servo/components/selectors/matching.rs
J. Ryan Stinnett a7882cfeb9 Match and cascade visited styles
To support visited styles, we match and cascade a separate set of styles any
time we notice that an element has a relevant link.

The visited rules and values are held in `ComputedStyle` alongside the
regular rules and values, which simplifies supporting various APIs like
`cascade_primary_and_pseudos` which expect easy access to previously matched
rules.

To simplify passing the additional values around, an additional reference to the
visited `ComputedValues` is placed inside the regular `ComputedValues`.

MozReview-Commit-ID: 2ebbjcfkfWf
2017-05-24 18:07:44 -05:00

734 lines
28 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use attr::{ParsedAttrSelectorOperation, AttrSelectorOperation, NamespaceConstraint};
use bloom::BloomFilter;
use parser::{Combinator, ComplexSelector, Component, LocalName};
use parser::{Selector, SelectorInner, SelectorIter};
use std::borrow::Borrow;
use tree::Element;
// The bloom filter for descendant CSS selectors will have a <1% false
// positive rate until it has this many selectors in it, then it will
// rapidly increase.
pub static RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE: usize = 4096;
bitflags! {
/// Set of flags that determine the different kind of elements affected by
/// the selector matching process.
///
/// This is used to implement efficient sharing.
#[derive(Default)]
pub flags StyleRelations: usize {
/// Whether this element is affected by an ID selector.
const AFFECTED_BY_ID_SELECTOR = 1 << 0,
/// Whether this element has a style attribute. Computed
/// externally.
const AFFECTED_BY_STYLE_ATTRIBUTE = 1 << 1,
/// Whether this element is affected by presentational hints. This is
/// computed externally (that is, in Servo).
const AFFECTED_BY_PRESENTATIONAL_HINTS = 1 << 2,
/// Whether this element has pseudo-element styles. Computed externally.
const AFFECTED_BY_PSEUDO_ELEMENTS = 1 << 3,
}
}
bitflags! {
/// Set of flags that are set on either the element or its parent (depending
/// on the flag) if the element could potentially match a selector.
pub flags ElementSelectorFlags: usize {
/// When a child is added or removed from the parent, all the children
/// must be restyled, because they may match :nth-last-child,
/// :last-of-type, :nth-last-of-type, or :only-of-type.
const HAS_SLOW_SELECTOR = 1 << 0,
/// When a child is added or removed from the parent, any later
/// children must be restyled, because they may match :nth-child,
/// :first-of-type, or :nth-of-type.
const HAS_SLOW_SELECTOR_LATER_SIBLINGS = 1 << 1,
/// When a child is added or removed from the parent, the first and
/// last children must be restyled, because they may match :first-child,
/// :last-child, or :only-child.
const HAS_EDGE_CHILD_SELECTOR = 1 << 2,
/// The element has an empty selector, so when a child is appended we
/// might need to restyle the parent completely.
const HAS_EMPTY_SELECTOR = 1 << 3,
}
}
impl ElementSelectorFlags {
/// Returns the subset of flags that apply to the element.
pub fn for_self(self) -> ElementSelectorFlags {
self & (HAS_EMPTY_SELECTOR)
}
/// Returns the subset of flags that apply to the parent.
pub fn for_parent(self) -> ElementSelectorFlags {
self & (HAS_SLOW_SELECTOR | HAS_SLOW_SELECTOR_LATER_SIBLINGS | HAS_EDGE_CHILD_SELECTOR)
}
}
/// What kind of selector matching mode we should use.
///
/// There are two modes of selector matching. The difference is only noticeable
/// in presence of pseudo-elements.
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum MatchingMode {
/// Don't ignore any pseudo-element selectors.
Normal,
/// Ignores any stateless pseudo-element selectors in the rightmost sequence
/// of simple selectors.
///
/// This is useful, for example, to match against ::before when you aren't a
/// pseudo-element yourself.
///
/// For example, in presence of `::before:hover`, it would never match, but
/// `::before` would be ignored as in "matching".
///
/// It's required for all the selectors you match using this mode to have a
/// pseudo-element.
ForStatelessPseudoElement,
}
/// The mode to use when matching unvisited and visited links.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum VisitedHandlingMode {
/// All links are matched as if they are unvisted.
AllLinksUnvisited,
/// A element's "relevant link" is the element being matched if it is a link
/// or the nearest ancestor link. The relevant link is matched as though it
/// is visited, and all other links are matched as if they are unvisited.
RelevantLinkVisited,
}
/// Data associated with the matching process for a element. This context is
/// used across many selectors for an element, so it's not appropriate for
/// transient data that applies to only a single selector.
