servo/components/derive_common/cg.rs
Emilio Cobos Álvarez f27003c810 style: Teach style_derive's map_type_params about mapping self correctly.
Consider the following:

struct Complex<T> {
    something: T,
    #[compute(field_bound)]
    something_else: Generic<Self, T>,
}

That will generate:

impl<T> ToComputedValue for Complex<T>
where
    T: ToComputedValue,
    Generic<Self, T>: ToComputedValue<ComputedValue = Generic<Self, <T as ToComputedValue>::ComputedValue>>,
{
    // ...
}

That last clause is obviously incorrect. map_type_params correctly maps
the T, but it should know also about Self.

Ideally we could just do the same as for T and do:

    <Self as ToComputedValue>::ComputedValue

But that doesn't quite work, because we are in that implementation of
the trait, and the compiler rightfully complains about we don't yet
knowing the computed type. So we need to pass it explicitly, which is
simple enough, if a bit annoying.

Differential Revision: https://phabricator.services.mozilla.com/D83816
2021-02-26 16:44:05 +01:00

383 lines
12 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use darling::{FromDeriveInput, FromField, FromVariant};
use proc_macro2::{Span, TokenStream};
use quote::TokenStreamExt;
use syn::{self, AngleBracketedGenericArguments, Binding, DeriveInput, Field};
use syn::{GenericArgument, GenericParam, Ident, Path};
use syn::{PathArguments, PathSegment, QSelf, Type, TypeArray, TypeGroup};
use syn::{TypeParam, TypeParen, TypePath, TypeSlice, TypeTuple};
use syn::{Variant, WherePredicate};
use synstructure::{self, BindStyle, BindingInfo, VariantAst, VariantInfo};
/// Given an input type which has some where clauses already, like:
///
/// struct InputType<T>
/// where
/// T: Zero,
/// {
/// ...
/// }
///
/// Add the necessary `where` clauses so that the output type of a trait
/// fulfils them.
///
/// For example:
///
/// ```ignore
/// <T as ToComputedValue>::ComputedValue: Zero,
/// ```
///
/// This needs to run before adding other bounds to the type parameters.
pub fn propagate_clauses_to_output_type(
where_clause: &mut Option<syn::WhereClause>,
generics: &syn::Generics,
trait_path: &Path,
trait_output: &Ident,
) {
let where_clause = match *where_clause {
Some(ref mut clause) => clause,
None => return,
};
let mut extra_bounds = vec![];
for pred in &where_clause.predicates {
let ty = match *pred {
syn::WherePredicate::Type(ref ty) => ty,
ref predicate => panic!("Unhanded complex where predicate: {:?}", predicate),
};
let path = match ty.bounded_ty {
syn::Type::Path(ref p) => &p.path,
ref ty => panic!("Unhanded complex where type: {:?}", ty),
};
assert!(
ty.lifetimes.is_none(),
"Unhanded complex lifetime bound: {:?}",
ty,
);
let ident = match path_to_ident(path) {
Some(i) => i,
None => panic!("Unhanded complex where type path: {:?}", path),
};
if generics.type_params().any(|param| param.ident == *ident) {
extra_bounds.push(ty.clone());
}
}
for bound in extra_bounds {
let ty = bound.bounded_ty;
let bounds = bound.bounds;
where_clause
.predicates
.push(parse_quote!(<#ty as #trait_path>::#trait_output: #bounds))
}
}
pub fn add_predicate(where_clause: &mut Option<syn::WhereClause>, pred: WherePredicate) {
where_clause
.get_or_insert(parse_quote!(where))
.predicates
.push(pred);
}
pub fn fmap_match<F>(input: &DeriveInput, bind_style: BindStyle, f: F) -> TokenStream
where
F: FnMut(&BindingInfo) -> TokenStream,
{
fmap2_match(input, bind_style, f, |_| None)
}
pub fn fmap2_match<F, G>(
input: &DeriveInput,
bind_style: BindStyle,
mut f: F,
mut g: G,
) -> TokenStream
where
F: FnMut(&BindingInfo) -> TokenStream,
G: FnMut(&BindingInfo) -> Option<TokenStream>,
{
