/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use attr::{ParsedAttrSelectorOperation, AttrSelectorOperation, NamespaceConstraint}; use bloom::BloomFilter; use parser::{AncestorHashes, Combinator, Component, LocalName}; use parser::{Selector, SelectorImpl, SelectorIter, SelectorList}; use std::borrow::Borrow; use tree::Element; // The bloom filter for descendant CSS selectors will have a <1% false // positive rate until it has this many selectors in it, then it will // rapidly increase. pub static RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE: usize = 4096; bitflags! { /// Set of flags that determine the different kind of elements affected by /// the selector matching process. /// /// This is used to implement efficient sharing. #[derive(Default)] pub flags StyleRelations: usize { /// Whether this element is affected by presentational hints. This is /// computed externally (that is, in Servo). const AFFECTED_BY_PRESENTATIONAL_HINTS = 1 << 0, /// Whether this element has pseudo-element styles. Computed externally. const AFFECTED_BY_PSEUDO_ELEMENTS = 1 << 1, } } bitflags! { /// Set of flags that are set on either the element or its parent (depending /// on the flag) if the element could potentially match a selector. pub flags ElementSelectorFlags: usize { /// When a child is added or removed from the parent, all the children /// must be restyled, because they may match :nth-last-child, /// :last-of-type, :nth-last-of-type, or :only-of-type. const HAS_SLOW_SELECTOR = 1 << 0, /// When a child is added or removed from the parent, any later /// children must be restyled, because they may match :nth-child, /// :first-of-type, or :nth-of-type. const HAS_SLOW_SELECTOR_LATER_SIBLINGS = 1 << 1, /// When a child is added or removed from the parent, the first and /// last children must be restyled, because they may match :first-child, /// :last-child, or :only-child. const HAS_EDGE_CHILD_SELECTOR = 1 << 2, /// The element has an empty selector, so when a child is appended we /// might need to restyle the parent completely. const HAS_EMPTY_SELECTOR = 1 << 3, } } impl ElementSelectorFlags { /// Returns the subset of flags that apply to the element. pub fn for_self(self) -> ElementSelectorFlags { self & (HAS_EMPTY_SELECTOR) } /// Returns the subset of flags that apply to the parent. pub fn for_parent(self) -> ElementSelectorFlags { self & (HAS_SLOW_SELECTOR | HAS_SLOW_SELECTOR_LATER_SIBLINGS | HAS_EDGE_CHILD_SELECTOR) } } /// What kind of selector matching mode we should use. /// /// There are two modes of selector matching. The difference is only noticeable /// in presence of pseudo-elements. #[derive(Debug, PartialEq, Copy, Clone)] pub enum MatchingMode { /// Don't ignore any pseudo-element selectors. Normal, /// Ignores any stateless pseudo-element selectors in the rightmost sequence /// of simple selectors. /// /// This is useful, for example, to match against ::before when you aren't a /// pseudo-element yourself. /// /// For example, in presence of `::before:hover`, it would never match, but /// `::before` would be ignored as in "matching". /// /// It's required for all the selectors you match using this mode to have a /// pseudo-element. ForStatelessPseudoElement, } /// The mode to use when matching unvisited and visited links. #[derive(PartialEq, Eq, Copy, Clone, Debug)] pub enum VisitedHandlingMode { /// All links are matched as if they are unvisted. AllLinksUnvisited, /// A element's "relevant link" is the element being matched if it is a link /// or the nearest ancestor link. The relevant link is matched as though it /// is visited, and all other links are matched as if they are unvisited. RelevantLinkVisited, } /// Which quirks mode is this document in. /// /// See: https://quirks.spec.whatwg.org/ #[derive(PartialEq, Eq, Copy, Clone, Hash, Debug)] pub enum QuirksMode { /// Quirks mode. Quirks, /// Limited quirks mode. LimitedQuirks, /// No quirks mode. NoQuirks, } /// Data associated with the matching process for a element. This context is /// used across many selectors for an element, so it's not appropriate for /// transient data that applies to only a single selector. #[derive(Clone)] pub struct MatchingContext<'a> { /// Output that records certains relations between elements noticed during /// matching (and also extended after matching). pub relations: StyleRelations, /// Input with the matching mode we should use when matching selectors. pub matching_mode: MatchingMode, /// Input with the bloom filter used to fast-reject selectors. pub bloom_filter: Option<&'a BloomFilter>, /// Input that controls how matching for links is handled. pub visited_handling: VisitedHandlingMode, /// Output that records whether we encountered a "relevant link" while /// matching _any_ selector for this element. (This differs from /// `RelevantLinkStatus` which tracks the status for the _current_ selector /// only.) pub relevant_link_found: bool, /// The quirks mode of the document. pub quirks_mode: QuirksMode, } impl<'a> MatchingContext<'a> { /// Constructs a new `MatchingContext`. pub fn new(matching_mode: MatchingMode, bloom_filter: Option<&'a BloomFilter>, quirks_mode: QuirksMode) -> Self { Self { relations: StyleRelations::empty(), matching_mode: matching_mode, bloom_filter: bloom_filter, visited_handling: VisitedHandlingMode::AllLinksUnvisited, relevant_link_found: false, quirks_mode: quirks_mode, } } /// Constructs a new `MatchingContext` for use in visited matching. pub fn new_for_visited(matching_mode: MatchingMode, bloom_filter: Option<&'a BloomFilter>, visited_handling: VisitedHandlingMode, quirks_mode: QuirksMode) -> Self { Self { relations: StyleRelations::empty(), matching_mode: matching_mode, bloom_filter: bloom_filter, visited_handling: visited_handling, relevant_link_found: false, quirks_mode: quirks_mode, } } } /// Holds per-element data alongside a pointer to MatchingContext. pub struct LocalMatchingContext<'a, 'b: 'a, Impl: SelectorImpl> { /// Shared `MatchingContext`. pub shared: &'a mut MatchingContext<'b>, /// A reference to the base selector we're matching against. pub selector: &'a Selector, /// The offset of the current compound selector being matched, kept up to date by /// the callees when the iterator is advanced. This, in conjunction with the selector /// reference above, allows callees to synthesize an iterator for the current compound /// selector on-demand. This is necessary because the primary iterator may already have /// been advanced partway through the current compound selector, and the callee may need /// the whole thing. offset: usize, /// Holds a bool flag to see if LocalMatchingContext is within a functional /// pseudo class argument. This is used for pseudo classes like /// `:-moz-any` or `:not`. If this flag is true, :active and :hover /// quirk shouldn't match. pub within_functional_pseudo_class_argument: bool, } impl<'a, 'b, Impl> LocalMatchingContext<'a, 'b, Impl> where Impl: SelectorImpl { /// Constructs a new `LocalMatchingContext`. pub fn new(shared: &'a mut MatchingContext<'b>, selector: &'a Selector) -> Self { Self { shared: shared, selector: selector, offset: 0, within_functional_pseudo_class_argument: false, } } /// Updates offset of Selector to show new compound selector. /// To be able to correctly re-synthesize main SelectorIter. pub fn note_next_sequence(&mut self, selector_iter: &SelectorIter) { if let QuirksMode::Quirks = self.shared.quirks_mode { self.offset = self.selector.len() - selector_iter.selector_length(); } } /// Returns true if current compound selector matches :active and :hover quirk. /// https://quirks.spec.whatwg.org/#the-active-and-hover-quirk pub fn active_hover_quirk_matches(&mut self) -> bool { if self.shared.quirks_mode != QuirksMode::Quirks || self.within_functional_pseudo_class_argument { return false; } let mut iter = if self.offset == 0 { self.selector.iter() } else { self.selector.iter_from(self.offset) }; return iter.all(|simple| { match *simple { Component::LocalName(_) | Component::AttributeInNoNamespaceExists { .. } | Component::AttributeInNoNamespace { .. } | Component::AttributeOther(_) | Component::ID(_) | Component::Class(_) | Component::PseudoElement(_) | Component::Negation(_) | Component::FirstChild | Component::LastChild | Component::OnlyChild | Component::Empty | Component::NthChild(_, _) | Component::NthLastChild(_, _) | Component::NthOfType(_, _) | Component::NthLastOfType(_, _) | Component::FirstOfType | Component::LastOfType | Component::OnlyOfType => false, Component::NonTSPseudoClass(ref pseudo_class) => { Impl::is_active_or_hover(pseudo_class) }, _ => true, } }); } } pub fn matches_selector_list(selector_list: &SelectorList, element: &E, context: &mut