servo/components/style/values/generics/calc.rs
Jonathan Kew 26c10339e3 style: Add support for the 'ic' font-relative unit
This is a "simplified" implementation of 'ic', similar to what Safari Preview
currently supports: it only considers the advance of U+6C34 if found in the
first available font, and otherwise falls back to the default of 1em.

(The spec allows for this "in cases where it is impossible or impractical to
determine the ideographic advance measure".)

Differential Revision: https://phabricator.services.mozilla.com/D132818
2023-06-09 10:22:22 +02:00

582 lines
19 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! [Calc expressions][calc].
//!
//! [calc]: https://drafts.csswg.org/css-values/#calc-notation
use crate::Zero;
use smallvec::SmallVec;
use std::fmt::{self, Write};
use std::ops::Add;
use std::{cmp, mem};
use style_traits::{CssWriter, ToCss};
/// Whether we're a `min` or `max` function.
#[derive(
Clone,
Copy,
Debug,
Deserialize,
MallocSizeOf,
PartialEq,
Serialize,
ToAnimatedZero,
ToResolvedValue,
ToShmem,
)]
#[repr(u8)]
pub enum MinMaxOp {
/// `min()`
Min,
/// `max()`
Max,
}
/// This determines the order in which we serialize members of a calc() sum.
///
/// See https://drafts.csswg.org/css-values-4/#sort-a-calculations-children
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
#[allow(missing_docs)]
pub enum SortKey {
Number,
Percentage,
Cap,
Ch,
Deg,
Em,
Ex,
Ic,
Px,
Rem,
Sec,
Vh,
Vmax,
Vmin,
Vw,
Other,
}
/// A generic node in a calc expression.
///
/// FIXME: This would be much more elegant if we used `Self` in the types below,
/// but we can't because of https://github.com/serde-rs/serde/issues/1565.
///
/// FIXME: The following annotations are to workaround an LLVM inlining bug, see
/// bug 1631929.
///
/// cbindgen:destructor-attributes=MOZ_NEVER_INLINE
/// cbindgen:copy-constructor-attributes=MOZ_NEVER_INLINE
/// cbindgen:eq-attributes=MOZ_NEVER_INLINE
#[repr(u8)]
#[derive(
Clone,
Debug,
Deserialize,
MallocSizeOf,
PartialEq,
Serialize,
ToAnimatedZero,
ToResolvedValue,
ToShmem,
)]
pub enum GenericCalcNode<L> {
/// A leaf node.
Leaf(L),
/// A sum node, representing `a + b + c` where a, b, and c are the
/// arguments.
Sum(crate::OwnedSlice<GenericCalcNode<L>>),
/// A `min` or `max` function.
MinMax(crate::OwnedSlice<GenericCalcNode<L>>, MinMaxOp),
/// A `clamp()` function.
Clamp {
/// The minimum value.
min: Box<GenericCalcNode<L>>,
/// The central value.
center: Box<GenericCalcNode<L>>,
/// The maximum value.
max: Box<GenericCalcNode<L>>,
},
}
pub use self::GenericCalcNode as CalcNode;
/// A trait that represents all the stuff a valid leaf of a calc expression.
pub trait CalcNodeLeaf: Clone + Sized + PartialOrd + PartialEq + ToCss {
/// Whether this value is known-negative.
fn is_negative(&self) -> bool;
/// Tries to merge one sum to another, that is, perform `x` + `y`.
fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()>;
/// Multiplies the leaf by a given scalar number.
fn mul_by(&mut self, scalar: f32);
/// Negates the leaf.
fn negate(&mut self) {
self.mul_by(-1.);
}
/// Canonicalizes the expression if necessary.
fn simplify(&mut self);
/// Returns the sort key for simplification.
fn sort_key(&self) -> SortKey;
}
impl<L: CalcNodeLeaf> CalcNode<L> {
/// Negates the node.
