servo/components/script/dom/subtlecrypto.rs
Simon Wülker 2f6ca9407b
Implement SubtleCrypto.deriveBits with PBDKF2 (#34164)
* Start implementing SubtleCrypto.deriveBits

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Move shared crypto operations into their own functions

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Update some doclinks

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Remove note about potential no-op

It is, indeed, a no-op.

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Move normalized algorithm digest operation into its own function

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Implement mvp for pbkdf2 derivation

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Add missing division to derive bytes instead of bits

The length argument specifies the number of bits that
we need to derive, so we should divide it by 8 to
get the number of bytes.

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Allow using PBKDF2 with usage "importKey"

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Update WPT expectations

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Fix test-tidy errors

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

* Fix clippy warnings

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>

---------

Signed-off-by: Simon Wülker <simon.wuelker@arcor.de>
2024-11-06 15:52:15 +00:00

1277 lines
47 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use std::num::NonZero;
use std::ptr;
use std::rc::Rc;
use aes::cipher::block_padding::Pkcs7;
use aes::cipher::generic_array::GenericArray;
use aes::cipher::{BlockDecryptMut, BlockEncryptMut, KeyIvInit, StreamCipher};
use aes::{Aes128, Aes192, Aes256};
use base64::prelude::*;
use dom_struct::dom_struct;
use js::conversions::ConversionResult;
use js::jsapi::{JSObject, JS_NewObject};
use js::jsval::ObjectValue;
use js::rust::MutableHandleObject;
use js::typedarray::ArrayBufferU8;
use ring::{digest, pbkdf2};
use servo_rand::{RngCore, ServoRng};
use crate::dom::bindings::buffer_source::create_buffer_source;
use crate::dom::bindings::cell::DomRefCell;
use crate::dom::bindings::codegen::Bindings::CryptoKeyBinding::{
CryptoKeyMethods, KeyType, KeyUsage,
};
use crate::dom::bindings::codegen::Bindings::SubtleCryptoBinding::{
AesCbcParams, AesCtrParams, AesKeyAlgorithm, AesKeyGenParams, Algorithm, AlgorithmIdentifier,
JsonWebKey, KeyAlgorithm, KeyFormat, Pbkdf2Params, SubtleCryptoMethods,
};
use crate::dom::bindings::codegen::UnionTypes::{
ArrayBufferViewOrArrayBuffer, ArrayBufferViewOrArrayBufferOrJsonWebKey,
};
use crate::dom::bindings::error::{Error, Fallible};
use crate::dom::bindings::import::module::SafeJSContext;
use crate::dom::bindings::inheritance::Castable;
use crate::dom::bindings::refcounted::{Trusted, TrustedPromise};
use crate::dom::bindings::reflector::{reflect_dom_object, DomObject, Reflector};
use crate::dom::bindings::root::DomRoot;
use crate::dom::bindings::str::DOMString;
use crate::dom::bindings::trace::RootedTraceableBox;
use crate::dom::cryptokey::{CryptoKey, Handle};
use crate::dom::globalscope::GlobalScope;
use crate::dom::promise::Promise;
use crate::dom::window::Window;
use crate::dom::workerglobalscope::WorkerGlobalScope;
use crate::realms::InRealm;
use crate::script_runtime::{CanGc, JSContext};
use crate::task::TaskCanceller;
use crate::task_source::dom_manipulation::DOMManipulationTaskSource;
use crate::task_source::TaskSource;
// String constants for algorithms/curves
const ALG_AES_CBC: &str = "AES-CBC";
const ALG_AES_CTR: &str = "AES-CTR";
const ALG_AES_GCM: &str = "AES-GCM";
const ALG_AES_KW: &str = "AES-KW";
const ALG_SHA1: &str = "SHA-1";
const ALG_SHA256: &str = "SHA-256";
const ALG_SHA384: &str = "SHA-384";
const ALG_SHA512: &str = "SHA-512";
const ALG_HMAC: &str = "HMAC";
const ALG_HKDF: &str = "HKDF";
const ALG_PBKDF2: &str = "PBKDF2";
const ALG_RSASSA_PKCS1: &str = "RSASSA-PKCS1-v1_5";
const ALG_RSA_OAEP: &str = "RSA-OAEP";
const ALG_RSA_PSS: &str = "RSA-PSS";
const ALG_ECDH: &str = "ECDH";
const ALG_ECDSA: &str = "ECDSA";
#[allow(dead_code)]
static SUPPORTED_ALGORITHMS: &[&str] = &[
ALG_AES_CBC,
ALG_AES_CTR,
ALG_AES_GCM,
ALG_AES_KW,
ALG_SHA1,
ALG_SHA256,
ALG_SHA384,
ALG_SHA512,
ALG_HMAC,
ALG_HKDF,
ALG_PBKDF2,
ALG_RSASSA_PKCS1,
ALG_RSA_OAEP,
ALG_RSA_PSS,
ALG_ECDH,
ALG_ECDSA,
];
const NAMED_CURVE_P256: &str = "P-256";
