servo/components/gfx/display_list/mod.rs
Martin Robinson cedc7ebc53 Rename ScrollRoot to ClipScrollNode
ScrollRoot is an ever increasingly inaccurate name for this thing and
WebRender consistently uses ClipScrollNode nowadays. Stick with the
WebRender terminology to be consistent.
2017-09-15 10:10:22 +02:00

1451 lines
52 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Servo heavily uses display lists, which are retained-mode lists of painting commands to
//! perform. Using a list instead of painting elements in immediate mode allows transforms, hit
//! testing, and invalidation to be performed using the same primitives as painting. It also allows
//! Servo to aggressively cull invisible and out-of-bounds painting elements, to reduce overdraw.
//! Finally, display lists allow tiles to be farmed out onto multiple CPUs and painted in parallel
//! (although this benefit does not apply to GPU-based painting).
//!
//! Display items describe relatively high-level drawing operations (for example, entire borders
//! and shadows instead of lines and blur operations), to reduce the amount of allocation required.
//! They are therefore not exactly analogous to constructs like Skia pictures, which consist of
//! low-level drawing primitives.
use app_units::Au;
use euclid::{Transform3D, Point2D, Vector2D, Rect, Size2D, TypedRect, SideOffsets2D};
use euclid::num::{One, Zero};
use gfx_traits::StackingContextId;
use gfx_traits::print_tree::PrintTree;
use ipc_channel::ipc::IpcSharedMemory;
use msg::constellation_msg::PipelineId;
use net_traits::image::base::{Image, PixelFormat};
use range::Range;
use servo_geometry::max_rect;
use std::cmp::{self, Ordering};
use std::collections::HashMap;
use std::fmt;
use std::sync::Arc;
use style::computed_values::{border_style, image_rendering};
use style::values::computed::Filter;
use style_traits::cursor::Cursor;
use text::TextRun;
use text::glyph::ByteIndex;
use webrender_api::{self, ClipAndScrollInfo, ClipId, ColorF, GradientStop, LocalClip};
use webrender_api::{MixBlendMode, ScrollPolicy, ScrollSensitivity, StickyFrameInfo};
use webrender_api::TransformStyle;
pub use style::dom::OpaqueNode;
/// The factor that we multiply the blur radius by in order to inflate the boundaries of display
/// items that involve a blur. This ensures that the display item boundaries include all the ink.
pub static BLUR_INFLATION_FACTOR: i32 = 3;
#[derive(Deserialize, HeapSizeOf, Serialize)]
pub struct DisplayList {
pub list: Vec<DisplayItem>,
}
struct ScrollOffsetLookup<'a> {
parents: &'a mut HashMap<ClipId, ClipId>,
calculated_total_offsets: ScrollOffsetMap,
raw_offsets: &'a ScrollOffsetMap,
}
impl<'a> ScrollOffsetLookup<'a> {
fn new(parents: &'a mut HashMap<ClipId, ClipId>,
raw_offsets: &'a ScrollOffsetMap)
-> ScrollOffsetLookup<'a> {
ScrollOffsetLookup {
parents: parents,
calculated_total_offsets: HashMap::new(),
raw_offsets: raw_offsets,
}
}
fn new_for_reference_frame(&mut self,
clip_id: ClipId,
transform: &Transform3D<f32>,
point: &mut Point2D<Au>)
-> Option<ScrollOffsetLookup> {
// If a transform function causes the current transformation matrix of an object
// to be non-invertible, the object and its content do not get displayed.
let inv_transform = match transform.inverse() {
Some(transform) => transform,
None => return None,
};
let scroll_offset = self.full_offset_for_clip_scroll_node(&clip_id);
*point = Point2D::new(point.x - Au::from_f32_px(scroll_offset.x),
point.y - Au::from_f32_px(scroll_offset.y));
let frac_point = inv_transform.transform_point2d(&Point2D::new(point.x.to_f32_px(),
point.y.to_f32_px()));
*point = Point2D::new(Au::from_f32_px(frac_point.x), Au::from_f32_px(frac_point.y));
let mut sublookup = ScrollOffsetLookup {
parents: &mut self.parents,
calculated_total_offsets: HashMap::new(),
raw_offsets: self.raw_offsets,
};
sublookup.calculated_total_offsets.insert(clip_id, Vector2D::zero());
Some(sublookup)
}
fn add_clip_scroll_node(&mut self, clip_scroll_node: &ClipScrollNode) {
self.parents.insert(clip_scroll_node.id, clip_scroll_node.parent_id);
}
fn full_offset_for_clip_scroll_node(&mut self, id: &ClipId) -> Vector2D<f32> {
if let Some(offset) = self.calculated_total_offsets.get(id) {
return *offset;
}
let parent_offset = if !id.is_root_scroll_node() {
let parent_id = *self.parents.get(id).unwrap();
self.full_offset_for_clip_scroll_node(&parent_id)
} else {
Vector2D::zero()
};
let offset = parent_offset +
self.raw_offsets.get(id).cloned().unwrap_or_else(Vector2D::zero);
self.calculated_total_offsets.insert(*id, offset);
offset
}
}
impl DisplayList {
/// Return the bounds of this display list based on the dimensions of the root
/// stacking context.
pub fn bounds(&self) -> Rect<Au> {
match self.list.get(0) {
Some(&DisplayItem::PushStackingContext(ref item)) => item.stacking_context.bounds,
Some(_) => unreachable!("Root element of display list not stacking context."),
None => Rect::zero(),
}
}
// Returns the text index within a node for the point of interest.