pub fn negate(&mut self) {
self.mul_by(-1.);
}
fn sort_key(&self) -> SortKey {
match *self {
Self::Leaf(ref l) => l.sort_key(),
_ => SortKey::Other,
}
}
/// Tries to merge one sum to another, that is, perform `x` + `y`.
fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()> {
match (self, other) {
(&mut CalcNode::Leaf(ref mut one), &CalcNode::Leaf(ref other)) => {
one.try_sum_in_place(other)
},
_ => Err(()),
}
}
/// Convert this `CalcNode` into a `CalcNode` with a different leaf kind.
pub fn map_leaves<O, F>(&self, mut map: F) -> CalcNode<O>
where
O: CalcNodeLeaf,
F: FnMut(&L) -> O,
{
self.map_leaves_internal(&mut map)
}
fn map_leaves_internal<O, F>(&self, map: &mut F) -> CalcNode<O>
where
O: CalcNodeLeaf,
F: FnMut(&L) -> O,
{
fn map_children<L, O, F>(
children: &[CalcNode<L>],
map: &mut F,
) -> crate::OwnedSlice<CalcNode<O>>
where
L: CalcNodeLeaf,
O: CalcNodeLeaf,
F: FnMut(&L) -> O,
{
children
.iter()
.map(|c| c.map_leaves_internal(map))
.collect()
}
match *self {
Self::Leaf(ref l) => CalcNode::Leaf(map(l)),
Self::Sum(ref c) => CalcNode::Sum(map_children(c, map)),
Self::MinMax(ref c, op) => CalcNode::MinMax(map_children(c, map), op),
Self::Clamp {
ref min,
ref center,
ref max,
} => {
let min = Box::new(min.map_leaves_internal(map));
let center = Box::new(center.map_leaves_internal(map));
let max = Box::new(max.map_leaves_internal(map));
CalcNode::Clamp { min, center, max }
},
}
}
/// Resolves the expression returning a value of `O`, given a function to
/// turn a leaf into the relevant value.
pub fn resolve<O>(
&self,
mut leaf_to_output_fn: impl FnMut(&L) -> Result<O, ()>,
) -> Result<O, ()>
where
O: PartialOrd + PartialEq + Add<Output = O> + Zero,
{
self.resolve_internal(&mut leaf_to_output_fn)
}
fn resolve_internal<O, F>(&self, leaf_to_output_fn: &mut F) -> Result<O, ()>
where
O: PartialOrd + PartialEq + Add<Output = O> + Zero,
F: FnMut(&L) -> Result<O, ()>,
{
Ok(match *self {
Self::Leaf(ref l) => return leaf_to_output_fn(l),
Self::Sum(ref c) => {
let mut result = Zero::zero();
for child in &**c {
result = result + child.resolve_internal(leaf_to_output_fn)?;
}
result
},
Self::MinMax(ref nodes, op) => {
let mut result = nodes[0].resolve_internal(leaf_to_output_fn)?;
for node in nodes.iter().skip(1) {
let candidate = node.resolve_internal(leaf_to_output_fn)?;
let candidate_wins = match op {
MinMaxOp::Min => candidate < result,
MinMaxOp::Max => candidate > result,
};
if candidate_wins {
result = candidate;
}
}
result
},
Self::Clamp {
ref min,
ref center,
ref max,
} => {
let min = min.resolve_internal(leaf_to_output_fn)?;
let center = center.resolve_internal(leaf_to_output_fn)?;
let max = max.resolve_internal(leaf_to_output_fn)?;
let mut result = center;
if result > max {
result = max;
}
if result < min {
result = min
}
result
},
})
}
fn is_negative_leaf(&self) -> bool {
match *self {
Self::Leaf(ref l) => l.is_negative(),
_ => false,
}
}
/// Multiplies the node by a scalar.
pub fn mul_by(&mut self, scalar: f32) {
match *self {
Self::Leaf(ref mut l) => l.mul_by(scalar),
// Multiplication is distributive across this.
Self::Sum(ref mut children) => {
for node in &mut **children {
node.mul_by(scalar);
}
},
// This one is a bit trickier.