const NAMED_CURVE_P384: &str = "P-384";
const NAMED_CURVE_P521: &str = "P-521";
#[allow(dead_code)]
static SUPPORTED_CURVES: &[&str] = &[NAMED_CURVE_P256, NAMED_CURVE_P384, NAMED_CURVE_P521];
type Aes128CbcEnc = cbc::Encryptor<Aes128>;
type Aes128CbcDec = cbc::Decryptor<Aes128>;
type Aes192CbcEnc = cbc::Encryptor<Aes192>;
type Aes192CbcDec = cbc::Decryptor<Aes192>;
type Aes256CbcEnc = cbc::Encryptor<Aes256>;
type Aes256CbcDec = cbc::Decryptor<Aes256>;
type Aes128Ctr = ctr::Ctr64BE<Aes128>;
type Aes192Ctr = ctr::Ctr64BE<Aes192>;
type Aes256Ctr = ctr::Ctr64BE<Aes256>;
#[dom_struct]
pub struct SubtleCrypto {
reflector_: Reflector,
#[no_trace]
rng: DomRefCell<ServoRng>,
}
impl SubtleCrypto {
fn new_inherited() -> SubtleCrypto {
SubtleCrypto {
reflector_: Reflector::new(),
rng: DomRefCell::new(ServoRng::default()),
}
}
pub(crate) fn new(global: &GlobalScope) -> DomRoot<SubtleCrypto> {
reflect_dom_object(Box::new(SubtleCrypto::new_inherited()), global)
}
fn task_source_with_canceller(&self) -> (DOMManipulationTaskSource, TaskCanceller) {
if let Some(window) = self.global().downcast::<Window>() {
window
.task_manager()
.dom_manipulation_task_source_with_canceller()
} else if let Some(worker_global) = self.global().downcast::<WorkerGlobalScope>() {
let task_source = worker_global.dom_manipulation_task_source();
let canceller = worker_global.task_canceller();
(task_source, canceller)
} else {
unreachable!("Couldn't downcast to Window or WorkerGlobalScope!");
}
}
}
impl SubtleCryptoMethods for SubtleCrypto {
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-encrypt>
fn Encrypt(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
key: &CryptoKey,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let normalized_algorithm = normalize_algorithm(cx, &algorithm, "encrypt");
let promise = Promise::new_in_current_realm(comp, can_gc);
let data = match data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let (task_source, canceller) = self.task_source_with_canceller();
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_key = Trusted::new(key);
let alg = normalized_algorithm.clone();
let key_alg = key.algorithm();
let valid_usage = key.usages().contains(&KeyUsage::Encrypt);
let _ = task_source.queue_with_canceller(
task!(encrypt: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = trusted_key.root();
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
let text = match alg {
Ok(NormalizedAlgorithm::AesCbcParams(key_gen_params)) => {
if !valid_usage || key_gen_params.name != key_alg {
Err(Error::InvalidAccess)
} else {
match subtle.encrypt_aes_cbc(
key_gen_params, &key, &data, cx, array_buffer_ptr.handle_mut()
) {
Ok(_) => Ok(array_buffer_ptr.handle()),
Err(e) => Err(e),
}
}
},
Ok(NormalizedAlgorithm::AesCtrParams(key_gen_params)) => {
if !valid_usage || key_gen_params.name != key_alg {
Err(Error::InvalidAccess)
} else {
match subtle.encrypt_decrypt_aes_ctr(
key_gen_params, &key, &data, cx, array_buffer_ptr.handle_mut()
) {
Ok(_) => Ok(array_buffer_ptr.handle()),
Err(e) => Err(e),
}
}
},
_ => Err(Error::NotSupported),
};
match text {
Ok(text) => promise.resolve_native(&*text),
Err(e) => promise.reject_error(e),
}
}),
&canceller,
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-decrypt>
fn Decrypt(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
key: &CryptoKey,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let normalized_algorithm = normalize_algorithm(cx, &algorithm, "decrypt");
let promise = Promise::new_in_current_realm(comp, can_gc);
let data = match data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let (task_source, canceller) = self.task_source_with_canceller();
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_key = Trusted::new(key);
let alg = normalized_algorithm.clone();
let key_alg = key.algorithm();
let valid_usage = key.usages().contains(&KeyUsage::Decrypt);
let _ = task_source.queue_with_canceller(
task!(decrypt: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = trusted_key.root();
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
let text = match alg {
Ok(NormalizedAlgorithm::AesCbcParams(key_gen_params)) => {
if !valid_usage || key_gen_params.name != key_alg {
Err(Error::InvalidAccess)
} else {
match subtle.decrypt_aes_cbc(
key_gen_params, &key, &data, cx, array_buffer_ptr.handle_mut()
) {
Ok(_) => Ok(array_buffer_ptr.handle()),
Err(e) => Err(e),
