servo/components/script_plugins/unrooted_must_root.rs

320 lines
12 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use crate::utils::{in_derive_expn, match_def_path};
use rustc::hir::intravisit as visit;
use rustc::hir::{self, ExprKind, HirId};
use rustc::lint::{LateContext, LateLintPass, LintArray, LintContext, LintPass};
use rustc::ty;
use syntax::symbol::sym;
use syntax::{ast, source_map};
declare_lint!(
UNROOTED_MUST_ROOT,
Deny,
"Warn and report usage of unrooted jsmanaged objects"
);
/// Lint for ensuring safe usage of unrooted pointers
///
/// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that `#[must_root]`
/// values are used correctly.
///
/// "Incorrect" usage includes:
///
/// - Not being used in a struct/enum field which is not `#[must_root]` itself
/// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`)
/// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement.
///
/// This helps catch most situations where pointers like `JS<T>` are used in a way that they can be invalidated by a
/// GC pass.
///
/// Structs which have their own mechanism of rooting their unrooted contents (e.g. `ScriptThread`)
/// can be marked as `#[allow(unrooted_must_root)]`. Smart pointers which root their interior type
/// can be marked as `#[allow_unrooted_interior]`
pub(crate) struct UnrootedPass {
symbols: crate::Symbols,
}
impl UnrootedPass {
pub fn new(symbols: crate::Symbols) -> UnrootedPass {
UnrootedPass { symbols }
}
}
/// Checks if a type is unrooted or contains any owned unrooted types
fn is_unrooted_ty(
sym: &crate::Symbols,
cx: &LateContext,
ty: &ty::TyS,
in_new_function: bool,
) -> bool {
let mut ret = false;
ty.maybe_walk(|t| {
match t.sty {
ty::Adt(did, substs) => {
if cx.tcx.has_attr(did.did, sym.must_root) {
ret = true;
false
} else if cx.tcx.has_attr(did.did, sym.allow_unrooted_interior) {
false
} else if match_def_path(cx, did.did, &[sym.alloc, sym.rc, sym.Rc]) {
// Rc<Promise> is okay
let inner = substs.type_at(0);
if let ty::Adt(did, _) = inner.sty {
if cx.tcx.has_attr(did.did, sym.allow_unrooted_in_rc) {
false
} else {
true
}
} else {
true
}
} else if match_def_path(cx, did.did, &[sym::core, sym.cell, sym.Ref]) ||
match_def_path(cx, did.did, &[sym::core, sym.cell, sym.RefMut]) ||
match_def_path(cx, did.did, &[sym::core, sym.slice, sym.Iter]) ||
match_def_path(cx, did.did, &[sym::core, sym.slice, sym.IterMut]) ||
match_def_path(
cx,
did.did,
&[sym::std, sym.collections, sym.hash, sym.map, sym.Entry],
) ||
match_def_path(
cx,
did.did,
&[
sym::std,
sym.collections,
sym.hash,
sym.map,
sym.OccupiedEntry,
],
) ||
match_def_path(
cx,
did.did,
&[
sym::std,
sym.collections,
sym.hash,
sym.map,
sym.VacantEntry,
],
) ||
match_def_path(
cx,
did.did,
&[sym::std, sym.collections, sym.hash, sym.map, sym.Iter],
) ||
match_def_path(
cx,
did.did,
&[sym::std, sym.collections, sym.hash, sym.set, sym.Iter],
)
{
// Structures which are semantically similar to an &ptr.
false
} else if did.is_box() && in_new_function {
// box in new() is okay
false
} else {
true
}
},
ty::Ref(..) => false, // don't recurse down &ptrs
ty::RawPtr(..) => false, // don't recurse down *ptrs
ty::FnDef(..) | ty::FnPtr(_) => false,
_ => true,
}
});
ret
}
impl LintPass for UnrootedPass {
fn name(&self) -> &'static str {
"ServoUnrootedPass"
}
fn get_lints(&self) -> LintArray {
lint_array!(UNROOTED_MUST_ROOT)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnrootedPass {
/// All structs containing #[must_root] types must be #[must_root] themselves
fn check_struct_def(
&mut self,
cx: &LateContext<'a, 'tcx>,
def: &'tcx hir::VariantData,
_n: ast::Name,
_gen: &'tcx hir::Generics,
id: HirId,
) {
let item = match cx.tcx.hir().get(id) {
hir::Node::Item(item) => item,
_ => cx.tcx.hir().expect_item(cx.tcx.hir().get_parent_item(id)),
};
if item
.attrs
.iter()
.all(|a| !a.check_name(self.symbols.must_root))
{
for ref field in def.fields() {
let def_id = cx.tcx.hir().local_def_id(field.hir_id);
if is_unrooted_ty(&self.symbols, cx, cx.tcx.type_of(def_id), false) {
cx.span_lint(UNROOTED_MUST_ROOT, field.span,
"Type must be rooted, use #[must_root] on the struct definition to propagate")
}
}
}
}
/// All enums containing #[must_root] types must be #[must_root] themselves