#[derive(Clone)]
pub struct MatchingContext<'a> {
/// Output that records certains relations between elements noticed during
/// matching (and also extended after matching).
pub relations: StyleRelations,
/// Input with the matching mode we should use when matching selectors.
pub matching_mode: MatchingMode,
/// Input with the bloom filter used to fast-reject selectors.
pub bloom_filter: Option<&'a BloomFilter>,
/// Input that controls how matching for links is handled.
pub visited_handling: VisitedHandlingMode,
/// Output that records whether we encountered a "relevant link" while
/// matching _any_ selector for this element. (This differs from
/// `RelevantLinkStatus` which tracks the status for the _current_ selector
/// only.)
pub relevant_link_found: bool,
}
impl<'a> MatchingContext<'a> {
/// Constructs a new `MatchingContext`.
pub fn new(matching_mode: MatchingMode,
bloom_filter: Option<&'a BloomFilter>)
-> Self
{
Self {
relations: StyleRelations::empty(),
matching_mode: matching_mode,
bloom_filter: bloom_filter,
visited_handling: VisitedHandlingMode::AllLinksUnvisited,
relevant_link_found: false,
}
}
/// Constructs a new `MatchingContext` for use in visited matching.
pub fn new_for_visited(matching_mode: MatchingMode,
bloom_filter: Option<&'a BloomFilter>,
visited_handling: VisitedHandlingMode)
-> Self
{
Self {
relations: StyleRelations::empty(),
matching_mode: matching_mode,
bloom_filter: bloom_filter,
visited_handling: visited_handling,
relevant_link_found: false,
}
}
}
pub fn matches_selector_list<E>(selector_list: &[Selector<E::Impl>],
element: &E,
context: &mut MatchingContext)
-> bool
where E: Element
{
selector_list.iter().any(|selector| {
matches_selector(&selector.inner,
element,
context,
&mut |_, _| {})
})
}
fn may_match<E>(sel: &SelectorInner<E::Impl>,
bf: &BloomFilter)
-> bool
where E: Element,
{
// Check against the list of precomputed hashes.
for hash in sel.ancestor_hashes.iter() {
// If we hit the 0 sentinel hash, that means the rest are zero as well.
if *hash == 0 {
break;
}
if !bf.might_contain_hash(*hash) {
return false;
}
}
true
}
/// Tracks whether we are currently looking for relevant links for a given
/// complex selector. A "relevant link" is the element being matched if it is a
/// link or the nearest ancestor link.
///
/// `matches_complex_selector` creates a new instance of this for each complex
/// selector we try to match for an element. This is done because `is_visited`
/// and `is_unvisited` are based on relevant link state of only the current
/// complex selector being matched (not the global relevant link status for all
/// selectors in `MatchingContext`).
#[derive(PartialEq, Eq, Copy, Clone)]
pub enum RelevantLinkStatus {
/// Looking for a possible relevant link. This is the initial mode when
/// matching a selector.
Looking,
/// Not looking for a relevant link. We transition to this mode if we
/// encounter a sibiling combinator (since only ancestor combinators are
/// allowed for this purpose).
NotLooking,
/// Found a relevant link for the element being matched.
Found,
}
impl Default for RelevantLinkStatus {
fn default() -> Self {
RelevantLinkStatus::NotLooking
}
}
impl RelevantLinkStatus {
/// If we found the relevant link for this element, record that in the
/// overall matching context for the element as a whole and stop looking for
/// addtional links.
fn examine_potential_link<E>(&self, element: &E, context: &mut MatchingContext)
-> RelevantLinkStatus
where E: Element,
{
if *self != RelevantLinkStatus::Looking {
return *self
}
if !element.is_link() {
return *self
}
// We found a relevant link. Record this in the `MatchingContext`,
// where we track whether one was found for _any_ selector (meaning
// this field might already be true from a previous selector).
context.relevant_link_found = true;
// Also return `Found` to update the relevant link status for _this_
// specific selector's matching process.
