm This is disappointing. This only gets called from trace hooks, in theory, // so it's safe to assume that self is rooted and thereby safe to access. impl<T: Reflectable> Reflectable for JS<T> { fn reflector<'a>(&'a self) -> &'a Reflector { unsafe { (*self.unsafe_get()).reflector() } } } pub trait HeapGCValue: JSTraceable { } impl HeapGCValue for JSVal { } impl<T: Reflectable> HeapGCValue for JS<T> { } /// A mutable holder for a GC-owned SpiderMonkey value stored on the heap. /// Must be used in place of traditional interior mutability to ensure proper /// GC barriers are enforced. #[must_root] #[jstraceable] pub struct MutHeap<T: HeapGCValue+Copy> { val: Cell<T>, } impl<T: HeapGCValue+Copy> MutHeap<T> { pub fn new(initial: T) -> MutHeap<T> { MutHeap { val: Cell::new(initial), } } pub fn set(&self, val: T) { self.val.set(val) } pub fn get(&self) -> T { self.val.get() } } /// A mutable `JS<T>` value, with nullability represented by an enclosing /// Option wrapper. Must be used in place of traditional internal mutability /// to ensure that the proper GC barriers are enforced. #[must_root] #[jstraceable] pub struct MutNullableJS<T: Reflectable> { ptr: Cell<Option<JS<T>>> } impl<T: Assignable<U>, U: Reflectable> MutNullableJS<U> { pub fn new(initial: Option<T>) -> MutNullableJS<U> { MutNullableJS { ptr: Cell::new(initial.map(|initial| { unsafe { initial.get_js() } })) } } } impl<T: Reflectable> Default for MutNullableJS<T> { fn default() -> MutNullableJS<T> { MutNullableJS { ptr: Cell::new(None) } } } impl<T: Reflectable> MutNullableJS<T> { /// Store an unrooted value in this field. This is safe under the /// assumption that `MutNullableJS<T>` values are only used as fields in /// DOM types that are reachable in the GC graph, so this unrooted value /// becomes transitively rooted for the lifetime of its new owner. pub fn assign<U: Assignable<T>>(&self, val: Option<U>) { self.ptr.set(val.map(|val| { unsafe { val.get_js() } })); } /// Set the inner value to null, without making API users jump through /// useless type-ascription hoops. pub fn clear(&self) { self.assign(None::<JS<T>>); } /// Retrieve a copy of the current optional inner value. pub fn get(&self) -> Option<Temporary<T>> { self.ptr.get().map(Temporary::new) } /// Retrieve a copy of the inner optional `JS<T>`. For use by layout, which /// can't use safe types like Temporary. pub unsafe fn get_inner(&self) -> Option<JS<T>> { self.ptr.get() } pub fn or_init(&self, cb: || -> Temporary<T>) -> Temporary<T> { match self.get() { Some(inner) => inner, None => { let inner = cb(); self.assign(Some(inner)); inner }, } } } impl<T: Reflectable> JS<T> { /// Returns an unsafe pointer to the interior of this JS object without touching the borrow /// flags. This is the only method that be safely accessed from layout. (The fact that this /// is unsafe is what necessitates the layout wrappers.) pub unsafe fn unsafe_get(&self) -> *mut T { mem::transmute_copy(&self.ptr) } /// Store an unrooted value in this field. This is safe under the assumption that JS<T> /// values are only used as fields in DOM types that are reachable in the GC graph, /// so this unrooted value becomes transitively rooted for the lifetime of its new owner. pub fn assign(&mut self, val: Temporary<T>) { *self = unsafe { val.inner() }; } } impl<From, To> JS<From> { //XXXjdm It would be lovely if this could be private. pub unsafe fn transmute(self) -> JS<To> { mem::transmute(self) } pub unsafe fn transmute_copy(&self) -> JS<To> { mem::transmute_copy(self) } } /// Get an `Option<JSRef<T>>` out of an `Option<Root<T>>` pub trait RootedReference<T> { fn root_ref<'a>(&'a self) -> Option<JSRef<'a, T>>; } impl<'a, 'b, T: Reflectable> RootedReference<T> for Option<Root<'a, 'b, T>> { fn root_ref<'a>(&'a self) -> Option<JSRef<'a, T>> { self.as_ref().map(|root| root.root_ref()) } } /// Get an `Option<Option<JSRef<T>>>` out of an `Option<Option<Root<T>>>` pub