fn check_variant(&mut self, cx: &LateContext, var: &hir::Variant, _gen: &hir::Generics) {
let ref map = cx.tcx.hir();
if map
.expect_item(map.get_parent_item(var.node.id))
.attrs
.iter()
.all(|a| !a.check_name(self.symbols.must_root))
{
match var.node.data {
hir::VariantData::Tuple(ref fields, ..) => {
for ref field in fields {
let def_id = cx.tcx.hir().local_def_id(field.hir_id);
if is_unrooted_ty(&self.symbols, cx, cx.tcx.type_of(def_id), false) {
cx.span_lint(
UNROOTED_MUST_ROOT,
field.ty.span,
"Type must be rooted, use #[must_root] on \
the enum definition to propagate",
)
}
}
},
_ => (), // Struct variants already caught by check_struct_def
}
}
}
/// Function arguments that are #[must_root] types are not allowed
fn check_fn(
&mut self,
cx: &LateContext<'a, 'tcx>,
kind: visit::FnKind<'tcx>,
decl: &'tcx hir::FnDecl,
body: &'tcx hir::Body,
span: source_map::Span,
id: HirId,
) {
let in_new_function = match kind {
visit::FnKind::ItemFn(n, _, _, _, _) | visit::FnKind::Method(n, _, _, _) => {
&*n.as_str() == "new" || n.as_str().starts_with("new_")
},
visit::FnKind::Closure(_) => return,
};
if !in_derive_expn(span) {
let def_id = cx.tcx.hir().local_def_id(id);
let sig = cx.tcx.type_of(def_id).fn_sig(cx.tcx);
for (arg, ty) in decl.inputs.iter().zip(sig.inputs().skip_binder().iter()) {
if is_unrooted_ty(&self.symbols, cx, ty, false) {
cx.span_lint(UNROOTED_MUST_ROOT, arg.span, "Type must be rooted")
}
}
if !in_new_function {
if is_unrooted_ty(&self.symbols, cx, sig.output().skip_binder(), false) {
cx.span_lint(
UNROOTED_MUST_ROOT,
decl.output.span(),
"Type must be rooted",
)
}
}
}
let mut visitor = FnDefVisitor {
symbols: &self.symbols,
cx: cx,
in_new_function: in_new_function,
};
visit::walk_expr(&mut visitor, &body.value);
}
}
struct FnDefVisitor<'a, 'b: 'a, 'tcx: 'a + 'b> {
symbols: &'a crate::Symbols,
cx: &'a LateContext<'b, 'tcx>,
in_new_function: bool,
}
impl<'a, 'b, 'tcx> visit::Visitor<'tcx> for FnDefVisitor<'a, 'b, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
let cx = self.cx;
let require_rooted = |cx: &LateContext, in_new_function: bool, subexpr: &hir::Expr| {
let ty = cx.tables.expr_ty(&subexpr);
if is_unrooted_ty(&self.symbols, cx, ty, in_new_function) {
cx.span_lint(
UNROOTED_MUST_ROOT,
subexpr.span,
&format!("Expression of type {:?} must be rooted", ty),
)
}
};
match expr.node {
// Trait casts from #[must_root] types are not allowed
ExprKind::Cast(ref subexpr, _) => require_rooted(cx, self.in_new_function, &*subexpr),
// This catches assignments... the main point of this would be to catch mutable
// references to `JS<T>`.
// FIXME: Enable this? Triggers on certain kinds of uses of DomRefCell.
// hir::ExprAssign(_, ref rhs) => require_rooted(cx, self.in_new_function, &*rhs),
// This catches calls; basically, this enforces the constraint that only constructors
// can call other constructors.
// FIXME: Enable this? Currently triggers with constructs involving DomRefCell, and
// constructs like Vec<JS<T>> and RootedVec<JS<T>>.
// hir::ExprCall(..) if !self.in_new_function => {
// require_rooted(cx, self.in_new_function, expr);
// }
_ => {
// TODO(pcwalton): Check generics with a whitelist of allowed generics.
},
}
visit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
let cx = self.cx;
// We want to detect pattern bindings that move a value onto the stack.
// When "default binding modes" https://github.com/rust-lang/rust/issues/42640
// are implemented, the `Unannotated` case could cause false-positives.
// These should be fixable by adding an explicit `ref`.
match pat.node {
hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, ..) |
hir::PatKind::Binding(hir::BindingAnnotation::Mutable, ..) => {
let ty = cx.tables.pat_ty(pat);
if is_unrooted_ty(&self.symbols, cx, ty, self.in_new_function) {
cx.span_lint(
UNROOTED_MUST_ROOT,
pat.span,
&format!("Expression of type {:?} must be rooted", ty),
)
}
},
_ => {},
}
visit::walk_pat(self, pat);
}
fn visit_ty(&mut self, _: &'tcx hir::Ty) {}
fn nested_visit_map<'this>(&'this mut self) -> hir::intravisit::NestedVisitorMap<'this, 'tcx> {
hir::intravisit::NestedVisitorMap::OnlyBodies(&self.cx.tcx.hir())
}
}