pub fn text_index(&self,
node: OpaqueNode,
client_point: &Point2D<Au>,
scroll_offsets: &ScrollOffsetMap)
-> Option<usize> {
let mut result = Vec::new();
let mut traversal = DisplayListTraversal::new(self);
self.text_index_contents(node,
&mut traversal,
client_point,
&mut ScrollOffsetLookup::new(&mut HashMap::new(), scroll_offsets),
&mut result);
result.pop()
}
fn text_index_contents<'a>(&self,
node: OpaqueNode,
traversal: &mut DisplayListTraversal<'a>,
point: &Point2D<Au>,
offset_lookup: &mut ScrollOffsetLookup,
result: &mut Vec<usize>) {
while let Some(item) = traversal.next() {
match item {
&DisplayItem::PushStackingContext(ref context_item) => {
self.text_index_stacking_context(&context_item.stacking_context,
item.scroll_node_id(),
node,
traversal,
point,
offset_lookup,
result);
}
&DisplayItem::DefineClipScrollNode(ref item) => {
offset_lookup.add_clip_scroll_node(&item.node);
}
&DisplayItem::PopStackingContext(_) => return,
&DisplayItem::Text(ref text) => {
let base = item.base();
if base.metadata.node == node {
let offset = *point - text.baseline_origin;
let index = text.text_run.range_index_of_advance(&text.range, offset.x);
result.push(index);
}
},
_ => {},
}
}
}
fn text_index_stacking_context<'a>(&self,
stacking_context: &StackingContext,
clip_id: ClipId,
node: OpaqueNode,
traversal: &mut DisplayListTraversal<'a>,
point: &Point2D<Au>,
offset_lookup: &mut ScrollOffsetLookup,
result: &mut Vec<usize>) {
let mut point = *point - stacking_context.bounds.origin.to_vector();
if stacking_context.scroll_policy == ScrollPolicy::Fixed {
let old_offset = offset_lookup.calculated_total_offsets.get(&clip_id).cloned();
offset_lookup.calculated_total_offsets.insert(clip_id, Vector2D::zero());
self.text_index_contents(node, traversal, &point, offset_lookup, result);
match old_offset {
Some(offset) => offset_lookup.calculated_total_offsets.insert(clip_id, offset),
None => offset_lookup.calculated_total_offsets.remove(&clip_id),
};
} else if let Some(transform) = stacking_context.transform {
if let Some(ref mut sublookup) =
offset_lookup.new_for_reference_frame(clip_id, &transform, &mut point) {
self.text_index_contents(node, traversal, &point, sublookup, result);
}
} else {
self.text_index_contents(node, traversal, &point, offset_lookup, result);
}
}
// Return all nodes containing the point of interest, bottommost first, and
// respecting the `pointer-events` CSS property.
pub fn hit_test(&self,
point: &Point2D<Au>,
scroll_offsets: &ScrollOffsetMap)
-> Vec<DisplayItemMetadata> {
let mut result = Vec::new();
let mut traversal = DisplayListTraversal::new(self);
self.hit_test_contents(&mut traversal,
point,
&mut ScrollOffsetLookup::new(&mut HashMap::new(), scroll_offsets),
&mut result);
result
}
fn hit_test_contents<'a>(&self,
traversal: &mut DisplayListTraversal<'a>,
point: &Point2D<Au>,
offset_lookup: &mut ScrollOffsetLookup,
result: &mut Vec<DisplayItemMetadata>) {
while let Some(item) = traversal.next() {
match item {
&DisplayItem::PushStackingContext(ref context_item) => {
self.hit_test_stacking_context(&context_item.stacking_context,
item.scroll_node_id(),
traversal,
point,
offset_lookup,
result);
}
&DisplayItem::PopStackingContext(_) => return,
&DisplayItem::DefineClipScrollNode(ref item) => {
offset_lookup.add_clip_scroll_node(&item.node);
}
_ => {
if let Some(meta) = item.hit_test(*point, offset_lookup) {
result.push(meta);
}
}
}
}
}
fn hit_test_stacking_context<'a>(&self,
stacking_context: &StackingContext,
clip_id: ClipId,
traversal: &mut DisplayListTraversal<'a>,
point: &Point2D<Au>,
offset_lookup: &mut ScrollOffsetLookup,
result: &mut Vec<DisplayItemMetadata>) {
debug_assert!(stacking_context.context_type == StackingContextType::Real);
let mut point = *point - stacking_context.bounds.origin.to_vector();
if stacking_context.scroll_policy == ScrollPolicy::Fixed {
let old_offset = offset_lookup.calculated_total_offsets.get(&clip_id).cloned();
offset_lookup.calculated_total_offsets.insert(clip_id, Vector2D::zero());
self.hit_test_contents(traversal, &point, offset_lookup, result);
match old_offset {
Some(offset) => offset_lookup.calculated_total_offsets.insert(clip_id, offset),
None => offset_lookup.calculated_total_offsets.remove(&clip_id),
};
} else if let Some(transform) = stacking_context.transform {
if let Some(ref mut sublookup) =
offset_lookup.new_for_reference_frame(clip_id, &transform, &mut point) {
self.hit_test_contents(traversal, &point, sublookup, result);
}
} else {
self.hit_test_contents(traversal, &point, offset_lookup, result);
}
}
pub fn print(&self) {