Self::MinMax(ref mut children, ref mut op) => {
for node in &mut **children {
node.mul_by(scalar);
}
// For negatives we need to invert the operation.
if scalar < 0. {
*op = match *op {
MinMaxOp::Min => MinMaxOp::Max,
MinMaxOp::Max => MinMaxOp::Min,
}
}
},
// This one is slightly tricky too.
Self::Clamp {
ref mut min,
ref mut center,
ref mut max,
} => {
min.mul_by(scalar);
center.mul_by(scalar);
max.mul_by(scalar);
// For negatives we need to swap min / max.
if scalar < 0. {
mem::swap(min, max);
}
},
}
}
/// Visits all the nodes in this calculation tree recursively, starting by
/// the leaves and bubbling all the way up.
///
/// This is useful for simplification, but can also be used for validation
/// and such.
pub fn visit_depth_first(&mut self, mut f: impl FnMut(&mut Self)) {
self.visit_depth_first_internal(&mut f);
}
fn visit_depth_first_internal(&mut self, f: &mut impl FnMut(&mut Self)) {
match *self {
Self::Clamp {
ref mut min,
ref mut center,
ref mut max,
} => {
min.visit_depth_first_internal(f);
center.visit_depth_first_internal(f);
max.visit_depth_first_internal(f);
},
Self::Sum(ref mut children) | Self::MinMax(ref mut children, _) => {
for child in &mut **children {
child.visit_depth_first_internal(f);
}
},
Self::Leaf(..) => {},
}
f(self);
}
/// Simplifies and sorts the calculation of a given node. All the nodes
/// below it should be simplified already, this only takes care of
/// simplifying directly nested nodes. So, probably should always be used in
/// combination with `visit_depth_first()`.
///
/// This is only needed if it's going to be preserved after parsing (so, for
/// `<length-percentage>`). Otherwise we can just evaluate it using
/// `resolve()`, and we'll come up with a simplified value anyways.
pub fn simplify_and_sort_direct_children(&mut self) {
macro_rules! replace_self_with {
($slot:expr) => {{
let dummy = Self::MinMax(Default::default(), MinMaxOp::Max);
let result = mem::replace($slot, dummy);
*self = result;
}};
}
match *self {
Self::Clamp {
ref mut min,
ref mut center,
ref mut max,
} => {
// NOTE: clamp() is max(min, min(center, max))
let min_cmp_center = match min.partial_cmp(&center) {
Some(o) => o,
None => return,
};
// So if we can prove that min is more than center, then we won,
// as that's what we should always return.
if matches!(min_cmp_center, cmp::Ordering::Greater) {
return replace_self_with!(&mut **min);
}
// Otherwise try with max.
let max_cmp_center = match max.partial_cmp(&center) {
Some(o) => o,
None => return,
};
if matches!(max_cmp_center, cmp::Ordering::Less) {
// max is less than center, so we need to return effectively
// `max(min, max)`.
let max_cmp_min = match max.partial_cmp(&min) {
Some(o) => o,
None => {
debug_assert!(
false,
"We compared center with min and max, how are \
min / max not comparable with each other?"
);
return;
},
};
if matches!(max_cmp_min, cmp::Ordering::Less) {
return replace_self_with!(&mut **min);
}
return replace_self_with!(&mut **max);
}
// Otherwise we're the center node.
return replace_self_with!(&mut **center);
},
Self::MinMax(ref mut children, op) => {
let winning_order = match op {
MinMaxOp::Min => cmp::Ordering::Less,
MinMaxOp::Max => cmp::Ordering::Greater,
};
let mut result = 0;
for i in 1..children.len() {
let o = match children[i].partial_cmp(&children[result]) {
// We can't compare all the children, so we can't
// know which one will actually win. Bail out and
// keep ourselves as a min / max function.