RelevantLinkStatus::Found
}
/// Returns whether an element is considered visited for the purposes of
/// matching. This is true only if the element is a link, an relevant link
/// exists for the element, and the visited handling mode is set to accept
/// relevant links as visited.
pub fn is_visited<E>(&self, element: &E, context: &MatchingContext) -> bool
where E: Element,
{
if !element.is_link() {
return false
}
// Non-relevant links are always unvisited.
if *self != RelevantLinkStatus::Found {
return false
}
context.visited_handling == VisitedHandlingMode::RelevantLinkVisited
}
/// Returns whether an element is considered unvisited for the purposes of
/// matching. Assuming the element is a link, this is always true for
/// non-relevant links, since only relevant links can potentially be treated
/// as visited. If this is a relevant link, then is it unvisited if the
/// visited handling mode is set to treat all links as unvisted (including
/// relevant links).
pub fn is_unvisited<E>(&self, element: &E, context: &MatchingContext) -> bool
where E: Element,
{
if !element.is_link() {
return false
}
// Non-relevant links are always unvisited.
if *self != RelevantLinkStatus::Found {
return true
}
context.visited_handling == VisitedHandlingMode::AllLinksUnvisited
}
}
/// A result of selector matching, includes 3 failure types,
///
/// NotMatchedAndRestartFromClosestLaterSibling
/// NotMatchedAndRestartFromClosestDescendant
/// NotMatchedGlobally
///
/// When NotMatchedGlobally appears, stop selector matching completely since
/// the succeeding selectors never matches.
/// It is raised when
/// Child combinator cannot find the candidate element.
/// Descendant combinator cannot find the candidate element.
///
/// When NotMatchedAndRestartFromClosestDescendant appears, the selector
/// matching does backtracking and restarts from the closest Descendant
/// combinator.
/// It is raised when
/// NextSibling combinator cannot find the candidate element.
/// LaterSibling combinator cannot find the candidate element.
/// Child combinator doesn't match on the found element.
///
/// When NotMatchedAndRestartFromClosestLaterSibling appears, the selector
/// matching does backtracking and restarts from the closest LaterSibling
/// combinator.
/// It is raised when
/// NextSibling combinator doesn't match on the found element.
///
/// For example, when the selector "d1 d2 a" is provided and we cannot *find*
/// an appropriate ancestor element for "d1", this selector matching raises
/// NotMatchedGlobally since even if "d2" is moved to more upper element, the
/// candidates for "d1" becomes less than before and d1 .
///
/// The next example is siblings. When the selector "b1 + b2 ~ d1 a" is
/// provided and we cannot *find* an appropriate brother element for b1,
/// the selector matching raises NotMatchedAndRestartFromClosestDescendant.
/// The selectors ("b1 + b2 ~") doesn't match and matching restart from "d1".
///
/// The additional example is child and sibling. When the selector
/// "b1 + c1 > b2 ~ d1 a" is provided and the selector "b1" doesn't match on
/// the element, this "b1" raises NotMatchedAndRestartFromClosestLaterSibling.
/// However since the selector "c1" raises
/// NotMatchedAndRestartFromClosestDescendant. So the selector
/// "b1 + c1 > b2 ~ " doesn't match and restart matching from "d1".
#[derive(PartialEq, Eq, Copy, Clone)]
enum SelectorMatchingResult {
Matched,
NotMatchedAndRestartFromClosestLaterSibling,
NotMatchedAndRestartFromClosestDescendant,
NotMatchedGlobally,
}
/// Matches an inner selector.
pub fn matches_selector<E, F>(selector: &SelectorInner<E::Impl>,
element: &E,
context: &mut MatchingContext,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
// Use the bloom filter to fast-reject.
if let Some(filter) = context.bloom_filter {
if !may_match::<E>(&selector, filter) {
return false;
}
}
matches_complex_selector(&selector.complex, element, context, flags_setter)
}
/// Matches a complex selector.
///
/// Use `matches_selector` if you need to skip pseudos.
pub fn matches_complex_selector<E, F>(complex_selector: &ComplexSelector<E::Impl>,
element: &E,
context: &mut MatchingContext,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
let mut iter = complex_selector.iter();
if cfg!(debug_assertions) {
if context.matching_mode == MatchingMode::ForStatelessPseudoElement {
assert!(complex_selector.iter().any(|c| {
matches!(*c, Component::PseudoElement(..))
}));
}
}
if context.matching_mode == MatchingMode::ForStatelessPseudoElement {
match *iter.next().unwrap() {
// Stateful pseudo, just don't match.
Component::NonTSPseudoClass(..) => return false,
Component::PseudoElement(..) => {
// Pseudo, just eat the whole sequence.