let mut print_tree = PrintTree::new("Display List".to_owned());
self.print_with_tree(&mut print_tree);
}
pub fn print_with_tree(&self, print_tree: &mut PrintTree) {
print_tree.new_level("Items".to_owned());
for item in &self.list {
print_tree.add_item(format!("{:?} StackingContext: {:?} {:?}",
item,
item.base().stacking_context_id,
item.clip_and_scroll_info()));
}
print_tree.end_level();
}
}
pub struct DisplayListTraversal<'a> {
pub display_list: &'a DisplayList,
pub next_item_index: usize,
pub first_item_index: usize,
pub last_item_index: usize,
}
impl<'a> DisplayListTraversal<'a> {
pub fn new(display_list: &'a DisplayList) -> DisplayListTraversal {
DisplayListTraversal {
display_list: display_list,
next_item_index: 0,
first_item_index: 0,
last_item_index: display_list.list.len(),
}
}
pub fn new_partial(display_list: &'a DisplayList,
stacking_context_id: StackingContextId,
start: usize,
end: usize)
-> DisplayListTraversal {
debug_assert!(start <= end);
debug_assert!(display_list.list.len() > start);
debug_assert!(display_list.list.len() > end);
let stacking_context_start = display_list.list[0..start].iter().rposition(|item|
match item {
&DisplayItem::PushStackingContext(ref item) =>
item.stacking_context.id == stacking_context_id,
_ => false,
}).unwrap_or(start);
debug_assert!(stacking_context_start <= start);
DisplayListTraversal {
display_list: display_list,
next_item_index: stacking_context_start,
first_item_index: start,
last_item_index: end + 1,
}
}
pub fn previous_item_id(&self) -> usize {
self.next_item_index - 1
}
pub fn skip_to_end_of_stacking_context(&mut self, id: StackingContextId) {
self.next_item_index = self.display_list.list[self.next_item_index..].iter()
.position(|item| {
match item {
&DisplayItem::PopStackingContext(ref item) => item.stacking_context_id == id,
_ => false
}
}).unwrap_or(self.display_list.list.len());
debug_assert!(self.next_item_index < self.last_item_index);
}
}
impl<'a> Iterator for DisplayListTraversal<'a> {
type Item = &'a DisplayItem;
fn next(&mut self) -> Option<&'a DisplayItem> {
while self.next_item_index < self.last_item_index {
debug_assert!(self.next_item_index <= self.last_item_index);
let reached_first_item = self.next_item_index >= self.first_item_index;
let item = &self.display_list.list[self.next_item_index];
self.next_item_index += 1;
if reached_first_item {
return Some(item)
}
// Before we reach the starting item, we only emit stacking context boundaries. This
// is to ensure that we properly position items when we are processing a display list
// slice that is relative to a certain stacking context.
match item {
&DisplayItem::PushStackingContext(_) |
&DisplayItem::PopStackingContext(_) => return Some(item),
_ => {}
}
}
None
}
}
/// Display list sections that make up a stacking context. Each section here refers
/// to the steps in CSS 2.1 Appendix E.
///
#[derive(Clone, Copy, Debug, Deserialize, Eq, HeapSizeOf, Ord, PartialEq, PartialOrd, Serialize)]
pub enum DisplayListSection {
BackgroundAndBorders,
BlockBackgroundsAndBorders,
Content,
Outlines,
}
#[derive(Clone, Copy, Debug, Deserialize, Eq, HeapSizeOf, Ord, PartialEq, PartialOrd, Serialize)]
pub enum StackingContextType {
Real,
PseudoPositioned,
PseudoFloat,
}
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
/// Represents one CSS stacking context, which may or may not have a hardware layer.
pub struct StackingContext {
/// The ID of this StackingContext for uniquely identifying it.
pub id: StackingContextId,
/// The type of this StackingContext. Used for collecting and sorting.
pub context_type: StackingContextType,
/// The position and size of this stacking context.
pub bounds: Rect<Au>,
/// The overflow rect for this stacking context in its coordinate system.
pub overflow: Rect<Au>,
/// The `z-index` for this stacking context.
pub z_index: i32,
/// CSS filters to be applied to this stacking context (including opacity).
pub filters: Vec<Filter>,
/// The blend mode with which this stacking context blends with its backdrop.
pub mix_blend_mode: MixBlendMode,
/// A transform to be applied to this stacking context.
pub transform: Option<Transform3D<f32>>,
/// The transform style of this stacking context.
pub transform_style: TransformStyle,
/// The perspective matrix to be applied to children.
pub perspective: Option<Transform3D<f32>>,
/// The scroll policy of this layer.
pub scroll_policy: ScrollPolicy,
/// The clip and scroll info for this StackingContext.
pub parent_clip_and_scroll_info: ClipAndScrollInfo,
}
impl StackingContext {
/// Creates a new stacking context.