MatchingContext) -> bool where E: Element { selector_list.0.iter().any(|selector_and_hashes| { matches_selector(&selector_and_hashes.selector, 0, &selector_and_hashes.hashes, element, context, &mut |_, _| {}) }) } #[inline(always)] fn may_match(hashes: &AncestorHashes, bf: &BloomFilter) -> bool where E: Element, { // Check against the list of precomputed hashes. for hash in hashes.0.iter() { // If we hit the 0 sentinel hash, that means the rest are zero as well. if *hash == 0 { break; } if !bf.might_contain_hash(*hash) { return false; } } true } /// Tracks whether we are currently looking for relevant links for a given /// complex selector. A "relevant link" is the element being matched if it is a /// link or the nearest ancestor link. /// /// `matches_complex_selector` creates a new instance of this for each complex /// selector we try to match for an element. This is done because `is_visited` /// and `is_unvisited` are based on relevant link state of only the current /// complex selector being matched (not the global relevant link status for all /// selectors in `MatchingContext`). #[derive(PartialEq, Eq, Copy, Clone, Debug)] pub enum RelevantLinkStatus { /// Looking for a possible relevant link. This is the initial mode when /// matching a selector. Looking, /// Not looking for a relevant link. We transition to this mode if we /// encounter a sibiling combinator (since only ancestor combinators are /// allowed for this purpose). NotLooking, /// Found a relevant link for the element being matched. Found, } impl Default for RelevantLinkStatus { fn default() -> Self { RelevantLinkStatus::NotLooking } } impl RelevantLinkStatus { /// If we found the relevant link for this element, record that in the /// overall matching context for the element as a whole and stop looking for /// addtional links. fn examine_potential_link(&self, element: &E, context: &mut MatchingContext) -> RelevantLinkStatus where E: Element, { // If a relevant link was previously found, we no longer want to look // for links. Only the nearest ancestor link is considered relevant. if *self != RelevantLinkStatus::Looking { return RelevantLinkStatus::NotLooking } if !element.is_link() { return *self } // We found a relevant link. Record this in the `MatchingContext`, // where we track whether one was found for _any_ selector (meaning // this field might already be true from a previous selector). context.relevant_link_found = true; // Also return `Found` to update the relevant link status for _this_ // specific selector's matching process. RelevantLinkStatus::Found } /// Returns whether an element is considered visited for the purposes of /// matching. This is true only if the element is a link, an relevant link /// exists for the element, and the visited handling mode is set to accept /// relevant links as visited. pub fn is_visited(&self, element: &E, context: &MatchingContext) -> bool where E: Element, { if !element.is_link() { return false } // Non-relevant links are always unvisited. if *self != RelevantLinkStatus::Found { return false } context.visited_handling == VisitedHandlingMode::RelevantLinkVisited } /// Returns whether an element is considered unvisited for the purposes of /// matching. Assuming the element is a link, this is always true for /// non-relevant links, since only relevant links can potentially be treated /// as visited. If this is a relevant link, then is it unvisited if the /// visited handling mode is set to treat all links as unvisted (including /// relevant links). pub fn is_unvisited(&self, element: &E, context: &MatchingContext) -> bool where E: Element, { if !element.is_link() { return false } // Non-relevant links are always unvisited. if *self != RelevantLinkStatus::Found { return true } context.visited_handling == VisitedHandlingMode::AllLinksUnvisited } } /// A result of selector matching, includes 3 failure types, /// /// NotMatchedAndRestartFromClosestLaterSibling /// NotMatchedAndRestartFromClosestDescendant /// NotMatchedGlobally /// /// When NotMatchedGlobally appears, stop selector matching completely since /// the succeeding selectors never matches. /// It is raised when /// Child combinator cannot find the candidate element. /// Descendant combinator cannot find the candidate element. /// /// When NotMatchedAndRestartFromClosestDescendant appears, the selector /// matching