servo/components/layout/traversal.rs
Martin Robinson 08ef158d4e
script: Split style and layout data in DOM nodes (#31985)
This change splits the style and layout data in DOM nodes that is
populated by style and layout passes. This makes Servo's data design
more like Gecko's. This allows:

1. Removing the various `StyleAndLayout` data structures used by layout.
2. Removing the `GetStyleAndLayoutData` and
   `GetStyleAndOpaqueLayoutData` traits. Accessing style and layout data
   are now just functions on the `LayoutNode` and `ThreadSafeLayoutNode`
   traits.
3. Styling now doesn't populate layout data. This is is postponed until
   layout itself.
4. Allows the DOM wrappers to no longer have to be generic over the
   layout data. This data was already stored using `std::any::Any` and
   the new code just makes layout responsible for downcasting. Cleaning
   up the generic type parameter in the DOM wrappers can happen in a
   followup change.

The main benefit to all of this is that we should be able to remove
unsafe creation of `ServoLayoutNode` in layout and
`TrustedLayoutNodeAddress` entirely, because `ServoLayoutNode` will be
able to be passed directly from script to layout. In addition, this
removes one more abstraction layer from the layout DOM wrappers, making
the code a lot more understandable.

Note: This increases the measured size of DOM types, but the same data
is stored. It's simply that before that data was stored behind a heap
pointer.
2024-04-04 07:56:51 +00:00

371 lines
12 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Traversals over the DOM and flow trees, running the layout computations.
use log::debug;
use script_layout_interface::wrapper_traits::{LayoutNode, ThreadSafeLayoutNode};
use servo_config::opts;
use style::context::{SharedStyleContext, StyleContext};
use style::data::ElementData;
use style::dom::{NodeInfo, TElement, TNode};
use style::selector_parser::RestyleDamage;
use style::servo::restyle_damage::ServoRestyleDamage;
use style::traversal::{recalc_style_at, DomTraversal, PerLevelTraversalData};
use crate::construct::FlowConstructor;
use crate::context::LayoutContext;
use crate::display_list::DisplayListBuildState;
use crate::flow::{Flow, FlowFlags, GetBaseFlow, ImmutableFlowUtils};
use crate::wrapper::ThreadSafeLayoutNodeHelpers;
use crate::LayoutData;
pub struct RecalcStyleAndConstructFlows<'a> {
context: LayoutContext<'a>,
}
impl<'a> RecalcStyleAndConstructFlows<'a> {
/// Creates a traversal context, taking ownership of the shared layout context.
pub fn new(context: LayoutContext<'a>) -> Self {
RecalcStyleAndConstructFlows { context }
}
pub fn context(&self) -> &LayoutContext<'a> {
&self.context
}
/// Consumes this traversal context, returning ownership of the shared layout
/// context to the caller.
pub fn destroy(self) -> LayoutContext<'a> {
self.context
}
}
#[allow(unsafe_code)]
impl<'a, 'dom, E> DomTraversal<E> for RecalcStyleAndConstructFlows<'a>
where
E: TElement,
E::ConcreteNode: LayoutNode<'dom>,
{
fn process_preorder<F>(
&self,
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
node: E::ConcreteNode,
note_child: F,
) where
F: FnMut(E::ConcreteNode),
{
// FIXME(pcwalton): Stop allocating here. Ideally this should just be
// done by the HTML parser.
unsafe { node.initialize_style_and_layout_data::<LayoutData>() };
if !node.is_text_node() {
let el = node.as_element().unwrap();
let mut data = el.mutate_data().unwrap();
recalc_style_at(self, traversal_data, context, el, &mut data, note_child);
}
}
fn process_postorder(&self, _style_context: &mut StyleContext<E>, node: E::ConcreteNode) {
construct_flows_at(&self.context, node);
}
fn text_node_needs_traversal(node: E::ConcreteNode, parent_data: &ElementData) -> bool {
// Text nodes never need styling. However, there are two cases they may need
// flow construction:
// (1) They child doesn't yet have layout data (preorder traversal initializes it).