#[inline]
pub fn new(id: StackingContextId,
context_type: StackingContextType,
bounds: &Rect<Au>,
overflow: &Rect<Au>,
z_index: i32,
filters: Vec<Filter>,
mix_blend_mode: MixBlendMode,
transform: Option<Transform3D<f32>>,
transform_style: TransformStyle,
perspective: Option<Transform3D<f32>>,
scroll_policy: ScrollPolicy,
parent_clip_and_scroll_info: ClipAndScrollInfo)
-> StackingContext {
StackingContext {
id: id,
context_type: context_type,
bounds: *bounds,
overflow: *overflow,
z_index: z_index,
filters: filters,
mix_blend_mode: mix_blend_mode,
transform: transform,
transform_style: transform_style,
perspective: perspective,
scroll_policy: scroll_policy,
parent_clip_and_scroll_info: parent_clip_and_scroll_info,
}
}
#[inline]
pub fn root(pipeline_id: PipelineId) -> StackingContext {
StackingContext::new(StackingContextId::root(),
StackingContextType::Real,
&Rect::zero(),
&Rect::zero(),
0,
vec![],
MixBlendMode::Normal,
None,
TransformStyle::Flat,
None,
ScrollPolicy::Scrollable,
pipeline_id.root_clip_and_scroll_info())
}
pub fn to_display_list_items(self, pipeline_id: PipelineId) -> (DisplayItem, DisplayItem) {
let mut base_item = BaseDisplayItem::empty(pipeline_id);
base_item.stacking_context_id = self.id;
base_item.clip_and_scroll_info = self.parent_clip_and_scroll_info;
let pop_item = DisplayItem::PopStackingContext(Box::new(
PopStackingContextItem {
base: base_item.clone(),
stacking_context_id: self.id,
}
));
let push_item = DisplayItem::PushStackingContext(Box::new(
PushStackingContextItem {
base: base_item,
stacking_context: self,
}
));
(push_item, pop_item)
}
}
impl Ord for StackingContext {
fn cmp(&self, other: &Self) -> Ordering {
if self.z_index != 0 || other.z_index != 0 {
return self.z_index.cmp(&other.z_index);
}
match (self.context_type, other.context_type) {
(StackingContextType::PseudoFloat, StackingContextType::PseudoFloat) => Ordering::Equal,
(StackingContextType::PseudoFloat, _) => Ordering::Less,
(_, StackingContextType::PseudoFloat) => Ordering::Greater,
(_, _) => Ordering::Equal,
}
}
}
impl PartialOrd for StackingContext {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Eq for StackingContext {}
impl PartialEq for StackingContext {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl fmt::Debug for StackingContext {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let type_string = if self.context_type == StackingContextType::Real {
"StackingContext"
} else {
"Pseudo-StackingContext"
};
write!(f, "{} at {:?} with overflow {:?}: {:?}",
type_string,
self.bounds,
self.overflow,
self.id)
}
}
#[derive(Clone, Debug, Deserialize, HeapSizeOf, Serialize)]
pub enum ClipScrollNodeType {
ScrollFrame(ScrollSensitivity),
StickyFrame(StickyFrameInfo),
Clip,
}
/// Defines a clip scroll node.
#[derive(Clone, Debug, Deserialize, HeapSizeOf, Serialize)]
pub struct ClipScrollNode {
/// The WebRender clip id of this scroll root based on the source of this clip
/// and information about the fragment.
pub id: ClipId,
/// The unique ID of the parent of this ClipScrollNode.
pub parent_id: ClipId,
/// The position of this scroll root's frame in the parent stacking context.
pub clip: ClippingRegion,
/// The rect of the contents that can be scrolled inside of the scroll root.
pub content_rect: Rect<Au>,
/// The type of this ClipScrollNode.
pub node_type: ClipScrollNodeType,
}
impl ClipScrollNode {
pub fn to_define_item(&self, pipeline_id: PipelineId) -> DisplayItem {
DisplayItem::DefineClipScrollNode(box DefineClipScrollNodeItem {
base: BaseDisplayItem::empty(pipeline_id),
node: self.clone(),
})
}
}
/// One drawing command in the list.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub enum DisplayItem {
SolidColor(Box<SolidColorDisplayItem>),
Text(Box<TextDisplayItem>),
Image(Box<ImageDisplayItem>),
Border(Box<BorderDisplayItem>),
Gradient(Box<GradientDisplayItem>),
RadialGradient(Box<RadialGradientDisplayItem>),
Line(Box<LineDisplayItem>),
BoxShadow(Box<BoxShadowDisplayItem>),
PushTextShadow(Box<PushTextShadowDisplayItem>),
PopTextShadow(Box<PopTextShadowDisplayItem>),
Iframe(Box<IframeDisplayItem>),
PushStackingContext(Box<PushStackingContextItem>),
PopStackingContext(Box<PopStackingContextItem>),
DefineClipScrollNode(Box<DefineClipScrollNodeItem>),
}
/// Information common to all display items.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct BaseDisplayItem {
/// The boundaries of the display item, in layer coordinates.
pub bounds: Rect<Au>,
/// Metadata attached to this display item.
pub metadata: DisplayItemMetadata,
/// The local clip for this item.
pub local_clip: LocalClip,
/// The section of the display list that this item belongs to.
pub section: DisplayListSection,
/// The id of the stacking context this item belongs to.
pub stacking_context_id: StackingContextId,
/// The clip and scroll info for this item.
pub clip_and_scroll_info: ClipAndScrollInfo,
}
impl BaseDisplayItem {
#[inline(always)]
pub fn new(bounds: &Rect<Au>,
metadata: DisplayItemMetadata,
local_clip: LocalClip,
section: DisplayListSection,
stacking_context_id: StackingContextId,
clip_and_scroll_info: ClipAndScrollInfo)
-> BaseDisplayItem {
BaseDisplayItem {
bounds: *bounds,
metadata: metadata,
local_clip: local_clip,
section: section,
stacking_context_id: stacking_context_id,
clip_and_scroll_info: clip_and_scroll_info,
}
}
#[inline(always)]
pub fn empty(pipeline_id: PipelineId) -> BaseDisplayItem {
BaseDisplayItem {
bounds: TypedRect::zero(),
metadata: DisplayItemMetadata {
node: OpaqueNode(0),
pointing: None,
},
local_clip: LocalClip::from(max_rect().to_rectf()),
section: DisplayListSection::Content,
stacking_context_id: StackingContextId::root(),
clip_and_scroll_info: pipeline_id.root_clip_and_scroll_info(),
}
}
}
/// A clipping region for a display item. Currently, this can describe rectangles, rounded
/// rectangles (for `border-radius`), or arbitrary intersections of the two. Arbitrary transforms
/// are not supported because those are handled by the higher-level `StackingContext` abstraction.
#[derive(Clone, Deserialize, HeapSizeOf, PartialEq, Serialize)]
pub struct ClippingRegion {
/// The main rectangular region. This does not include any corners.
pub main: Rect<Au>,
/// Any complex regions.
///
/// TODO(pcwalton): Atomically reference count these? Not sure if it's worth the trouble.
