/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Simple counting bloom filters. use fnv::FnvHasher; use std::hash::{Hash, Hasher}; // The top 8 bits of the 32-bit hash value are not used by the bloom filter. // Consumers may rely on this to pack hashes more efficiently. pub const BLOOM_HASH_MASK: u32 = 0x00ffffff; const KEY_SIZE: usize = 12; const ARRAY_SIZE: usize = 1 << KEY_SIZE; const KEY_MASK: u32 = (1 << KEY_SIZE) - 1; /// A counting Bloom filter with 8-bit counters. For now we assume /// that having two hash functions is enough, but we may revisit that /// decision later. /// /// The filter uses an array with 2**KeySize entries. /// /// Assuming a well-distributed hash function, a Bloom filter with /// array size M containing N elements and /// using k hash function has expected false positive rate exactly /// /// $ (1 - (1 - 1/M)^{kN})^k $ /// /// because each array slot has a /// /// $ (1 - 1/M)^{kN} $ /// /// chance of being 0, and the expected false positive rate is the /// probability that all of the k hash functions will hit a nonzero /// slot. /// /// For reasonable assumptions (M large, kN large, which should both /// hold if we're worried about false positives) about M and kN this /// becomes approximately /// /// $$ (1 - \exp(-kN/M))^k $$ /// /// For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$, /// or in other words /// /// $$ N/M = -0.5 * \ln(1 - \sqrt(r)) $$ /// /// where r is the false positive rate. This can be used to compute /// the desired KeySize for a given load N and false positive rate r. /// /// If N/M is assumed small, then the false positive rate can /// further be approximated as 4*N^2/M^2. So increasing KeySize by /// 1, which doubles M, reduces the false positive rate by about a /// factor of 4, and a false positive rate of 1% corresponds to /// about M/N == 20. /// /// What this means in practice is that for a few hundred keys using a /// KeySize of 12 gives false positive rates on the order of 0.25-4%. /// /// Similarly, using a KeySize of 10 would lead to a 4% false /// positive rate for N == 100 and to quite bad false positive /// rates for larger N. pub struct BloomFilter { counters: [u8; ARRAY_SIZE], } impl Clone for BloomFilter { #[inline] fn clone(&self) -> BloomFilter { BloomFilter { counters: self.counters, } } } impl BloomFilter { /// Creates a new bloom filter. #[inline] pub fn new() -> BloomFilter { BloomFilter { counters: [0; ARRAY_SIZE], } } #[inline] fn first_slot(&self, hash: u32) -> &u8 { &self.counters[hash1(hash) as usize] } #[inline] fn first_mut_slot(&mut self, hash: u32) -> &mut u8 { &mut self.counters[hash1(hash) as usize] } #[inline] fn second_slot(&self, hash: u32) -> &u8 { &self.counters[hash2(hash) as usize] } #[inline] fn second_mut_slot(&mut self, hash: u32) -> &mut u8 { &mut self.counters[hash2(hash) as usize] } #[inline] pub fn clear(&mut self) { self.counters = [0; ARRAY_SIZE] } // Slow linear accessor to make sure the bloom filter is zeroed. This should // never be used in release builds. #[cfg(debug_assertions)] pub fn is_zeroed(&self) -> bool { self.counters.iter().all(|x| *x == 0) } #[cfg(not(debug_assertions))] pub fn is_zeroed(&self) -> bool { unreachable!