does backtracking and restarts from the closest Descendant /// combinator. /// It is raised when /// NextSibling combinator cannot find the candidate element. /// LaterSibling combinator cannot find the candidate element. /// Child combinator doesn't match on the found element. /// /// When NotMatchedAndRestartFromClosestLaterSibling appears, the selector /// matching does backtracking and restarts from the closest LaterSibling /// combinator. /// It is raised when /// NextSibling combinator doesn't match on the found element. /// /// For example, when the selector "d1 d2 a" is provided and we cannot *find* /// an appropriate ancestor element for "d1", this selector matching raises /// NotMatchedGlobally since even if "d2" is moved to more upper element, the /// candidates for "d1" becomes less than before and d1 . /// /// The next example is siblings. When the selector "b1 + b2 ~ d1 a" is /// provided and we cannot *find* an appropriate brother element for b1, /// the selector matching raises NotMatchedAndRestartFromClosestDescendant. /// The selectors ("b1 + b2 ~") doesn't match and matching restart from "d1". /// /// The additional example is child and sibling. When the selector /// "b1 + c1 > b2 ~ d1 a" is provided and the selector "b1" doesn't match on /// the element, this "b1" raises NotMatchedAndRestartFromClosestLaterSibling. /// However since the selector "c1" raises /// NotMatchedAndRestartFromClosestDescendant. So the selector /// "b1 + c1 > b2 ~ " doesn't match and restart matching from "d1". #[derive(PartialEq, Eq, Copy, Clone)] enum SelectorMatchingResult { Matched, NotMatchedAndRestartFromClosestLaterSibling, NotMatchedAndRestartFromClosestDescendant, NotMatchedGlobally, } /// Matches a selector, fast-rejecting against a bloom filter. /// /// We accept an offset to allow consumers to represent and match against partial /// selectors (indexed from the right). We use this API design, rather than /// having the callers pass a SelectorIter, because creating a SelectorIter /// requires dereferencing the selector to get the length, which adds an /// unncessary cache miss for cases when we can fast-reject with AncestorHashes /// (which the caller can store inline with the selector pointer). #[inline(always)] pub fn matches_selector(selector: &Selector, offset: usize, hashes: &AncestorHashes, element: &E, context: &mut MatchingContext, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { // Use the bloom filter to fast-reject. if let Some(filter) = context.bloom_filter { if !may_match::(hashes, filter) { return false; } } let mut local_context = LocalMatchingContext::new(context, selector); matches_complex_selector(&selector, offset, element, &mut local_context, flags_setter) } /// Matches a complex selector. pub fn matches_complex_selector(complex_selector: &Selector, offset: usize, element: &E, mut context: &mut LocalMatchingContext, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { let mut iter = if offset == 0 { complex_selector.iter() } else { complex_selector.iter_from(offset) }; if cfg!(debug_assertions) { if context.shared.matching_mode == MatchingMode::ForStatelessPseudoElement { assert!(iter.clone().any(|c| { matches!(*c, Component::PseudoElement(..)) })); } } if context.shared.matching_mode == MatchingMode::ForStatelessPseudoElement { match *iter.next().unwrap() { // Stateful pseudo, just don't match. Component::NonTSPseudoClass(..) => return false, Component::PseudoElement(..) => { // Pseudo, just eat the whole sequence. let next = iter.next(); debug_assert!(next.is_none(), "Someone messed up pseudo-element parsing?"); if iter.next_sequence().is_none() { return true; } // Inform the context that the we've advanced to the next compound selector. context.note_next_sequence(&mut iter); } _ => panic!("Used MatchingMode::ForStatelessPseudoElement in a non-pseudo selector"), } } match matches_complex_selector_internal(iter, element, context, &mut RelevantLinkStatus::Looking, flags_setter) { SelectorMatchingResult::Matched => true, _ => false } } fn matches_complex_selector_internal(mut selector_iter: SelectorIter, element: &E, context: &mut LocalMatchingContext, relevant_link: &mut RelevantLinkStatus, flags_setter: &mut F) -> SelectorMatchingResult where E: Element, F: FnMut(&E, ElementSelectorFlags), { *relevant_link = relevant_link.examine_potential_link(element, &mut context.shared); let matches_all_simple_selectors = selector_iter.all(|simple| { matches_simple_selector(simple, element, context, &relevant_link, flags_setter) }); debug!