/// Measure and follow up.
pub complex: Vec<ComplexClippingRegion>,
}
/// A complex clipping region. These don't as easily admit arbitrary intersection operations, so
/// they're stored in a list over to the side. Currently a complex clipping region is just a
/// rounded rectangle, but the CSS WGs will probably make us throw more stuff in here eventually.
#[derive(Clone, Debug, Deserialize, HeapSizeOf, PartialEq, Serialize)]
pub struct ComplexClippingRegion {
/// The boundaries of the rectangle.
pub rect: Rect<Au>,
/// Border radii of this rectangle.
pub radii: BorderRadii<Au>,
}
impl ClippingRegion {
/// Returns an empty clipping region that, if set, will result in no pixels being visible.
#[inline]
pub fn empty() -> ClippingRegion {
ClippingRegion {
main: Rect::zero(),
complex: Vec::new(),
}
}
/// Returns an all-encompassing clipping region that clips no pixels out.
#[inline]
pub fn max() -> ClippingRegion {
ClippingRegion {
main: max_rect(),
complex: Vec::new(),
}
}
/// Returns a clipping region that represents the given rectangle.
#[inline]
pub fn from_rect(rect: &Rect<Au>) -> ClippingRegion {
ClippingRegion {
main: *rect,
complex: Vec::new(),
}
}
/// Mutates this clipping region to intersect with the given rectangle.
///
/// TODO(pcwalton): This could more eagerly eliminate complex clipping regions, at the cost of
/// complexity.
#[inline]
pub fn intersect_rect(&mut self, rect: &Rect<Au>) {
self.main = self.main.intersection(rect).unwrap_or(Rect::zero())
}
/// Returns true if this clipping region might be nonempty. This can return false positives,
/// but never false negatives.
#[inline]
pub fn might_be_nonempty(&self) -> bool {
!self.main.is_empty()
}
/// Returns true if this clipping region might contain the given point and false otherwise.
/// This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_point(&self, point: &Point2D<Au>) -> bool {
self.main.contains(point) &&
self.complex.iter().all(|complex| complex.rect.contains(point))
}
/// Returns true if this clipping region might intersect the given rectangle and false
/// otherwise. This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_rect(&self, rect: &Rect<Au>) -> bool {
self.main.intersects(rect) &&
self.complex.iter().all(|complex| complex.rect.intersects(rect))
}
/// Returns true if this clipping region completely surrounds the given rect.
#[inline]
pub fn does_not_clip_rect(&self, rect: &Rect<Au>) -> bool {
self.main.contains(&rect.origin) && self.main.contains(&rect.bottom_right()) &&
self.complex.iter().all(|complex| {
complex.rect.contains(&rect.origin) && complex.rect.contains(&rect.bottom_right())
})
}
/// Returns a bounding rect that surrounds this entire clipping region.
#[inline]
pub fn bounding_rect(&self) -> Rect<Au> {
let mut rect = self.main;
for complex in &*self.complex {
rect = rect.union(&complex.rect)
}
rect
}
/// Intersects this clipping region with the given rounded rectangle.
#[inline]
pub fn intersect_with_rounded_rect(&mut self, rect: &Rect<Au>, radii: &BorderRadii<Au>) {
let new_complex_region = ComplexClippingRegion {
rect: *rect,
radii: *radii,
};
// FIXME(pcwalton): This is O(n²) worst case for disjoint clipping regions. Is that OK?
// They're slow anyway…
//
// Possibly relevant if we want to do better:
//
// http://www.inrg.csie.ntu.edu.tw/algorithm2014/presentation/D&C%20Lee-84.pdf
for existing_complex_region in &mut self.complex {
if existing_complex_region.completely_encloses(&new_complex_region) {
*existing_complex_region = new_complex_region;
return
}
if new_complex_region.completely_encloses(existing_complex_region) {
return
}
}
self.complex.push(ComplexClippingRegion {
rect: *rect,
radii: *radii,
});
}
/// Translates this clipping region by the given vector.
#[inline]
pub fn translate(&self, delta: &Vector2D<Au>) -> ClippingRegion {
ClippingRegion {
main: self.main.translate(delta),
complex: self.complex.iter().map(|complex| {
ComplexClippingRegion {
rect: complex.rect.translate(delta),
radii: complex.radii,
}
}).collect(),
}
}
#[inline]
pub fn is_max(&self) -> bool {
self.main == max_rect() && self.complex.is_empty()
}
}
impl fmt::Debug for ClippingRegion {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if *self == ClippingRegion::max() {
write!(f, "ClippingRegion::Max")
} else if *self == ClippingRegion::empty() {
write!(f, "ClippingRegion::Empty")
} else if self.main == max_rect() {
write!(f, "ClippingRegion(Complex={:?})", self.complex)
} else {
write!(f, "ClippingRegion(Rect={:?}, Complex={:?})", self.main, self.complex)
}
}
}
impl ComplexClippingRegion {
// TODO(pcwalton): This could be more aggressive by considering points that touch the inside of
// the border radius ellipse.
fn completely_encloses(&self, other: &ComplexClippingRegion) -> bool {
let left = cmp::max(self.radii.top_left.width, self.radii.bottom_left.width);
let top = cmp::max(self.radii.top_left.height, self.radii.top_right.height);
let right = cmp::max(self.radii.top_right.width, self.radii.bottom_right.width);
let bottom = cmp::max(self.radii.bottom_left.height, self.radii.bottom_right.height);
let interior = Rect::new(Point2D::new(self.rect.origin.x + left, self.rect.origin.y + top),
Size2D::new(self.rect.size.width - left - right,
self.rect.size.height - top - bottom));
interior.origin.x <= other.rect.origin.x && interior.origin.y <= other.rect.origin.y &&
interior.max_x() >= other.rect.max_x() && interior.max_y() >= other.rect.max_y()
}
}
/// Metadata attached to each display item. This is useful for performing auxiliary threads with
/// the display list involving hit testing: finding the originating DOM node and determining the
/// cursor to use when the element is hovered over.