() } #[inline] pub fn insert_hash(&mut self, hash: u32) { { let slot1 = self.first_mut_slot(hash); if !full(slot1) { *slot1 += 1 } } { let slot2 = self.second_mut_slot(hash); if !full(slot2) { *slot2 += 1 } } } /// Inserts an item into the bloom filter. #[inline] pub fn insert(&mut self, elem: &T) { self.insert_hash(hash(elem)) } #[inline] pub fn remove_hash(&mut self, hash: u32) { { let slot1 = self.first_mut_slot(hash); if !full(slot1) { *slot1 -= 1 } } { let slot2 = self.second_mut_slot(hash); if !full(slot2) { *slot2 -= 1 } } } /// Removes an item from the bloom filter. #[inline] pub fn remove(&mut self, elem: &T) { self.remove_hash(hash(elem)) } #[inline] pub fn might_contain_hash(&self, hash: u32) -> bool { *self.first_slot(hash) != 0 && *self.second_slot(hash) != 0 } /// Check whether the filter might contain an item. This can /// sometimes return true even if the item is not in the filter, /// but will never return false for items that are actually in the /// filter. #[inline] pub fn might_contain(&self, elem: &T) -> bool { self.might_contain_hash(hash(elem)) } } #[inline] fn full(slot: &u8) -> bool { *slot == 0xff } fn hash(elem: &T) -> u32 { let mut hasher = FnvHasher::default(); elem.hash(&mut hasher); let hash: u64 = hasher.finish(); (hash >> 32) as u32 ^ (hash as u32) } #[inline] fn hash1(hash: u32) -> u32 { hash & KEY_MASK } #[inline] fn hash2(hash: u32) -> u32 { (hash >> KEY_SIZE) & KEY_MASK } #[test] fn create_and_insert_some_stuff() { let mut bf = BloomFilter::new(); for i in 0_usize .. 1000 { bf.insert(&i); } for i in 0_usize .. 1000 { assert!(bf.might_contain(&i)); } let false_positives = (1001_usize .. 2000).filter(|i| bf.might_contain(i)).count(); assert!(false_positives < 150, "{} is not < 150", false_positives); // 15%. for i in 0_usize .. 100 { bf.remove(&i); } for i in 100_usize .. 1000 { assert!(bf.might_contain(&i)); } let false_positives = (0_usize .. 100).filter(|i| bf.might_contain(i)).count(); assert!(false_positives < 20, "{} is not < 20", false_positives); // 20%. bf.clear(); for i in 0_usize .. 2000 { assert!(!bf.might_contain(&i)); } } #[cfg(feature = "unstable")] #[cfg(test)] mod bench { extern crate test; use super::BloomFilter; #[derive(Default)] struct HashGenerator(u32); impl HashGenerator { fn next(&mut self) -> u32 { // Each hash is split into two twelve-bit segments, which are used // as an index into an array. We increment each by 64 so that we // hit the next cache line, and then another 1 so that our wrapping // behavior leads us to different entries each time. // // Trying to simulate cold caches is rather difficult with the cargo // benchmarking setup, so it may all be moot depending on the number // of iterations that end up being run. But we might as well. self.0 += (65) + (65 << super::KEY_SIZE); self.0 } } #[bench] fn create_insert_1000_remove_100_lookup_100(b: &mut test::Bencher) { b.iter(|| { let mut gen1 = HashGenerator::default(); let mut gen2 = HashGenerator::default(); let mut bf = BloomFilter::new(); for _ in 0_usize .. 1000 { bf.insert_hash(gen1.next()); } for _ in 0_usize .. 100 { bf.remove_hash(gen2.next()); } for _ in 100_usize .. 200 { test::black_box(bf.might_contain_hash(gen2.next())); } }); } #[bench] fn might_contain_10(b: &mut test::Bencher) { let bf = BloomFilter::new(); let mut gen = HashGenerator::default(); b.iter(|| for _ in 0..10 { test::black_box(bf.might_contain_hash(gen.next())); }); } #[bench] fn clear(b: &mut test::Bencher) { let mut bf = Box::new(BloomFilter::new()); b.iter(|| test::black_box(&mut bf).clear()); } #[bench] fn insert_10(b: &mut test::Bencher) { let mut bf = BloomFilter::new(); let mut gen = HashGenerator::default(); b.iter(|| for _ in 0..10 { test::black_box(bf.insert_hash(gen.next())); }); } #[bench] fn remove_10(b: &mut test::Bencher) { let mut bf = BloomFilter::new(); let mut gen = HashGenerator::default(); // Note: this will underflow, and that's ok. b.iter(|| for _ in 0..10 { bf.remove_hash(gen.next()) }); } }