}
}
},
Ok(NormalizedAlgorithm::AesCtrParams(key_gen_params)) => {
if !valid_usage || key_gen_params.name != key_alg {
Err(Error::InvalidAccess)
} else {
match subtle.encrypt_decrypt_aes_ctr(
key_gen_params, &key, &data, cx, array_buffer_ptr.handle_mut()
) {
Ok(_) => Ok(array_buffer_ptr.handle()),
Err(e) => Err(e),
}
}
},
_ => Err(Error::NotSupported),
};
match text {
Ok(text) => promise.resolve_native(&*text),
Err(e) => promise.reject_error(e),
}
}),
&canceller,
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-digest>
fn Digest(
&self,
cx: SafeJSContext,
algorithm: AlgorithmIdentifier,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
// Step 1. Let algorithm be the algorithm parameter passed to the digest() method.
// Step 2. Let data be the result of getting a copy of the bytes held by the
// data parameter passed to the digest() method.
let data = match data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
// Step 3. Let normalizedAlgorithm be the result of normalizing an algorithm,
// with alg set to algorithm and op set to "digest".
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm(cx, &algorithm, "digest") {
Ok(normalized_algorithm) => normalized_algorithm,
Err(e) => {
// Step 4. If an error occurred, return a Promise rejected with normalizedAlgorithm.
promise.reject_error(e);
return promise;
},
};
// Step 5. Let promise be a new Promise.
// NOTE: We did that in preparation of Step 4.
// Step 6. Return promise and perform the remaining steps in parallel.
let (task_source, canceller) = self.task_source_with_canceller();
let trusted_promise = TrustedPromise::new(promise.clone());
let alg = normalized_algorithm.clone();
let _ = task_source.queue_with_canceller(
task!(generate_key: move || {
// Step 7. If the following steps or referenced procedures say to throw an error, reject promise
// with the returned error and then terminate the algorithm.
let promise = trusted_promise.root();
// Step 8. Let result be the result of performing the digest operation specified by
// normalizedAlgorithm using algorithm, with data as message.
let digest = match alg.digest(&data) {
Ok(digest) => digest,
Err(e) => {
promise.reject_error(e);
return;
}
};
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
create_buffer_source::<ArrayBufferU8>(cx, digest.as_ref(), array_buffer_ptr.handle_mut())
.expect("failed to create buffer source for exported key.");
// Step 9. Resolve promise with result.
promise.resolve_native(&*array_buffer_ptr);
}),
&canceller,
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-generateKey>
fn GenerateKey(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
extractable: bool,
key_usages: Vec<KeyUsage>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let normalized_algorithm = normalize_algorithm(cx, &algorithm, "generateKey");
let promise = Promise::new_in_current_realm(comp, can_gc);
if let Err(e) = normalized_algorithm {
promise.reject_error(e);
return promise;
}
let (task_source, canceller) = self.task_source_with_canceller();
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
let alg = normalized_algorithm.clone();
let _ = task_source.queue_with_canceller(
task!(generate_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = match alg {
Ok(NormalizedAlgorithm::AesKeyGenParams(key_gen_params)) => {
subtle.generate_key_aes(key_usages, key_gen_params, extractable)
},
_ => Err(Error::NotSupported),
};
match key {
Ok(key) => promise.resolve_native(&key),
Err(e) => promise.reject_error(e),
}
}),
&canceller,
);
promise
}
/// <https://w3c.github.io/webcrypto/#dfn-SubtleCrypto-method-deriveBits>
fn DeriveBits(
&self,
cx: SafeJSContext,
algorithm: AlgorithmIdentifier,
base_key: &CryptoKey,
length: Option<u32>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
// Step 1. Let algorithm, baseKey and length, be the algorithm, baseKey and
// length parameters passed to the deriveBits() method, respectively.
// Step 2. Let normalizedAlgorithm be the result of normalizing an algorithm,
// with alg set to algorithm and op set to "deriveBits".
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm(cx, &algorithm, "deriveBits") {
Ok(algorithm) => algorithm,
Err(e) => {
// Step 3. If an error occurred, return a Promise rejected with normalizedAlgorithm.
promise.reject_error(e);
return promise;
},
};
// Step 4. Let promise be a new Promise object.