let next = iter.next();
debug_assert!(next.is_none(),
"Someone messed up pseudo-element parsing?");
if iter.next_sequence().is_none() {
return true;
}
}
_ => panic!("Used MatchingMode::ForStatelessPseudoElement in a non-pseudo selector"),
}
}
match matches_complex_selector_internal(iter,
element,
context,
RelevantLinkStatus::Looking,
flags_setter) {
SelectorMatchingResult::Matched => true,
_ => false
}
}
fn matches_complex_selector_internal<E, F>(mut selector_iter: SelectorIter<E::Impl>,
element: &E,
context: &mut MatchingContext,
relevant_link: RelevantLinkStatus,
flags_setter: &mut F)
-> SelectorMatchingResult
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
let mut relevant_link = relevant_link.examine_potential_link(element, context);
let matches_all_simple_selectors = selector_iter.all(|simple| {
matches_simple_selector(simple, element, context, &relevant_link, flags_setter)
});
let combinator = selector_iter.next_sequence();
let siblings = combinator.map_or(false, |c| c.is_sibling());
if siblings {
flags_setter(element, HAS_SLOW_SELECTOR_LATER_SIBLINGS);
}
if !matches_all_simple_selectors {
return SelectorMatchingResult::NotMatchedAndRestartFromClosestLaterSibling;
}
match combinator {
None => SelectorMatchingResult::Matched,
Some(c) => {
let (mut next_element, candidate_not_found) = match c {
Combinator::NextSibling | Combinator::LaterSibling => {
// Only ancestor combinators are allowed while looking for
// relevant links, so switch to not looking.
relevant_link = RelevantLinkStatus::NotLooking;
(element.prev_sibling_element(),
SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant)
}
Combinator::Child | Combinator::Descendant => {
(element.parent_element(),
SelectorMatchingResult::NotMatchedGlobally)
}
Combinator::PseudoElement => {
(element.pseudo_element_originating_element(),
SelectorMatchingResult::NotMatchedGlobally)
}
};
loop {
let element = match next_element {
None => return candidate_not_found,
Some(next_element) => next_element,
};
let result = matches_complex_selector_internal(selector_iter.clone(),
&element,
context,
relevant_link,
flags_setter);
match (result, c) {
// Return the status immediately.
(SelectorMatchingResult::Matched, _) => return result,
(SelectorMatchingResult::NotMatchedGlobally, _) => return result,
// Upgrade the failure status to
// NotMatchedAndRestartFromClosestDescendant.
(_, Combinator::PseudoElement) |
(_, Combinator::Child) => return SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant,
// Return the status directly.
(_, Combinator::NextSibling) => return result,
// If the failure status is NotMatchedAndRestartFromClosestDescendant
// and combinator is Combinator::LaterSibling, give up this Combinator::LaterSibling matching
// and restart from the closest descendant combinator.
(SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, Combinator::LaterSibling)
=> return result,
// The Combinator::Descendant combinator and the status is
// NotMatchedAndRestartFromClosestLaterSibling or
// NotMatchedAndRestartFromClosestDescendant,
// or the Combinator::LaterSibling combinator and the status is
// NotMatchedAndRestartFromClosestDescendant
// can continue to matching on the next candidate element.
_ => {},
}
next_element = if siblings {
element.prev_sibling_element()
} else {
element.parent_element()
};
}
}
}
}
/// Determines whether the given element matches the given single selector.
#[inline]
fn matches_simple_selector<E, F>(
selector: &Component<E::Impl>,
element: &E,
context: &mut MatchingContext,
relevant_link: &RelevantLinkStatus,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
macro_rules! relation_if {
($ex:expr, $flag:ident) => {
if $ex {
context.relations |= $flag;
true
} else {
false
}
}
}
match *selector {
Component::Combinator(_) => unreachable!(),
Component::PseudoElement(ref pseudo) => {
element.match_pseudo_element(pseudo, context)
}
Component::LocalName(LocalName { ref name, ref lower_name }) => {
let is_html = element.is_html_element_in_html_document();
element.get_local_name() == select_name(is_html, name, lower_name).borrow()
}
Component::ExplicitUniversalType |
Component::ExplicitAnyNamespace => {
true
}
Component::Namespace(_, ref url) |
Component::DefaultNamespace(ref url) => {
element.get_namespace() == url.borrow()
}
Component::ExplicitNoNamespace => {
let ns = ::parser::namespace_empty_string::<E::Impl>();
element.get_namespace() == ns.borrow()
}
// TODO: case-sensitivity depends on the document type and quirks mode
Component::ID(ref id) => {
relation_if!(element.get_id().map_or(false, |attr| attr == *id),
AFFECTED_BY_ID_SELECTOR)
}