("Matching for {:?}, simple selector {:?}, relevant link {:?}", element, selector_iter, relevant_link); let combinator = selector_iter.next_sequence(); // Inform the context that the we've advanced to the next compound selector. context.note_next_sequence(&mut selector_iter); let siblings = combinator.map_or(false, |c| c.is_sibling()); if siblings { flags_setter(element, HAS_SLOW_SELECTOR_LATER_SIBLINGS); } if !matches_all_simple_selectors { return SelectorMatchingResult::NotMatchedAndRestartFromClosestLaterSibling; } match combinator { None => SelectorMatchingResult::Matched, Some(c) => { let (mut next_element, candidate_not_found) = match c { Combinator::NextSibling | Combinator::LaterSibling => { // Only ancestor combinators are allowed while looking for // relevant links, so switch to not looking. *relevant_link = RelevantLinkStatus::NotLooking; (element.prev_sibling_element(), SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant) } Combinator::Child | Combinator::Descendant => { (element.parent_element(), SelectorMatchingResult::NotMatchedGlobally) } Combinator::PseudoElement => { (element.pseudo_element_originating_element(), SelectorMatchingResult::NotMatchedGlobally) } }; loop { let element = match next_element { None => return candidate_not_found, Some(next_element) => next_element, }; let result = matches_complex_selector_internal(selector_iter.clone(), &element, context, relevant_link, flags_setter); match (result, c) { // Return the status immediately. (SelectorMatchingResult::Matched, _) => return result, (SelectorMatchingResult::NotMatchedGlobally, _) => return result, // Upgrade the failure status to // NotMatchedAndRestartFromClosestDescendant. (_, Combinator::PseudoElement) | (_, Combinator::Child) => return SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, // Return the status directly. (_, Combinator::NextSibling) => return result, // If the failure status is NotMatchedAndRestartFromClosestDescendant // and combinator is Combinator::LaterSibling, give up this Combinator::LaterSibling matching // and restart from the closest descendant combinator. (SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, Combinator::LaterSibling) => return result, // The Combinator::Descendant combinator and the status is // NotMatchedAndRestartFromClosestLaterSibling or // NotMatchedAndRestartFromClosestDescendant, // or the Combinator::LaterSibling combinator and the status is // NotMatchedAndRestartFromClosestDescendant // can continue to matching on the next candidate element. _ => {}, } next_element = if siblings { element.prev_sibling_element() } else { element.parent_element() }; } } } } /// Determines whether the given element matches the given single selector. #[inline] fn matches_simple_selector( selector: &Component, element: &E, context: &mut LocalMatchingContext, relevant_link: &RelevantLinkStatus, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { match *selector { Component::Combinator(_) => unreachable!(), Component::PseudoElement(ref pseudo) => { element.match_pseudo_element(pseudo, context.shared) } Component::LocalName(LocalName { ref name, ref lower_name }) => { let is_html = element.is_html_element_in_html_document(); element.get_local_name() == select_name(is_html, name, lower_name).borrow() } Component::ExplicitUniversalType | Component::ExplicitAnyNamespace => { true } Component::Namespace(_, ref url) | Component::DefaultNamespace(ref url) => { element.get_namespace() == url.borrow() } Component::ExplicitNoNamespace => { let ns = ::parser::namespace_empty_string::(); element.get_namespace() == ns.borrow() } // TODO: case-sensitivity depends on the document type and quirks mode Component::ID(ref id) => { element.get_id().map_or(false, |attr| attr == *id) } Component::Class(ref class) => { element.has_class(class) } Component::AttributeInNoNamespaceExists { ref local_name, ref local_name_lower } => { let is_html = element.is_html_element_in_html_document(); element.attr_matches( &NamespaceConstraint::Specific(&::parser::namespace_empty_string::()), select_name(is_html, local_name, local_name_lower), &AttrSelectorOperation::Exists ) } Component::AttributeInNoNamespace { ref local_name, ref local_name_lower, ref value, operator, case_sensitivity, never_matches, } => { if never_matches { return false } let is_html = element.is_html_element_in_html_document(); element.attr_matches( &NamespaceConstraint::Specific(&::parser::namespace_empty_string::()), select_name(is_html, local_name, local_name_lower), &AttrSelectorOperation::WithValue { operator: operator, case_sensitivity: case_sensitivity.to_unconditional(is_html), expected_value: value, } ) } Component::AttributeOther(ref attr_sel) => { if attr_sel.never_matches { return false } let is_html = element.is_html_element_in_html_document(); element.attr_matches( &attr_sel.namespace(), select_name(is_html, &attr_sel.local_name, &attr_sel.local_name_lower), &match attr_sel.operation { ParsedAttrSelectorOperation::Exists => AttrSelectorOperation::Exists, ParsedAttrSelectorOperation::WithValue { operator, case_sensitivity, ref expected_value, } => { AttrSelectorOperation::WithValue { operator: operator, case_sensitivity: case_sensitivity.to_unconditional(is_html), expected_value: expected_value, } } } ) } Component::NonTSPseudoClass(ref pc) => { element.match_non_ts_pseudo_class(pc, context, relevant_link, flags_setter) } Component::FirstChild => { matches_first_child(element, flags_setter) } Component::LastChild => { matches_last_child(element, flags_setter) } Component::OnlyChild => { matches_first_child(element, flags_setter) && matches_last_child(element, flags_setter) } Component::Root => { // We never share styles with an element with no parent, so no point // in creating a new StyleRelation. element.is_root() } Component::Empty => { flags_setter(element, HAS_EMPTY_SELECTOR); element.is_empty() } Component::NthChild(a, b) => { matches_generic_nth_child(element, a, b, false, false, flags_setter) } Component::NthLastChild(a, b) => { matches_generic_nth_child(element, a, b, false, true, flags_setter) } Component::NthOfType(a, b) => { matches_generic_nth_child(element, a, b, true, false, flags_setter) } Component::NthLastOfType(a, b) => { matches_generic_nth_child(element, a, b, true, true, flags_setter) } Component::FirstOfType => { matches_generic_nth_child(element, 0, 1, true, false, flags_setter) } Component::LastOfType => { matches_generic_nth_child(element, 0, 1, true, true, flags_setter) } Component::OnlyOfType => { matches_generic_nth_child(element, 0, 1, true, false, flags_setter) && matches_generic_nth_child(element, 0, 1, true, true, flags_setter) } Component::Negation(ref negated) => { let old_value = context.within_functional_pseudo_class_argument; context.within_functional_pseudo_class_argument = true; let result = !negated.iter().all(|ss| { matches_simple_selector(ss, element, context, relevant_link, flags_setter) }); context.within_functional_pseudo_class_argument = old_value; result } } } fn select_name<'a, T>(is_html: bool, local_name: &'a T, local_name_lower: &'a T) -> &'a T { if is_html { local_name_lower } else { local_name } } #[inline] fn matches_generic_nth_child(element: &E, a: i32, b: i32, is_of_type: bool, is_from_end: bool, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { flags_setter(element, if is_from_end { HAS_SLOW_SELECTOR } else { HAS_SLOW_SELECTOR_LATER_SIBLINGS }); let mut index: i32 = 1; let mut next_sibling = if is_from_end { element.next_sibling_element() } else { element.prev_sibling_element() }; loop { let sibling = match next_sibling { None => break, Some(next_sibling) => next_sibling }; if is_of_type { if element.get_local_name() == sibling.get_local_name() && element.get_namespace() == sibling.get_namespace() { index += 1; } } else { index += 1; } next_sibling = if is_from_end { sibling.next_sibling_element() } else { sibling.prev_sibling_element() }; } // Is there a non-negative integer n such that An+B=index? match index.checked_sub(b) { None => false, Some(an) => match an.checked_div(a) { Some(n) => n >= 0 && a * n == an, None /* a == 0 */ => an == 0, }, } } #[inline] fn matches_first_child(element: &E, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { flags_setter(element, HAS_EDGE_CHILD_SELECTOR); element.prev_sibling_element().is_none() } #[inline] fn matches_last_child(element: &E, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { flags_setter(element, HAS_EDGE_CHILD_SELECTOR); element.next_sibling_element().is_none() }