/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

use crate::utils::{in_derive_expn, match_def_path};
use rustc::hir::intravisit as visit;
use rustc::hir::{self, ExprKind, HirId};
use rustc::lint::{LateContext, LateLintPass, LintArray, LintContext, LintPass};
use rustc::ty;
use syntax::{ast, source_map};

declare_lint!(
    UNROOTED_MUST_ROOT,
    Deny,
    "Warn and report usage of unrooted jsmanaged objects"
);

/// Lint for ensuring safe usage of unrooted pointers
///
/// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that `#[must_root]`
/// values are used correctly.
///
/// "Incorrect" usage includes:
///
///  - Not being used in a struct/enum field which is not `#[must_root]` itself
///  - Not being used as an argument to a function (Except onces named `new` and `new_inherited`)
///  - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement.
///
/// This helps catch most situations where pointers like `JS<T>` are used in a way that they can be invalidated by a
/// GC pass.
///
/// Structs which have their own mechanism of rooting their unrooted contents (e.g. `ScriptThread`)
/// can be marked as `#[allow(unrooted_must_root)]`. Smart pointers which root their interior type
/// can be marked as `#[allow_unrooted_interior]`
pub struct UnrootedPass;

impl UnrootedPass {
    pub fn new() -> UnrootedPass {
        UnrootedPass
    }
}

/// Checks if a type is unrooted or contains any owned unrooted types
fn is_unrooted_ty(cx: &LateContext, ty: &ty::TyS, in_new_function: bool) -> bool {
    let mut ret = false;
    ty.maybe_walk(|t| {
        match t.sty {
            ty::Adt(did, substs) => {
                if cx.tcx.has_attr(did.did, "must_root") {
                    ret = true;
                    false
                } else if cx.tcx.has_attr(did.did, "allow_unrooted_interior") {
                    false
                } else if match_def_path(cx, did.did, &["alloc", "rc", "Rc"]) {
                    // Rc<Promise> is okay
                    let inner = substs.type_at(0);
                    if let ty::Adt(did, _) = inner.sty {
                        if cx.tcx.has_attr(did.did, "allow_unrooted_in_rc") {
                            false
                        } else {
                            true
                        }
                    } else {
                        true
                    }
                } else if match_def_path(cx, did.did, &["core", "cell", "Ref"]) ||
                    match_def_path(cx, did.did, &["core", "cell", "RefMut"]) ||
                    match_def_path(cx, did.did, &["core", "slice", "Iter"]) ||
                    match_def_path(cx, did.did, &["core", "slice", "IterMut"]) ||
                    match_def_path(cx, did.did, &["std", "collections", "hash", "map", "Entry"]) ||
                    match_def_path(
                        cx,
                        did.did,
                        &["std", "collections", "hash", "map", "OccupiedEntry"],
                    ) ||
                    match_def_path(
                        cx,
                        did.did,
                        &["std", "collections", "hash", "map", "VacantEntry"],
                    ) ||
                    match_def_path(cx, did.did, &["std", "collections", "hash", "map", "Iter"]) ||
                    match_def_path(cx, did.did, &["std", "collections", "hash", "set", "Iter"])
                {
                    // Structures which are semantically similar to an &ptr.
                    false
                } else if did.is_box() && in_new_function {
                    // box in new() is okay
                    false
                } else {
                    true
                }
            },
            ty::Ref(..) => false,    // don't recurse down &ptrs
            ty::RawPtr(..) => false, // don't recurse down *ptrs
            ty::FnDef(..) | ty::FnPtr(_) => false,
            _ => true,
        }
    });
    ret
}

impl LintPass for UnrootedPass {
    fn name(&self) -> &'static str {
        "ServoUnrootedPass"
    }

    fn get_lints(&self) -> LintArray {
        lint_array!(UNROOTED_MUST_ROOT)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnrootedPass {
    /// All structs containing #[must_root] types must be #[must_root] themselves
    fn check_struct_def(
        &mut self,
        cx: &LateContext<'a, 'tcx>,
        def: &'tcx hir::VariantData,
        _n: ast::Name,
        _gen: &'tcx hir::Generics,
        id: HirId,
    ) {
        let item = match cx.tcx.hir().get_by_hir_id(id) {
            hir::Node::Item(item) => item,
            _ => cx
                .tcx
                .hir()
                .expect_item_by_hir_id(cx.tcx.hir().get_parent_item(id)),
        };
        if item.attrs.iter().all(|a| !a.check_name("must_root")) {
            for ref field in def.fields() {
                let def_id = cx.tcx.hir().local_def_id_from_hir_id(field.hir_id);
                if is_unrooted_ty(cx, cx.tcx.type_of(def_id), false) {
                    cx.span_lint(UNROOTED_MUST_ROOT, field.span,
                                 "Type must be rooted, use #[must_root] on the struct definition to propagate")
                }
            }
        }
    }