Component::Class(ref class) => {
element.has_class(class)
}
Component::AttributeInNoNamespaceExists { ref local_name, ref local_name_lower } => {
let is_html = element.is_html_element_in_html_document();
element.attr_matches(
&NamespaceConstraint::Specific(&::parser::namespace_empty_string::<E::Impl>()),
select_name(is_html, local_name, local_name_lower),
&AttrSelectorOperation::Exists
)
}
Component::AttributeInNoNamespace {
ref local_name,
ref local_name_lower,
ref value,
operator,
case_sensitivity,
never_matches,
} => {
if never_matches {
return false
}
let is_html = element.is_html_element_in_html_document();
element.attr_matches(
&NamespaceConstraint::Specific(&::parser::namespace_empty_string::<E::Impl>()),
select_name(is_html, local_name, local_name_lower),
&AttrSelectorOperation::WithValue {
operator: operator,
case_sensitivity: case_sensitivity.to_unconditional(is_html),
expected_value: value,
}
)
}
Component::AttributeOther(ref attr_sel) => {
if attr_sel.never_matches {
return false
}
let is_html = element.is_html_element_in_html_document();
element.attr_matches(
&attr_sel.namespace(),
select_name(is_html, &attr_sel.local_name, &attr_sel.local_name_lower),
&match attr_sel.operation {
ParsedAttrSelectorOperation::Exists => AttrSelectorOperation::Exists,
ParsedAttrSelectorOperation::WithValue {
operator,
case_sensitivity,
ref expected_value,
} => {
AttrSelectorOperation::WithValue {
operator: operator,
case_sensitivity: case_sensitivity.to_unconditional(is_html),
expected_value: expected_value,
}
}
}
)
}
Component::NonTSPseudoClass(ref pc) => {
element.match_non_ts_pseudo_class(pc, context, relevant_link, flags_setter)
}
Component::FirstChild => {
matches_first_child(element, flags_setter)
}
Component::LastChild => {
matches_last_child(element, flags_setter)
}
Component::OnlyChild => {
matches_first_child(element, flags_setter) &&
matches_last_child(element, flags_setter)
}
Component::Root => {
// We never share styles with an element with no parent, so no point
// in creating a new StyleRelation.
element.is_root()
}
Component::Empty => {
flags_setter(element, HAS_EMPTY_SELECTOR);
element.is_empty()
}
Component::NthChild(a, b) => {
matches_generic_nth_child(element, a, b, false, false, flags_setter)
}
Component::NthLastChild(a, b) => {
matches_generic_nth_child(element, a, b, false, true, flags_setter)
}
Component::NthOfType(a, b) => {
matches_generic_nth_child(element, a, b, true, false, flags_setter)
}
Component::NthLastOfType(a, b) => {
matches_generic_nth_child(element, a, b, true, true, flags_setter)
}
Component::FirstOfType => {
matches_generic_nth_child(element, 0, 1, true, false, flags_setter)
}
Component::LastOfType => {
matches_generic_nth_child(element, 0, 1, true, true, flags_setter)
}
Component::OnlyOfType => {
matches_generic_nth_child(element, 0, 1, true, false, flags_setter) &&
matches_generic_nth_child(element, 0, 1, true, true, flags_setter)
}
Component::Negation(ref negated) => {
!negated.iter().all(|ss| matches_simple_selector(ss, element, context, relevant_link, flags_setter))
}
}
}
fn select_name<'a, T>(is_html: bool, local_name: &'a T, local_name_lower: &'a T) -> &'a T {
if is_html {
local_name_lower
} else {
local_name
}
}
#[inline]
fn matches_generic_nth_child<E, F>(element: &E,
a: i32,
b: i32,
is_of_type: bool,
is_from_end: bool,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
flags_setter(element, if is_from_end {
HAS_SLOW_SELECTOR
} else {
HAS_SLOW_SELECTOR_LATER_SIBLINGS
});
let mut index: i32 = 1;
let mut next_sibling = if is_from_end {
element.next_sibling_element()
} else {
element.prev_sibling_element()
};
loop {
let sibling = match next_sibling {
None => break,
Some(next_sibling) => next_sibling
};
if is_of_type {
if element.get_local_name() == sibling.get_local_name() &&
element.get_namespace() == sibling.get_namespace() {
index += 1;
}
} else {
index += 1;
}
next_sibling = if is_from_end {
sibling.next_sibling_element()
} else {
sibling.prev_sibling_element()
};
}
// Is there a non-negative integer n such that An+B=index?
match index.checked_sub(b) {
None => false,
Some(an) => match an.checked_div(a) {
Some(n) => n >= 0 && a * n == an,
None /* a == 0 */ => an == 0,
},
}
}
#[inline]
fn matches_first_child<E, F>(element: &E, flags_setter: &mut F) -> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
flags_setter(element, HAS_EDGE_CHILD_SELECTOR);
element.prev_sibling_element().is_none()
}
#[inline]
fn matches_last_child<E, F>(element: &E, flags_setter: &mut F) -> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
flags_setter(element, HAS_EDGE_CHILD_SELECTOR);
element.next_sibling_element().is_none()
}