// NOTE: We did that in preparation of Step 3.
// Step 5. Return promise and perform the remaining steps in parallel.
let (task_source, canceller) = self.task_source_with_canceller();
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_base_key = Trusted::new(base_key);
let _ = task_source.queue_with_canceller(
task!(import_key: move || {
// Step 6. If the following steps or referenced procedures say to throw an error,
// reject promise with the returned error and then terminate the algorithm.
// TODO Step 7. If the name member of normalizedAlgorithm is not equal to the name attribute
// of the [[algorithm]] internal slot of baseKey then throw an InvalidAccessError.
let promise = trusted_promise.root();
let base_key = trusted_base_key.root();
// Step 8. If the [[usages]] internal slot of baseKey does not contain an entry that
// is "deriveBits", then throw an InvalidAccessError.
if !base_key.usages().contains(&KeyUsage::DeriveBits) {
promise.reject_error(Error::InvalidAccess);
return;
}
// Step 9. Let result be the result of creating an ArrayBuffer containing the result of performing the
// derive bits operation specified by normalizedAlgorithm using baseKey, algorithm and length.
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
let result = match normalized_algorithm.derive_bits(&base_key, length) {
Ok(derived_bits) => derived_bits,
Err(e) => {
promise.reject_error(e);
return;
}
};
create_buffer_source::<ArrayBufferU8>(cx, &result, array_buffer_ptr.handle_mut())
.expect("failed to create buffer source for derived bits.");
// Step 10. Resolve promise with result.
promise.resolve_native(&*array_buffer_ptr);
}),
&canceller,
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-importKey>
fn ImportKey(
&self,
cx: JSContext,
format: KeyFormat,
key_data: ArrayBufferViewOrArrayBufferOrJsonWebKey,
algorithm: AlgorithmIdentifier,
extractable: bool,
key_usages: Vec<KeyUsage>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm(cx, &algorithm, "importKey") {
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e);
return promise;
},
};
// TODO: Figure out a way to Send this data so per-algorithm JWK checks can happen
let data = match key_data {
ArrayBufferViewOrArrayBufferOrJsonWebKey::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBufferOrJsonWebKey::JsonWebKey(json_web_key) => {
if let Some(mut data_string) = json_web_key.k {
while data_string.len() % 4 != 0 {
data_string.push_str("=");
}
match BASE64_STANDARD.decode(data_string.to_string()) {
Ok(data) => data,
Err(_) => {
promise.reject_error(Error::Syntax);
return promise;
},
}
} else {
promise.reject_error(Error::Syntax);
return promise;
}
},
ArrayBufferViewOrArrayBufferOrJsonWebKey::ArrayBuffer(array_buffer) => {
array_buffer.to_vec()
},
};
let (task_source, canceller) = self.task_source_with_canceller();
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
let _ = task_source.queue_with_canceller(
task!(import_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let imported_key = normalized_algorithm.import_key(&subtle, format, &data, extractable, key_usages);
match imported_key {
Ok(k) => promise.resolve_native(&k),
Err(e) => promise.reject_error(e),
};
}),
&canceller,
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-exportKey>
fn ExportKey(
&self,
format: KeyFormat,
key: &CryptoKey,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let (task_source, canceller) = self.task_source_with_canceller();
let this = Trusted::new(self);
let trusted_key = Trusted::new(key);
let trusted_promise = TrustedPromise::new(promise.clone());
let _ = task_source.queue_with_canceller(
task!(export_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = trusted_key.root();
let alg_name = key.algorithm();
if matches!(
alg_name.as_str(), ALG_SHA1 | ALG_SHA256 | ALG_SHA384 | ALG_SHA512 | ALG_HKDF | ALG_PBKDF2
) {
promise.reject_error(Error::NotSupported);
return;
}
if !key.Extractable() {
promise.reject_error(Error::InvalidAccess);
return;
}
let exported_key = match alg_name.as_str() {
ALG_AES_CBC | ALG_AES_CTR => subtle.export_key_aes(format, &key),
_ => Err(Error::NotSupported),
};
match exported_key {
Ok(k) => {
match k {
AesExportedKey::Raw(k) => {
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
create_buffer_source::<ArrayBufferU8>(cx, &k, array_buffer_ptr.handle_mut())
.expect("failed to create buffer source for exported key.");