// (2) The parent element has restyle damage (so the text flow also needs fixup).
node.layout_data().is_none() || !parent_data.damage.is_empty()
}
fn shared_context(&self) -> &SharedStyleContext {
&self.context.style_context
}
}
/// A top-down traversal.
pub trait PreorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, flow: &mut dyn Flow);
/// Returns true if this node should be processed and false if neither this node nor its
/// descendants should be processed.
fn should_process_subtree(&self, _flow: &mut dyn Flow) -> bool {
true
}
/// Returns true if this node must be processed in-order. If this returns false,
/// we skip the operation for this node, but continue processing the descendants.
/// This is called *after* parent nodes are visited.
fn should_process(&self, _flow: &mut dyn Flow) -> bool {
true
}
/// Traverses the tree in preorder.
fn traverse(&self, flow: &mut dyn Flow) {
if !self.should_process_subtree(flow) {
return;
}
if self.should_process(flow) {
self.process(flow);
}
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid);
}
}
/// Traverse the Absolute flow tree in preorder.
///
/// Traverse all your direct absolute descendants, who will then traverse
/// their direct absolute descendants.
///
/// Return true if the traversal is to continue or false to stop.
fn traverse_absolute_flows(&self, flow: &mut dyn Flow) {
if self.should_process(flow) {
self.process(flow);
}
for descendant_link in flow.mut_base().abs_descendants.iter() {
self.traverse_absolute_flows(descendant_link)
}
}
}
/// A bottom-up traversal, with a optional in-order pass.
pub trait PostorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, flow: &mut dyn Flow);
/// Returns false if this node must be processed in-order. If this returns false, we skip the
/// operation for this node, but continue processing the ancestors. This is called *after*
/// child nodes are visited.
fn should_process(&self, _flow: &mut dyn Flow) -> bool {
true
}
/// Traverses the tree in postorder.
fn traverse(&self, flow: &mut dyn Flow) {
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid);
}
if self.should_process(flow) {
self.process(flow);
}
}
}
/// An in-order (sequential only) traversal.
pub trait InorderFlowTraversal {
/// The operation to perform. Returns the level of the tree we're at.
fn process(&mut self, flow: &mut dyn Flow, level: u32);
/// Returns true if this node should be processed and false if neither this node nor its
/// descendants should be processed.
fn should_process_subtree(&mut self, _flow: &mut dyn Flow) -> bool {
true
}
/// Traverses the tree in-order.
fn traverse(&mut self, flow: &mut dyn Flow, level: u32) {
if !self.should_process_subtree(flow) {
return;
}
self.process(flow, level);
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid, level + 1);
}
}
}
/// A bottom-up, parallelizable traversal.
pub trait PostorderNodeMutTraversal<'dom, ConcreteThreadSafeLayoutNode>
where
ConcreteThreadSafeLayoutNode: ThreadSafeLayoutNode<'dom>,
{
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, node: &ConcreteThreadSafeLayoutNode);
}
#[allow(unsafe_code)]
#[inline]
pub unsafe fn construct_flows_at_ancestors<'dom>(
context: &LayoutContext,
mut node: impl LayoutNode<'dom>,
) {
while let Some(element) = node.traversal_parent() {
element.set_dirty_descendants();
node = element.as_node();
construct_flows_at(context, node);
}
}
/// The flow construction traversal, which builds flows for styled nodes.
#[inline]
#[allow(unsafe_code)]
fn construct_flows_at<'dom>(context: &LayoutContext, node: impl LayoutNode<'dom>) {
debug!("construct_flows_at: {:?}", node);
// Construct flows for this node.