trait OptionalRootedReference<T> { fn root_ref<'a>(&'a self) -> Option<Option<JSRef<'a, T>>>; } impl<'a, 'b, T: Reflectable> OptionalRootedReference<T> for Option<Option<Root<'a, 'b, T>>> { fn root_ref<'a>(&'a self) -> Option<Option<JSRef<'a, T>>> { self.as_ref().map(|inner| inner.root_ref()) } } /// Trait that allows extracting a `JS<T>` value from a variety of rooting-related containers, /// which in general is an unsafe operation since they can outlive the rooted lifetime of the /// original value. pub trait Assignable<T> { unsafe fn get_js(&self) -> JS<T>; } impl<T> Assignable<T> for JS<T> { unsafe fn get_js(&self) -> JS<T> { self.clone() } } impl<'a, T: Reflectable> Assignable<T> for JSRef<'a, T> { unsafe fn get_js(&self) -> JS<T> { self.unrooted() } } impl<T: Reflectable> Assignable<T> for Temporary<T> { unsafe fn get_js(&self) -> JS<T> { self.inner() } } /// Assign an optional rootable value (either of `JS<T>` or `Temporary<T>`) to an optional /// field of a DOM type (ie. `Option<JS<T>>`) pub trait OptionalSettable<T> { fn assign(&self, val: Option<T>); } impl<T: Assignable<U>, U: Reflectable> OptionalSettable<T> for Cell<Option<JS<U>>> { fn assign(&self, val: Option<T>) { self.set(val.map(|val| unsafe { val.get_js() })); } } /// Root a rootable `Option` type (used for `Option<Temporary<T>>`) pub trait OptionalRootable<T> { fn root<'a, 'b>(self) -> Option<Root<'a, 'b, T>>; } impl<T: Reflectable> OptionalRootable<T> for Option<Temporary<T>> { fn root<'a, 'b>(self) -> Option<Root<'a, 'b, T>> { self.map(|inner| inner.root()) } } /// Return an unrooted type for storing in optional DOM fields pub trait OptionalUnrootable<T> { fn unrooted(&self) -> Option<JS<T>>; } impl<'a, T: Reflectable> OptionalUnrootable<T> for Option<JSRef<'a, T>> { fn unrooted(&self) -> Option<JS<T>> { self.as_ref().map(|inner| JS::from_rooted(*inner)) } } /// Root a rootable `Option` type (used for `Option<JS<T>>`) pub trait OptionalRootedRootable<T> { fn root<'a, 'b>(&self) -> Option<Root<'a, 'b, T>>; } impl<T: Reflectable> OptionalRootedRootable<T> for Option<JS<T>> { fn root<'a, 'b>(&self) -> Option<Root<'a, 'b, T>> { self.as_ref().map(|inner| inner.root()) } } /// Root a rootable `Option<Option>` type (used for `Option<Option<JS<T>>>`) pub trait OptionalOptionalRootedRootable<T> { fn root<'a, 'b>(&self) -> Option<Option<Root<'a, 'b, T>>>; } impl<T: Reflectable> OptionalOptionalRootedRootable<T> for Option<Option<JS<T>>> { fn root<'a, 'b>(&self) -> Option<Option<Root<'a, 'b, T>>> { self.as_ref().map(|inner| inner.root()) } } /// Root a rootable `Result` type (any of `Temporary<T>` or `JS<T>`) pub trait ResultRootable<T,U> { fn root<'a, 'b>(self) -> Result<Root<'a, 'b, T>, U>; } impl<T: Reflectable, U> ResultRootable<T, U> for Result<Temporary<T>, U> { fn root<'a, 'b>(self) -> Result<Root<'a, 'b, T>, U> { self.map(|inner| inner.root()) } } impl<T: Reflectable, U> ResultRootable<T, U> for Result<JS<T>, U> { fn root<'a, 'b>(self) -> Result<Root<'a, 'b, T>, U> { self.map(|inner| inner.root()) } } /// Provides a facility to push unrooted values onto lists of rooted values. This is safe /// under the assumption that said lists are reachable via the GC graph, and therefore the /// new values are transitively rooted for the lifetime of their new owner. pub trait TemporaryPushable<T> { fn push_unrooted(&mut self, val: &T); fn insert_unrooted(&mut self, index: uint, val: &T); } impl<T: Assignable<U>, U: Reflectable> TemporaryPushable<T> for Vec<JS<U>> { fn push_unrooted(&mut self, val: &T) { self.push(unsafe { val.get_js() }); } fn insert_unrooted(&mut self, index: uint, val: &T) { self.insert(index, unsafe { val.get_js() }); } } /// An opaque, LIFO rooting mechanism. pub struct RootCollection { roots: UnsafeCell<SmallVec16<*mut JSObject>>, } impl RootCollection { /// Create an empty collection of roots pub fn new() -> RootCollection { RootCollection { roots: UnsafeCell::new(SmallVec16::new()), } } /// Track a stack-based root to ensure LIFO root ordering fn root<'a, 'b, T: Reflectable>(&self, untracked: &Root<'a, 'b, T>) { unsafe { let roots = self.roots.get(); (*roots).push(untracked.js_ptr); debug!