promise.resolve_native(&array_buffer_ptr.get())
},
AesExportedKey::Jwk(k) => {
promise.resolve_native(&k)
},
}
},
Err(e) => promise.reject_error(e),
}
}),
&canceller,
);
promise
}
}
#[derive(Clone, Debug)]
pub enum NormalizedAlgorithm {
#[allow(dead_code)]
Algorithm(SubtleAlgorithm),
AesCbcParams(SubtleAesCbcParams),
AesCtrParams(SubtleAesCtrParams),
AesKeyGenParams(SubtleAesKeyGenParams),
Pbkdf2Params(SubtlePbkdf2Params),
/// <https://w3c.github.io/webcrypto/#sha>
Sha1,
/// <https://w3c.github.io/webcrypto/#sha>
Sha256,
/// <https://w3c.github.io/webcrypto/#sha>
Sha384,
/// <https://w3c.github.io/webcrypto/#sha>
Sha512,
}
// These "subtle" structs are proxies for the codegen'd dicts which don't hold a DOMString
// so they can be sent safely when running steps in parallel.
#[derive(Clone, Debug)]
pub struct SubtleAlgorithm {
#[allow(dead_code)]
pub name: String,
}
impl From<DOMString> for SubtleAlgorithm {
fn from(name: DOMString) -> Self {
SubtleAlgorithm {
name: name.to_string(),
}
}
}
#[derive(Clone, Debug)]
pub struct SubtleAesCbcParams {
#[allow(dead_code)]
pub name: String,
pub iv: Vec<u8>,
}
impl From<RootedTraceableBox<AesCbcParams>> for SubtleAesCbcParams {
fn from(params: RootedTraceableBox<AesCbcParams>) -> Self {
let iv = match &params.iv {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
SubtleAesCbcParams {
name: params.parent.name.to_string(),
iv,
}
}
}
#[derive(Clone, Debug)]
pub struct SubtleAesCtrParams {
pub name: String,
pub counter: Vec<u8>,
pub length: u8,
}
impl From<RootedTraceableBox<AesCtrParams>> for SubtleAesCtrParams {
fn from(params: RootedTraceableBox<AesCtrParams>) -> Self {
let counter = match &params.counter {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
SubtleAesCtrParams {
name: params.parent.name.to_string(),
counter,
length: params.length,
}
}
}
#[derive(Clone, Debug)]
pub struct SubtleAesKeyGenParams {
pub name: String,
pub length: u16,
}
impl From<AesKeyGenParams> for SubtleAesKeyGenParams {
fn from(params: AesKeyGenParams) -> Self {
SubtleAesKeyGenParams {
name: params.parent.name.to_string().to_uppercase(),
length: params.length,
}
}
}
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params>
#[derive(Clone, Debug)]
pub struct SubtlePbkdf2Params {
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-salt>
salt: Vec<u8>,
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-iterations>
iterations: u32,
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-hash>
hash: Box<NormalizedAlgorithm>,
}
impl SubtlePbkdf2Params {
fn new(cx: JSContext, params: RootedTraceableBox<Pbkdf2Params>) -> Fallible<Self> {
let salt = match &params.salt {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let params = Self {
salt,
iterations: params.iterations,
hash: Box::new(normalize_algorithm(cx, &params.hash, "digest")?),
};
Ok(params)
}
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm>
#[allow(unsafe_code)]
fn normalize_algorithm(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
operation: &str,
) -> Result<NormalizedAlgorithm, Error> {
match algorithm {
AlgorithmIdentifier::String(name) => {
Ok(NormalizedAlgorithm::Algorithm(name.clone().into()))
},
AlgorithmIdentifier::Object(obj) => {
rooted!(in(*cx) let value = ObjectValue(unsafe { *obj.get_unsafe() }));
let Ok(ConversionResult::Success(algorithm)) = Algorithm::new(cx, value.handle())
else {
return Err(Error::Syntax);
};
let normalized_name = algorithm.name.str().to_uppercase();
// This implements the table from https://w3c.github.io/webcrypto/#algorithm-overview
let normalized_algorithm = match (normalized_name.as_str(), operation) {
(ALG_AES_CBC, "encrypt") | (ALG_AES_CBC, "decrypt") => {
let params_result =
AesCbcParams::new(cx, value.handle()).map_err(|_| Error::Operation)?;
let ConversionResult::Success(params) = params_result else {
return Err(Error::Syntax);
};
NormalizedAlgorithm::AesCbcParams(params.into())
},
(ALG_AES_CTR, "encrypt") | (ALG_AES_CTR, "decrypt") => {
let params_result =
AesCtrParams::new(cx, value.handle()).map_err(|_| Error::Operation)?;
let ConversionResult::Success(params) = params_result else {
return Err(Error::Syntax);
};
NormalizedAlgorithm::AesCtrParams(params.into())
},
(ALG_AES_CBC, "generateKey") | (ALG_AES_CTR, "generateKey") => {
let params_result =
AesKeyGenParams::new(cx, value.handle()).map_err(|_| Error::Operation)?;