#[derive(Clone, Copy, Deserialize, HeapSizeOf, Serialize)]
pub struct DisplayItemMetadata {
/// The DOM node from which this display item originated.
pub node: OpaqueNode,
/// The value of the `cursor` property when the mouse hovers over this display item. If `None`,
/// this display item is ineligible for pointer events (`pointer-events: none`).
pub pointing: Option<Cursor>,
}
/// Paints a solid color.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct SolidColorDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The color.
pub color: ColorF,
}
/// Paints text.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct TextDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The text run.
#[ignore_heap_size_of = "Because it is non-owning"]
pub text_run: Arc<TextRun>,
/// The range of text within the text run.
pub range: Range<ByteIndex>,
/// The color of the text.
pub text_color: ColorF,
/// The position of the start of the baseline of this text.
pub baseline_origin: Point2D<Au>,
/// The orientation of the text: upright or sideways left/right.
pub orientation: TextOrientation,
}
#[derive(Clone, Deserialize, Eq, HeapSizeOf, PartialEq, Serialize)]
pub enum TextOrientation {
Upright,
SidewaysLeft,
SidewaysRight,
}
/// Paints an image.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct ImageDisplayItem {
pub base: BaseDisplayItem,
pub webrender_image: WebRenderImageInfo,
#[ignore_heap_size_of = "Because it is non-owning"]
pub image_data: Option<Arc<IpcSharedMemory>>,
/// The dimensions to which the image display item should be stretched. If this is smaller than
/// the bounds of this display item, then the image will be repeated in the appropriate
/// direction to tile the entire bounds.
pub stretch_size: Size2D<Au>,
/// The amount of space to add to the right and bottom part of each tile, when the image
/// is tiled.
pub tile_spacing: Size2D<Au>,
/// The algorithm we should use to stretch the image. See `image_rendering` in CSS-IMAGES-3 §
/// 5.3.
pub image_rendering: image_rendering::T,
}
/// Paints an iframe.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct IframeDisplayItem {
pub base: BaseDisplayItem,
pub iframe: PipelineId,
}
/// Paints a gradient.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct Gradient {
/// The start point of the gradient (computed during display list construction).
pub start_point: Point2D<Au>,
/// The end point of the gradient (computed during display list construction).
pub end_point: Point2D<Au>,
/// A list of color stops.
pub stops: Vec<GradientStop>,
/// True if gradient repeats infinitly.
pub repeating: bool,
}
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct GradientDisplayItem {
/// Fields common to all display item.
pub base: BaseDisplayItem,
/// Contains all gradient data. Included start, end point and color stops.
pub gradient: Gradient,
}
/// Paints a radial gradient.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct RadialGradient {
/// The center point of the gradient.
pub center: Point2D<Au>,
/// The radius of the gradient with an x and an y component.
pub radius: Size2D<Au>,
/// A list of color stops.
pub stops: Vec<GradientStop>,
/// True if gradient repeats infinitly.
pub repeating: bool,
}
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct RadialGradientDisplayItem {
/// Fields common to all display item.
pub base: BaseDisplayItem,
/// Contains all gradient data.
pub gradient: RadialGradient,
}
/// A normal border, supporting CSS border styles.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct NormalBorder {
/// Border colors.
pub color: SideOffsets2D<ColorF>,
/// Border styles.
pub style: SideOffsets2D<border_style::T>,
/// Border radii.
///
/// TODO(pcwalton): Elliptical radii.
pub radius: BorderRadii<Au>,
}
/// A border that is made of image segments.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct ImageBorder {
/// The image this border uses, border-image-source.
pub image: WebRenderImageInfo,
/// How to slice the image, as per border-image-slice.
pub slice: SideOffsets2D<u32>,
/// Outsets for the border, as per border-image-outset.
pub outset: SideOffsets2D<f32>,
/// If fill is true, draw the center patch of the image.
pub fill: bool,
/// How to repeat or stretch horizontal edges (border-image-repeat).
pub repeat_horizontal: webrender_api::RepeatMode,
/// How to repeat or stretch vertical edges (border-image-repeat).
pub repeat_vertical: webrender_api::RepeatMode,
}
/// A border that is made of linear gradient
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct GradientBorder {
/// The gradient info that this border uses, border-image-source.
pub gradient: Gradient,
/// Outsets for the border, as per border-image-outset.
pub outset: SideOffsets2D<f32>,
}
/// A border that is made of radial gradient
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct RadialGradientBorder {
/// The gradient info that this border uses, border-image-source.
pub gradient: RadialGradient,
/// Outsets for the border, as per border-image-outset.
pub outset: SideOffsets2D<f32>,
}
/// Specifies the type of border
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub enum BorderDetails {
Normal(NormalBorder),
Image(ImageBorder),
Gradient(GradientBorder),
RadialGradient(RadialGradientBorder),
}
/// Paints a border.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct BorderDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// Border widths.
pub border_widths: SideOffsets2D<Au>,
/// Details for specific border type
pub details: BorderDetails,
}
/// Information about the border radii.
///
/// TODO(pcwalton): Elliptical radii.