//
// TODO: Maybe we could simplify compatible children,
// see https://github.com/w3c/csswg-drafts/issues/4756
None => return,
Some(o) => o,
};
if o == winning_order {
result = i;
}
}
replace_self_with!(&mut children[result]);
},
Self::Sum(ref mut children_slot) => {
let mut sums_to_merge = SmallVec::<[_; 3]>::new();
let mut extra_kids = 0;
for (i, child) in children_slot.iter().enumerate() {
if let Self::Sum(ref children) = *child {
extra_kids += children.len();
sums_to_merge.push(i);
}
}
// If we only have one kid, we've already simplified it, and it
// doesn't really matter whether it's a sum already or not, so
// lift it up and continue.
if children_slot.len() == 1 {
return replace_self_with!(&mut children_slot[0]);
}
let mut children = mem::replace(children_slot, Default::default()).into_vec();
if !sums_to_merge.is_empty() {
children.reserve(extra_kids - sums_to_merge.len());
// Merge all our nested sums, in reverse order so that the
// list indices are not invalidated.
for i in sums_to_merge.drain(..).rev() {
let kid_children = match children.swap_remove(i) {
Self::Sum(c) => c,
_ => unreachable!(),
};
// This would be nicer with
// https://github.com/rust-lang/rust/issues/59878 fixed.
children.extend(kid_children.into_vec());
}
}
debug_assert!(children.len() >= 2, "Should still have multiple kids!");
// Sort by spec order.
children.sort_unstable_by_key(|c| c.sort_key());
// NOTE: if the function returns true, by the docs of dedup_by,
// a is removed.
children.dedup_by(|a, b| b.try_sum_in_place(a).is_ok());
if children.len() == 1 {
// If only one children remains, lift it up, and carry on.
replace_self_with!(&mut children[0]);
} else {
// Else put our simplified children back.
*children_slot = children.into_boxed_slice().into();
}
},
Self::Leaf(ref mut l) => {
l.simplify();
},
}
}
/// Simplifies and sorts the kids in the whole calculation subtree.
pub fn simplify_and_sort(&mut self) {
self.visit_depth_first(|node| node.simplify_and_sort_direct_children())
}
fn to_css_impl<W>(&self, dest: &mut CssWriter<W>, is_outermost: bool) -> fmt::Result
where
W: Write,
{
let write_closing_paren = match *self {
Self::MinMax(_, op) => {
dest.write_str(match op {
MinMaxOp::Max => "max(",
MinMaxOp::Min => "min(",
})?;
true
},
Self::Clamp { .. } => {
dest.write_str("clamp(")?;
true
},
_ => {
if is_outermost {
dest.write_str("calc(")?;
}
is_outermost
},
};
match *self {
Self::MinMax(ref children, _) => {
let mut first = true;
for child in &**children {
if !first {
dest.write_str(", ")?;
}
first = false;
child.to_css_impl(dest, false)?;
}
},
Self::Sum(ref children) => {
let mut first = true;
for child in &**children {
if !first {
if child.is_negative_leaf() {
dest.write_str(" - ")?;
let mut c = child.clone();
c.negate();
c.to_css_impl(dest, false)?;
} else {
dest.write_str(" + ")?;
child.to_css_impl(dest, false)?;
}
} else {
first = false;
child.to_css_impl(dest, false)?;
}
}
},
Self::Clamp {
ref min,
ref center,
ref max,
} => {
min.to_css_impl(dest, false)?;
dest.write_str(", ")?;
center.to_css_impl(dest, false)?;
dest.write_str(", ")?;
max.to_css_impl(dest, false)?;
},
Self::Leaf(ref l) => l.to_css(dest)?,
}
if write_closing_paren {
dest.write_str(")")?;
}
Ok(())
}
}
impl<L: CalcNodeLeaf> PartialOrd for CalcNode<L> {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
match (self, other) {
(&CalcNode::Leaf(ref one), &CalcNode::Leaf(ref other)) => one.partial_cmp(other),
_ => None,
}
}
}
impl<L: CalcNodeLeaf> ToCss for CalcNode<L> {
/// <https://drafts.csswg.org/css-values/#calc-serialize>
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
self.to_css_impl(dest, /* is_outermost = */ true)
}
}