let ConversionResult::Success(params) = params_result else {
return Err(Error::Syntax);
};
NormalizedAlgorithm::AesKeyGenParams(params.into())
},
(ALG_ECDSA, "deriveBits") => NormalizedAlgorithm::Algorithm(SubtleAlgorithm {
name: ALG_ECDSA.to_string(),
}),
(ALG_HKDF, "deriveBits") => NormalizedAlgorithm::Algorithm(SubtleAlgorithm {
name: ALG_HKDF.to_string(),
}),
(ALG_PBKDF2, "deriveBits") => {
let params_result =
Pbkdf2Params::new(cx, value.handle()).map_err(|_| Error::Operation)?;
let ConversionResult::Success(params) = params_result else {
return Err(Error::Syntax);
};
let subtle_params = SubtlePbkdf2Params::new(cx, params)?;
NormalizedAlgorithm::Pbkdf2Params(subtle_params)
},
(ALG_AES_CBC, "importKey") => NormalizedAlgorithm::Algorithm(SubtleAlgorithm {
name: ALG_AES_CBC.to_string(),
}),
(ALG_AES_CTR, "importKey") => NormalizedAlgorithm::Algorithm(SubtleAlgorithm {
name: ALG_AES_CTR.to_string(),
}),
(ALG_PBKDF2, "importKey") => NormalizedAlgorithm::Algorithm(SubtleAlgorithm {
name: ALG_PBKDF2.to_string(),
}),
(ALG_SHA1, "digest") => NormalizedAlgorithm::Sha1,
(ALG_SHA256, "digest") => NormalizedAlgorithm::Sha256,
(ALG_SHA384, "digest") => NormalizedAlgorithm::Sha384,
(ALG_SHA512, "digest") => NormalizedAlgorithm::Sha512,
_ => return Err(Error::NotSupported),
};
Ok(normalized_algorithm)
},
}
}
impl SubtleCrypto {
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
fn encrypt_aes_cbc(
&self,
params: SubtleAesCbcParams,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
handle: MutableHandleObject,
) -> Result<(), Error> {
if params.iv.len() != 16 {
return Err(Error::Operation);
}
let plaintext = Vec::from(data);
let iv = GenericArray::from_slice(&params.iv);
let ct = match key.handle() {
Handle::Aes128(data) => {
let key_data = GenericArray::from_slice(data);
Aes128CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
},
Handle::Aes192(data) => {
let key_data = GenericArray::from_slice(data);
Aes192CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
},
Handle::Aes256(data) => {
let key_data = GenericArray::from_slice(data);
Aes256CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
},
_ => return Err(Error::Data),
};
create_buffer_source::<ArrayBufferU8>(cx, &ct, handle)
.expect("failed to create buffer source for exported key.");
Ok(())
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
fn decrypt_aes_cbc(
&self,
params: SubtleAesCbcParams,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
handle: MutableHandleObject,
) -> Result<(), Error> {
if params.iv.len() != 16 {
return Err(Error::Operation);
}
let mut ciphertext = Vec::from(data);
let iv = GenericArray::from_slice(&params.iv);
let plaintext = match key.handle() {
Handle::Aes128(data) => {
let key_data = GenericArray::from_slice(data);
Aes128CbcDec::new(key_data, iv)
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
.map_err(|_| Error::Operation)?
},
Handle::Aes192(data) => {
let key_data = GenericArray::from_slice(data);
Aes192CbcDec::new(key_data, iv)
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
.map_err(|_| Error::Operation)?
},
Handle::Aes256(data) => {
let key_data = GenericArray::from_slice(data);
Aes256CbcDec::new(key_data, iv)
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
.map_err(|_| Error::Operation)?
},
_ => return Err(Error::Data),
};
create_buffer_source::<ArrayBufferU8>(cx, plaintext, handle)
.expect("failed to create buffer source for exported key.");
Ok(())
}
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
fn encrypt_decrypt_aes_ctr(
&self,
params: SubtleAesCtrParams,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
handle: MutableHandleObject,
) -> Result<(), Error> {
if params.counter.len() != 16 || params.length == 0 || params.length > 128 {
return Err(Error::Operation);
}
let mut ciphertext = Vec::from(data);
let counter = GenericArray::from_slice(&params.counter);
match key.handle() {
Handle::Aes128(data) => {
let key_data = GenericArray::from_slice(data);
Aes128Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
},
Handle::Aes192(data) => {
let key_data = GenericArray::from_slice(data);
Aes192Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
},
Handle::Aes256(data) => {
let key_data = GenericArray::from_slice(data);
Aes256Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
},
_ => return Err(Error::Data),
};
create_buffer_source::<ArrayBufferU8>(cx, &ciphertext, handle)