#[derive(Clone, Copy, Debug, Deserialize, HeapSizeOf, PartialEq, Serialize)]
pub struct BorderRadii<T> {
pub top_left: Size2D<T>,
pub top_right: Size2D<T>,
pub bottom_right: Size2D<T>,
pub bottom_left: Size2D<T>,
}
impl<T> Default for BorderRadii<T> where T: Default, T: Clone {
fn default() -> Self {
let top_left = Size2D::new(Default::default(),
Default::default());
let top_right = Size2D::new(Default::default(),
Default::default());
let bottom_left = Size2D::new(Default::default(),
Default::default());
let bottom_right = Size2D::new(Default::default(),
Default::default());
BorderRadii { top_left: top_left,
top_right: top_right,
bottom_left: bottom_left,
bottom_right: bottom_right }
}
}
impl BorderRadii<Au> {
// Scale the border radii by the specified factor
pub fn scale_by(&self, s: f32) -> BorderRadii<Au> {
BorderRadii { top_left: BorderRadii::scale_corner_by(self.top_left, s),
top_right: BorderRadii::scale_corner_by(self.top_right, s),
bottom_left: BorderRadii::scale_corner_by(self.bottom_left, s),
bottom_right: BorderRadii::scale_corner_by(self.bottom_right, s) }
}
// Scale the border corner radius by the specified factor
pub fn scale_corner_by(corner: Size2D<Au>, s: f32) -> Size2D<Au> {
Size2D::new(corner.width.scale_by(s), corner.height.scale_by(s))
}
}
impl<T> BorderRadii<T> where T: PartialEq + Zero {
/// Returns true if all the radii are zero.
pub fn is_square(&self) -> bool {
let zero = Zero::zero();
self.top_left == zero && self.top_right == zero && self.bottom_right == zero &&
self.bottom_left == zero
}
}
impl<T> BorderRadii<T> where T: PartialEq + Zero + Clone {
/// Returns a set of border radii that all have the given value.
pub fn all_same(value: T) -> BorderRadii<T> {
BorderRadii {
top_left: Size2D::new(value.clone(), value.clone()),
top_right: Size2D::new(value.clone(), value.clone()),
bottom_right: Size2D::new(value.clone(), value.clone()),
bottom_left: Size2D::new(value.clone(), value.clone()),
}
}
}
/// Paints a line segment.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct LineDisplayItem {
pub base: BaseDisplayItem,
/// The line segment color.
pub color: ColorF,
/// The line segment style.
#[ignore_heap_size_of = "enum type in webrender"]
pub style: webrender_api::LineStyle,
}
/// Paints a box shadow per CSS-BACKGROUNDS.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct BoxShadowDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The dimensions of the box that we're placing a shadow around.
pub box_bounds: Rect<Au>,
/// The offset of this shadow from the box.
pub offset: Vector2D<Au>,
/// The color of this shadow.
pub color: ColorF,
/// The blur radius for this shadow.
pub blur_radius: Au,
/// The spread radius of this shadow.
pub spread_radius: Au,
/// The border radius of this shadow.
///
/// TODO(pcwalton): Elliptical radii; different radii for each corner.
pub border_radius: Au,
/// How we should clip the result.
pub clip_mode: BoxShadowClipMode,
}
/// Defines a text shadow that affects all items until the paired PopTextShadow.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct PushTextShadowDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The offset of this shadow from the text.
pub offset: Vector2D<Au>,
/// The color of this shadow.
pub color: ColorF,
/// The blur radius for this shadow.
pub blur_radius: Au,
}
/// Defines a text shadow that affects all items until the next PopTextShadow.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct PopTextShadowDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
}
/// Defines a stacking context.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct PushStackingContextItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub stacking_context: StackingContext,
}
/// Defines a stacking context.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct PopStackingContextItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub stacking_context_id: StackingContextId,
}
/// Starts a group of items inside a particular scroll root.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct DefineClipScrollNodeItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The scroll root that this item starts.
pub node: ClipScrollNode,
}
/// How a box shadow should be clipped.
#[derive(Clone, Copy, Debug, Deserialize, HeapSizeOf, PartialEq, Serialize)]
pub enum BoxShadowClipMode {
/// No special clipping should occur. This is used for (shadowed) text decorations.
None,
/// The area inside `box_bounds` should be clipped out. Corresponds to the normal CSS
/// `box-shadow`.
Outset,
/// The area outside `box_bounds` should be clipped out. Corresponds to the `inset` flag on CSS
/// `box-shadow`.
Inset,
}
impl DisplayItem {
pub fn base(&self) -> &BaseDisplayItem {
match *self {
DisplayItem::SolidColor(ref solid_color) => &solid_color.base,
DisplayItem::Text(ref text) => &text.base,
DisplayItem::Image(ref image_item) => &image_item.base,
DisplayItem::Border(ref border) => &border.base,
DisplayItem::Gradient(ref gradient) => &gradient.base,
DisplayItem::RadialGradient(ref gradient) => &gradient.base,
DisplayItem::Line(ref line) => &line.base,
DisplayItem::BoxShadow(ref box_shadow) => &box_shadow.base,
DisplayItem::PushTextShadow(ref push_text_shadow) => &push_text_shadow.base,
DisplayItem::PopTextShadow(ref pop_text_shadow) => &pop_text_shadow.base,
DisplayItem::Iframe(ref iframe) => &iframe.base,
DisplayItem::PushStackingContext(ref stacking_context) => &stacking_context.base,
DisplayItem::PopStackingContext(ref item) => &item.base,
DisplayItem::DefineClipScrollNode(ref item) => &item.base,
}
}
pub fn scroll_node_id(&self) -> ClipId {
self.base().clip_and_scroll_info.scroll_node_id
}
pub fn clip_and_scroll_info(&self) -> ClipAndScrollInfo {
self.base().clip_and_scroll_info
}
pub fn stacking_context_id(&self) -> StackingContextId {
self.base().stacking_context_id
}
pub fn section(&self) -> DisplayListSection {
self.base().section
}
pub fn bounds(&self) -> Rect<Au> {
self.base().bounds
}
pub fn debug_with_level(&self, level: u32) {
let mut indent = String::new();
for _ in 0..level {
indent.push_str("| ")
}
println!("{}+ {:?}", indent, self);
}
fn hit_test(&self,
point: Point2D<Au>,
offset_lookup: &mut ScrollOffsetLookup)
-> Option<DisplayItemMetadata> {
// TODO(pcwalton): Use a precise algorithm here. This will allow us to properly hit
// test elements with `border-radius`, for example.