(" rooting {}", untracked.js_ptr); } } /// Stop tracking a stack-based root, asserting if LIFO root ordering has been violated fn unroot<'a, 'b, T: Reflectable>(&self, rooted: &Root<'a, 'b, T>) { unsafe { let roots = self.roots.get(); debug!("unrooting {} (expecting {}", (*roots).as_slice().last().unwrap(), rooted.js_ptr); assert!(*(*roots).as_slice().last().unwrap() == rooted.js_ptr); (*roots).pop().unwrap(); } } } /// A rooted JS value. The JS value is pinned for the duration of this object's lifetime; /// roots are additive, so this object's destruction will not invalidate other roots /// for the same JS value. `Root`s cannot outlive the associated `RootCollection` object. /// Attempts to transfer ownership of a `Root` via moving will trigger dynamic unrooting /// failures due to incorrect ordering. pub struct Root<'a, 'b, T> { /// List that ensures correct dynamic root ordering root_list: &'a RootCollection, /// Reference to rooted value that must not outlive this container jsref: JSRef<'b, T>, /// On-stack JS pointer to assuage conservative stack scanner js_ptr: *mut JSObject, } impl<'b, 'a: 'b, T: Reflectable> Root<'a, 'b, T> { /// Create a new stack-bounded root for the provided JS-owned value. /// It cannot not outlive its associated `RootCollection`, and it contains a `JSRef` /// which cannot outlive this new `Root`. fn new(roots: &'a RootCollection, unrooted: &JS<T>) -> Root<'a, 'b, T> { let root = Root { root_list: roots, jsref: JSRef { ptr: unrooted.ptr.clone(), chain: ContravariantLifetime, }, js_ptr: unrooted.reflector().get_jsobject(), }; roots.root(&root); root } /// Obtain a safe reference to the wrapped JS owned-value that cannot outlive /// the lifetime of this root. pub fn root_ref<'b>(&'b self) -> JSRef<'b,T> { self.jsref.clone() } } #[unsafe_destructor] impl<'b, 'a: 'b, T: Reflectable> Drop for Root<'a, 'b, T> { fn drop(&mut self) { self.root_list.unroot(self); } } impl<'b, 'a: 'b, T: Reflectable> Deref<JSRef<'b, T>> for Root<'a, 'b, T> { fn deref<'c>(&'c self) -> &'c JSRef<'b, T> { &self.jsref } } impl<'a, T: Reflectable> Deref<T> for JSRef<'a, T> { fn deref<'b>(&'b self) -> &'b T { unsafe { &*self.ptr } } } /// Encapsulates a reference to something that is guaranteed to be alive. This is freely copyable. pub struct JSRef<'a, T> { ptr: *const T, chain: ContravariantLifetime<'a>, } impl<'a, T> Clone for JSRef<'a, T> { fn clone(&self) -> JSRef<'a, T> { JSRef { ptr: self.ptr.clone(), chain: self.chain, } } } impl<'a, T> PartialEq for JSRef<'a, T> { fn eq(&self, other: &JSRef<T>) -> bool { self.ptr == other.ptr } } impl<'a,T> JSRef<'a,T> { //XXXjdm It would be lovely if this could be private. pub unsafe fn transmute<To>(self) -> JSRef<'a, To> { mem::transmute(self) } // FIXME(zwarich): It would be nice to get rid of this entirely. pub unsafe fn transmute_borrowed<'b, To>(&'b self) -> &'b JSRef<'a, To> { mem::transmute(self) } pub fn unrooted(&self) -> JS<T> { JS { ptr: self.ptr } } } impl<'a, T: Reflectable> JSRef<'a, T> { pub fn extended_deref(self) -> &'a T { unsafe { &*self.ptr } } } impl<'a, T: Reflectable> Reflectable for JSRef<'a, T> { fn reflector<'a>(&'a self) -> &'a Reflector { self.deref().reflector() } } /// A trait for comparing smart pointers ignoring the lifetimes pub trait Comparable<T> { fn equals(&self, other: T) -> bool; } impl<'a, 'b, T> Comparable<JSRef<'a, T>> for JSRef<'b, T> { fn equals(&self, other: JSRef<'a, T>) -> bool { self.ptr == other.ptr } } impl<'a, 'b, T> Comparable<Option<JSRef<'a, T>>> for Option<JSRef<'b, T>> { fn equals(&self, other: Option<JSRef<'a, T>>) -> bool { match (*self, other) { (Some(x), Some(y)) => x.ptr == y.ptr, (None, None) => true, _ => false } } }