    /// All enums containing #[must_root] types must be #[must_root] themselves
    fn check_variant(&mut self, cx: &LateContext, var: &hir::Variant, _gen: &hir::Generics) {
        let ref map = cx.tcx.hir();
        if map
            .expect_item_by_hir_id(map.get_parent_item(var.node.id))
            .attrs
            .iter()
            .all(|a| !a.check_name("must_root"))
        {
            match var.node.data {
                hir::VariantData::Tuple(ref fields, ..) => {
                    for ref field in fields {
                        let def_id = cx.tcx.hir().local_def_id_from_hir_id(field.hir_id);
                        if is_unrooted_ty(cx, cx.tcx.type_of(def_id), false) {
                            cx.span_lint(
                                UNROOTED_MUST_ROOT,
                                field.ty.span,
                                "Type must be rooted, use #[must_root] on \
                                 the enum definition to propagate",
                            )
                        }
                    }
                },
                _ => (), // Struct variants already caught by check_struct_def
            }
        }
    }
    /// Function arguments that are #[must_root] types are not allowed
    fn check_fn(
        &mut self,
        cx: &LateContext<'a, 'tcx>,
        kind: visit::FnKind<'tcx>,
        decl: &'tcx hir::FnDecl,
        body: &'tcx hir::Body,
        span: source_map::Span,
        id: HirId,
    ) {
        let in_new_function = match kind {
            visit::FnKind::ItemFn(n, _, _, _, _) | visit::FnKind::Method(n, _, _, _) => {
                &*n.as_str() == "new" || n.as_str().starts_with("new_")
            },
            visit::FnKind::Closure(_) => return,
        };

        if !in_derive_expn(span) {
            let def_id = cx.tcx.hir().local_def_id_from_hir_id(id);
            let sig = cx.tcx.type_of(def_id).fn_sig(cx.tcx);

            for (arg, ty) in decl.inputs.iter().zip(sig.inputs().skip_binder().iter()) {
                if is_unrooted_ty(cx, ty, false) {
                    cx.span_lint(UNROOTED_MUST_ROOT, arg.span, "Type must be rooted")
                }
            }

            if !in_new_function {
                if is_unrooted_ty(cx, sig.output().skip_binder(), false) {
                    cx.span_lint(
                        UNROOTED_MUST_ROOT,
                        decl.output.span(),
                        "Type must be rooted",
                    )
                }
            }
        }

        let mut visitor = FnDefVisitor {
            cx: cx,
            in_new_function: in_new_function,
        };
        visit::walk_expr(&mut visitor, &body.value);
    }
}

struct FnDefVisitor<'a, 'b: 'a, 'tcx: 'a + 'b> {
    cx: &'a LateContext<'b, 'tcx>,
    in_new_function: bool,
}

impl<'a, 'b, 'tcx> visit::Visitor<'tcx> for FnDefVisitor<'a, 'b, 'tcx> {
    fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
        let cx = self.cx;

        fn require_rooted(cx: &LateContext, in_new_function: bool, subexpr: &hir::Expr) {
            let ty = cx.tables.expr_ty(&subexpr);
            if is_unrooted_ty(cx, ty, in_new_function) {
                cx.span_lint(
                    UNROOTED_MUST_ROOT,
                    subexpr.span,
                    &format!("Expression of type {:?} must be rooted", ty),
                )
            }
        }

        match expr.node {
            // Trait casts from #[must_root] types are not allowed
            ExprKind::Cast(ref subexpr, _) => require_rooted(cx, self.in_new_function, &*subexpr),
            // This catches assignments... the main point of this would be to catch mutable
            // references to `JS<T>`.
            // FIXME: Enable this? Triggers on certain kinds of uses of DomRefCell.
            // hir::ExprAssign(_, ref rhs) => require_rooted(cx, self.in_new_function, &*rhs),
            // This catches calls; basically, this enforces the constraint that only constructors
            // can call other constructors.
            // FIXME: Enable this? Currently triggers with constructs involving DomRefCell, and
            // constructs like Vec<JS<T>> and RootedVec<JS<T>>.
            // hir::ExprCall(..) if !self.in_new_function => {
            //     require_rooted(cx, self.in_new_function, expr);
            // }
            _ => {
                // TODO(pcwalton): Check generics with a whitelist of allowed generics.
            },
        }

        visit::walk_expr(self, expr);
    }

    fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
        let cx = self.cx;

        // We want to detect pattern bindings that move a value onto the stack.
        // When "default binding modes" https://github.com/rust-lang/rust/issues/42640
        // are implemented, the `Unannotated` case could cause false-positives.
        // These should be fixable by adding an explicit `ref`.
        match pat.node {
            hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, ..) |
            hir::PatKind::Binding(hir::BindingAnnotation::Mutable, ..) => {
                let ty = cx.tables.pat_ty(pat);
                if is_unrooted_ty(cx, ty, self.in_new_function) {
                    cx.span_lint(
                        UNROOTED_MUST_ROOT,
                        pat.span,
                        &format!("Expression of type {:?} must be rooted", ty),
                    )
                }
            },
            _ => {},
        }

        visit::walk_pat(self, pat);
    }

    fn visit_ty(&mut self, _: &'tcx hir::Ty) {}

    fn nested_visit_map<'this>(&'this mut self) -> hir::intravisit::NestedVisitorMap<'this, 'tcx> {
        hir::intravisit::NestedVisitorMap::OnlyBodies(&self.cx.tcx.hir())
    }
}