let base_item = self.base();
let scroll_offset = offset_lookup.full_offset_for_clip_scroll_node(&self.scroll_node_id());
let point = Point2D::new(point.x - Au::from_f32_px(scroll_offset.x),
point.y - Au::from_f32_px(scroll_offset.y));
if !base_item.local_clip.clip_rect().contains(&point.to_pointf()) {
// Clipped out.
return None;
}
if !self.bounds().contains(&point) {
// Can't possibly hit.
return None;
}
if base_item.metadata.pointing.is_none() {
// `pointer-events` is `none`. Ignore this item.
return None;
}
match *self {
DisplayItem::Border(ref border) => {
// If the point is inside the border, it didn't hit the border!
let interior_rect =
Rect::new(
Point2D::new(border.base.bounds.origin.x +
border.border_widths.left,
border.base.bounds.origin.y +
border.border_widths.top),
Size2D::new(border.base.bounds.size.width -
(border.border_widths.left +
border.border_widths.right),
border.base.bounds.size.height -
(border.border_widths.top +
border.border_widths.bottom)));
if interior_rect.contains(&point) {
return None;
}
}
DisplayItem::BoxShadow(_) => {
// Box shadows can never be hit.
return None;
}
_ => {}
}
Some(base_item.metadata)
}
}
impl fmt::Debug for DisplayItem {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let DisplayItem::PushStackingContext(ref item) = *self {
return write!(f, "PushStackingContext({:?})", item.stacking_context);
}
if let DisplayItem::PopStackingContext(ref item) = *self {
return write!(f, "PopStackingContext({:?}", item.stacking_context_id);
}
if let DisplayItem::DefineClipScrollNode(ref item) = *self {
return write!(f, "DefineClipScrollNode({:?}", item.node);
}
write!(f, "{} @ {:?} {:?}",
match *self {
DisplayItem::SolidColor(ref solid_color) =>
format!("SolidColor rgba({}, {}, {}, {})",
solid_color.color.r,
solid_color.color.g,
solid_color.color.b,
solid_color.color.a),
DisplayItem::Text(ref text) => {
format!("Text ({:?})",
&text.text_run.text[
text.range.begin().0 as usize..(text.range.begin().0 + text.range.length().0) as usize])
}
DisplayItem::Image(_) => "Image".to_owned(),
DisplayItem::Border(_) => "Border".to_owned(),
DisplayItem::Gradient(_) => "Gradient".to_owned(),
DisplayItem::RadialGradient(_) => "RadialGradient".to_owned(),
DisplayItem::Line(_) => "Line".to_owned(),
DisplayItem::BoxShadow(_) => "BoxShadow".to_owned(),
DisplayItem::PushTextShadow(_) => "PushTextShadow".to_owned(),
DisplayItem::PopTextShadow(_) => "PopTextShadow".to_owned(),
DisplayItem::Iframe(_) => "Iframe".to_owned(),
DisplayItem::PushStackingContext(_) |
DisplayItem::PopStackingContext(_) |
DisplayItem::DefineClipScrollNode(_) => "".to_owned(),
},
self.bounds(),
self.base().local_clip
)
}
}
#[derive(Clone, Copy, Deserialize, HeapSizeOf, Serialize)]
pub struct WebRenderImageInfo {
pub width: u32,
pub height: u32,
pub format: PixelFormat,
pub key: Option<webrender_api::ImageKey>,
}
impl WebRenderImageInfo {
#[inline]
pub fn from_image(image: &Image) -> WebRenderImageInfo {
WebRenderImageInfo {
width: image.width,
height: image.height,
format: image.format,
key: image.id,
}
}
}
/// The type of the scroll offset list. This is only populated if WebRender is in use.
pub type ScrollOffsetMap = HashMap<ClipId, Vector2D<f32>>;
pub trait SimpleMatrixDetection {
fn is_identity_or_simple_translation(&self) -> bool;
}
impl SimpleMatrixDetection for Transform3D<f32> {
#[inline]
fn is_identity_or_simple_translation(&self) -> bool {
let (_0, _1) = (Zero::zero(), One::one());
self.m11 == _1 && self.m12 == _0 && self.m13 == _0 && self.m14 == _0 &&
self.m21 == _0 && self.m22 == _1 && self.m23 == _0 && self.m24 == _0 &&
self.m31 == _0 && self.m32 == _0 && self.m33 == _1 && self.m34 == _0 &&
self.m44 == _1
}
}
trait ToPointF {
fn to_pointf(&self) -> webrender_api::LayoutPoint;
}
impl ToPointF for Point2D<Au> {
fn to_pointf(&self) -> webrender_api::LayoutPoint {
webrender_api::LayoutPoint::new(self.x.to_f32_px(), self.y.to_f32_px())
}
}
trait ToRectF {
fn to_rectf(&self) -> webrender_api::LayoutRect;
}
impl ToRectF for Rect<Au> {
fn to_rectf(&self) -> webrender_api::LayoutRect {
let x = self.origin.x.to_f32_px();
let y = self.origin.y.to_f32_px();
let w = self.size.width.to_f32_px();
let h = self.size.height.to_f32_px();
let point = webrender_api::LayoutPoint::new(x, y);
let size = webrender_api::LayoutSize::new(w, h);
webrender_api::LayoutRect::new(point, size)
}
}