.expect("failed to create buffer source for exported key.");
Ok(())
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
#[allow(unsafe_code)]
fn generate_key_aes(
&self,
usages: Vec<KeyUsage>,
key_gen_params: SubtleAesKeyGenParams,
extractable: bool,
) -> Result<DomRoot<CryptoKey>, Error> {
let mut rand = vec![0; key_gen_params.length as usize];
self.rng.borrow_mut().fill_bytes(&mut rand);
let handle = match key_gen_params.length {
128 => Handle::Aes128(rand),
192 => Handle::Aes192(rand),
256 => Handle::Aes256(rand),
_ => return Err(Error::Operation),
};
if usages.iter().any(|usage| {
!matches!(
usage,
KeyUsage::Encrypt | KeyUsage::Decrypt | KeyUsage::WrapKey | KeyUsage::UnwrapKey
)
}) || usages.is_empty()
{
return Err(Error::Syntax);
}
let name = match key_gen_params.name.as_str() {
ALG_AES_CBC => DOMString::from(ALG_AES_CBC),
ALG_AES_CTR => DOMString::from(ALG_AES_CTR),
_ => return Err(Error::NotSupported),
};
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
AesKeyAlgorithm::from_name_and_size(
name.clone(),
key_gen_params.length,
algorithm_object.handle_mut(),
cx,
);
let crypto_key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
handle,
);
Ok(crypto_key)
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
#[allow(unsafe_code)]
fn import_key_aes(
&self,
format: KeyFormat,
data: &[u8],
extractable: bool,
usages: Vec<KeyUsage>,
alg_name: &str,
) -> Result<DomRoot<CryptoKey>, Error> {
if usages.iter().any(|usage| {
!matches!(
usage,
KeyUsage::Encrypt | KeyUsage::Decrypt | KeyUsage::WrapKey | KeyUsage::UnwrapKey
)
}) || usages.is_empty()
{
return Err(Error::Syntax);
}
if !matches!(format, KeyFormat::Raw | KeyFormat::Jwk) {
return Err(Error::NotSupported);
}
let handle = match data.len() * 8 {
128 => Handle::Aes128(data.to_vec()),
192 => Handle::Aes192(data.to_vec()),
256 => Handle::Aes256(data.to_vec()),
_ => return Err(Error::Data),
};
let name = DOMString::from(alg_name.to_string());
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
AesKeyAlgorithm::from_name_and_size(
name.clone(),
(data.len() * 8) as u16,
algorithm_object.handle_mut(),
cx,
);
let crypto_key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
handle,
);
Ok(crypto_key)
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
fn export_key_aes(&self, format: KeyFormat, key: &CryptoKey) -> Result<AesExportedKey, Error> {
match format {
KeyFormat::Raw => match key.handle() {
Handle::Aes128(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
Handle::Aes192(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
Handle::Aes256(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
_ => Err(Error::Data),
},
KeyFormat::Jwk => {
let (alg, k) = match key.handle() {
Handle::Aes128(key_data) => {
data_to_jwk_params(key.algorithm().as_str(), "128", key_data.as_slice())
},
Handle::Aes192(key_data) => {
data_to_jwk_params(key.algorithm().as_str(), "192", key_data.as_slice())
},
Handle::Aes256(key_data) => {
data_to_jwk_params(key.algorithm().as_str(), "256", key_data.as_slice())
},
_ => return Err(Error::Data),
};
let jwk = JsonWebKey {
alg: Some(alg),
crv: None,
d: None,
dp: None,
dq: None,
e: None,
ext: Some(key.Extractable()),
k: Some(k),
key_ops: None,
kty: Some(DOMString::from("oct")),
n: None,
oth: None,
p: None,
q: None,
qi: None,
use_: None,
x: None,
y: None,
};
Ok(AesExportedKey::Jwk(Box::new(jwk)))
},
_ => Err(Error::NotSupported),
}
}
/// <https://w3c.github.io/webcrypto/#pbkdf2-operations>
#[allow(unsafe_code)]
fn import_key_pbkdf2(
&self,
format: KeyFormat,
data: &[u8],
extractable: bool,
usages: Vec<KeyUsage>,
) -> Result<DomRoot<CryptoKey>, Error> {
// Step 1. If format is not "raw", throw a NotSupportedError
if format != KeyFormat::Raw {
return Err(Error::NotSupported);
}
// Step 2. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
if usages
.iter()
.any(|usage| !matches!(usage, KeyUsage::DeriveKey | KeyUsage::DeriveBits))
{
return Err(Error::Syntax);
}
// Step 3. If extractable is not false, then throw a SyntaxError.
if extractable {
return Err(Error::Syntax);
}
// Step 4. Let key be a new CryptoKey representing keyData.
// Step 5. Set the [[type]] internal slot of key to "secret".
// Step 6. Let algorithm be a new KeyAlgorithm object.
// Step 7. Set the name attribute of algorithm to "PBKDF2".
// Step 8. Set the [[algorithm]] internal slot of key to algorithm.