{
let tnode = node.to_threadsafe();
// Always reconstruct if incremental layout is turned off.
let nonincremental_layout = opts::get().nonincremental_layout;
if nonincremental_layout ||
tnode.restyle_damage() != RestyleDamage::empty() ||
node.as_element()
.map_or(false, |el| el.has_dirty_descendants())
{
let mut flow_constructor = FlowConstructor::new(context);
if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) {
flow_constructor.process(&tnode);
debug!(
"Constructed flow for {:?}: {:x}",
tnode,
tnode.flow_debug_id()
);
}
}
tnode
.mutate_layout_data()
.unwrap()
.flags
.insert(crate::data::LayoutDataFlags::HAS_BEEN_TRAVERSED);
}
if let Some(el) = node.as_element() {
unsafe {
el.unset_dirty_descendants();
}
}
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes
/// preferred and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizes<'a> {
#[inline]
fn process(&self, flow: &mut dyn Flow) {
flow.bubble_inline_sizes();
flow.mut_base()
.restyle_damage
.remove(ServoRestyleDamage::BUBBLE_ISIZES);
}
#[inline]
fn should_process(&self, flow: &mut dyn Flow) -> bool {
flow.base()
.restyle_damage
.contains(ServoRestyleDamage::BUBBLE_ISIZES)
}
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
#[derive(Clone, Copy)]
pub struct AssignISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizes<'a> {
#[inline]
fn process(&self, flow: &mut dyn Flow) {
flow.assign_inline_sizes(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut dyn Flow) -> bool {
flow.base()
.restyle_damage
.intersects(ServoRestyleDamage::REFLOW_OUT_OF_FLOW | ServoRestyleDamage::REFLOW)
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of
/// layout computation. Determines the final block-sizes for all layout objects and computes
/// positions. In Gecko this corresponds to `Reflow`.
#[derive(Clone, Copy)]
pub struct AssignBSizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizes<'a> {
#[inline]
fn process(&self, flow: &mut dyn Flow) {
// Can't do anything with anything that floats might flow through until we reach their
// inorder parent.
//
// NB: We must return without resetting the restyle bits for these, as we haven't actually
// reflowed anything!
if flow.floats_might_flow_through() {
return;
}
flow.assign_block_size(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut dyn Flow) -> bool {
let base = flow.base();
base.restyle_damage.intersects(ServoRestyleDamage::REFLOW_OUT_OF_FLOW | ServoRestyleDamage::REFLOW) &&
// The fragmentation container is responsible for calling
// Flow::fragment recursively.
!base.flags.contains(FlowFlags::CAN_BE_FRAGMENTED)
}
}
pub struct ComputeStackingRelativePositions<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for ComputeStackingRelativePositions<'a> {
#[inline]
fn should_process_subtree(&self, flow: &mut dyn Flow) -> bool {
flow.base()
.restyle_damage
.contains(ServoRestyleDamage::REPOSITION)
}
#[inline]
fn process(&self, flow: &mut dyn Flow) {
flow.compute_stacking_relative_position(self.layout_context);
flow.mut_base()
.restyle_damage
.remove(ServoRestyleDamage::REPOSITION)
}
}
pub struct BuildDisplayList<'a> {
pub state: DisplayListBuildState<'a>,
}
impl<'a> BuildDisplayList<'a> {
#[inline]
pub fn traverse(&mut self, flow: &mut dyn Flow) {
if flow.has_non_invertible_transform_or_zero_scale() {
return;
}
let parent_stacking_context_id = self.state.current_stacking_context_id;
self.state.current_stacking_context_id = flow.base().stacking_context_id;
let parent_clipping_and_scrolling = self.state.current_clipping_and_scrolling;
self.state.current_clipping_and_scrolling = flow.clipping_and_scrolling();
flow.build_display_list(&mut self.state);
flow.mut_base()
.restyle_damage
.remove(ServoRestyleDamage::REPAINT);
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid);
}
self.state.current_stacking_context_id = parent_stacking_context_id;
self.state.current_clipping_and_scrolling = parent_clipping_and_scrolling;
}
}