let name = DOMString::from(ALG_PBKDF2);
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
KeyAlgorithm::from_name(name.clone(), algorithm_object.handle_mut(), cx);
let key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
Handle::Pbkdf2(data.to_vec()),
);
// Step 9. Return key.
Ok(key)
}
}
pub enum AesExportedKey {
Raw(Vec<u8>),
Jwk(Box<JsonWebKey>),
}
fn data_to_jwk_params(alg: &str, size: &str, key: &[u8]) -> (DOMString, DOMString) {
let jwk_alg = match alg {
ALG_AES_CBC => DOMString::from(format!("A{}CBC", size)),
ALG_AES_CTR => DOMString::from(format!("A{}CTR", size)),
_ => unreachable!(),
};
let mut data = BASE64_STANDARD.encode(key);
data.retain(|c| c != '=');
(jwk_alg, DOMString::from(data))
}
impl KeyAlgorithm {
/// Fill the object referenced by `out` with an [KeyAlgorithm]
/// of the specified name and size.
#[allow(unsafe_code)]
fn from_name(name: DOMString, out: MutableHandleObject, cx: JSContext) {
let key_algorithm = Self { name };
unsafe {
key_algorithm.to_jsobject(*cx, out);
}
}
}
impl AesKeyAlgorithm {
/// Fill the object referenced by `out` with an [AesKeyAlgorithm]
/// of the specified name and size.
#[allow(unsafe_code)]
fn from_name_and_size(name: DOMString, size: u16, out: MutableHandleObject, cx: JSContext) {
let key_algorithm = Self {
parent: KeyAlgorithm { name },
length: size,
};
unsafe {
key_algorithm.to_jsobject(*cx, out);
}
}
}
impl SubtlePbkdf2Params {
/// <https://w3c.github.io/webcrypto/#pbkdf2-operations>
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
// Step 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
let Some(length) = length else {
return Err(Error::Operation);
};
if length == 0 || length % 8 != 0 {
return Err(Error::Operation);
};
// Step 2. If the iterations member of normalizedAlgorithm is zero, then throw an OperationError.
let Ok(iterations) = NonZero::<u32>::try_from(self.iterations) else {
return Err(Error::Operation);
};
// Step 3. Let prf be the MAC Generation function described in Section 4 of [FIPS-198-1]
// using the hash function described by the hash member of normalizedAlgorithm.
let NormalizedAlgorithm::Algorithm(alg) = &*self.hash else {
return Err(Error::NotSupported);
};
let prf = match alg.name.as_str() {
ALG_SHA1 => pbkdf2::PBKDF2_HMAC_SHA1,
ALG_SHA256 => pbkdf2::PBKDF2_HMAC_SHA256,
ALG_SHA384 => pbkdf2::PBKDF2_HMAC_SHA384,
ALG_SHA512 => pbkdf2::PBKDF2_HMAC_SHA512,
_ => return Err(Error::NotSupported),
};
// Step 4. Let result be the result of performing the PBKDF2 operation defined in Section 5.2 of [RFC8018] using
// prf as the pseudo-random function, PRF, the password represented by [[handle]] internal slot of key as
// the password, P, the contents of the salt attribute of normalizedAlgorithm as the salt, S, the value of
// the iterations attribute of normalizedAlgorithm as the iteration count, c, and length divided by 8 as the
// intended key length, dkLen.
let mut result = vec![0; length as usize / 8];
pbkdf2::derive(
prf,
iterations,
&self.salt,
key.handle().as_bytes(),
&mut result,
);
// Step 5. If the key derivation operation fails, then throw an OperationError.
// TODO: Investigate when key derivation can fail and how ring handles that case
// (pbkdf2::derive does not return a Result type)
// Step 6. Return result
Ok(result)
}
}
impl NormalizedAlgorithm {
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
match self {
Self::Pbkdf2Params(pbkdf2_params) => pbkdf2_params.derive_bits(key, length),
_ => Err(Error::NotSupported),
}
}
fn import_key(
&self,
subtle: &SubtleCrypto,
format: KeyFormat,
secret: &[u8],
extractable: bool,
key_usages: Vec<KeyUsage>,
) -> Result<DomRoot<CryptoKey>, Error> {
let alg = match self {
Self::Algorithm(name) => name,
_ => {
return Err(Error::NotSupported);
},
};
match alg.name.as_str() {
ALG_AES_CBC => {
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_CBC)
},
ALG_AES_CTR => {
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_CTR)
},
ALG_PBKDF2 => subtle.import_key_pbkdf2(format, secret, extractable, key_usages),
_ => Err(Error::NotSupported),
}
}
fn digest(&self, data: &[u8]) -> Result<impl AsRef<[u8]>, Error> {
let algorithm = match self {
Self::Sha1 => &digest::SHA1_FOR_LEGACY_USE_ONLY,
Self::Sha256 => &digest::SHA256,
Self::Sha384 => &digest::SHA384,
Self::Sha512 => &digest::SHA512,
_ => {
return Err(Error::NotSupported);
},
};
Ok(digest::digest(algorithm, data))
}
}