let mut s = synstructure::Structure::new(input);
s.variants_mut().iter_mut().for_each(|v| {
v.bind_with(|_| bind_style);
});
s.each_variant(|variant| {
let (mapped, mapped_fields) = value(variant, "mapped");
let fields_pairs = variant.bindings().iter().zip(mapped_fields.iter());
let mut computations = quote!();
computations.append_all(fields_pairs.map(|(field, mapped_field)| {
let expr = f(field);
quote! { let #mapped_field = #expr; }
}));
computations.append_all(
mapped_fields
.iter()
.map(|mapped_field| match g(mapped_field) {
Some(expr) => quote! { let #mapped_field = #expr; },
None => quote!(),
}),
);
computations.append_all(mapped);
Some(computations)
})
}
pub fn fmap_trait_output(input: &DeriveInput, trait_path: &Path, trait_output: &Ident) -> Path {
let segment = PathSegment {
ident: input.ident.clone(),
arguments: PathArguments::AngleBracketed(AngleBracketedGenericArguments {
args: input
.generics
.params
.iter()
.map(|arg| match arg {
&GenericParam::Lifetime(ref data) => {
GenericArgument::Lifetime(data.lifetime.clone())
},
&GenericParam::Type(ref data) => {
let ident = &data.ident;
GenericArgument::Type(parse_quote!(<#ident as #trait_path>::#trait_output))
},
ref arg => panic!("arguments {:?} cannot be mapped yet", arg),
})
.collect(),
colon2_token: Default::default(),
gt_token: Default::default(),
lt_token: Default::default(),
}),
};
segment.into()
}
pub fn map_type_params<F>(ty: &Type, params: &[&TypeParam], self_type: &Path, f: &mut F) -> Type
where
F: FnMut(&Ident) -> Type,
{
match *ty {
Type::Slice(ref inner) => Type::from(TypeSlice {
elem: Box::new(map_type_params(&inner.elem, params, self_type, f)),
..inner.clone()
}),
Type::Array(ref inner) => {
//ref ty, ref expr) => {
Type::from(TypeArray {
elem: Box::new(map_type_params(&inner.elem, params, self_type, f)),
..inner.clone()
})
},
ref ty @ Type::Never(_) => ty.clone(),
Type::Tuple(ref inner) => Type::from(TypeTuple {
elems: inner
.elems
.iter()
.map(|ty| map_type_params(&ty, params, self_type, f))
.collect(),
..inner.clone()
}),
Type::Path(TypePath {
qself: None,
ref path,
}) => {
if let Some(ident) = path_to_ident(path) {
if params.iter().any(|ref param| &param.ident == ident) {
return f(ident);
}
if ident == "Self" {
return Type::from(TypePath {
qself: None,
path: self_type.clone(),
});
}
}
Type::from(TypePath {
qself: None,
path: map_type_params_in_path(path, params, self_type, f),
})
},
Type::Path(TypePath {
ref qself,
ref path,
}) => Type::from(TypePath {
qself: qself.as_ref().map(|qself| QSelf {
ty: Box::new(map_type_params(&qself.ty, params, self_type, f)),
position: qself.position,
..qself.clone()
}),
path: map_type_params_in_path(path, params, self_type, f),
}),
Type::Paren(ref inner) => Type::from(TypeParen {
elem: Box::new(map_type_params(&inner.elem, params, self_type, f)),
..inner.clone()
}),
Type::Group(ref inner) => Type::from(TypeGroup {
elem: Box::new(map_type_params(&inner.elem, params, self_type, f)),
..inner.clone()
}),
ref ty => panic!("type {:?} cannot be mapped yet", ty),
}
}
fn map_type_params_in_path<F>(path: &Path, params: &[&TypeParam], self_type: &Path, f: &mut F) -> Path
where
F: FnMut(&Ident) -> Type,
{
Path {
leading_colon: path.leading_colon,
segments: path
.segments
.iter()
.map(|segment| PathSegment {
ident: segment.ident.clone(),
arguments: match segment.arguments {
PathArguments::AngleBracketed(ref data) => {
PathArguments::AngleBracketed(AngleBracketedGenericArguments {
args: data
.args
.iter()
.map(|arg| match arg {
ty @ &GenericArgument::Lifetime(_) => ty.clone(),
&GenericArgument::Type(ref data) => {
GenericArgument::Type(map_type_params(data, params, self_type, f))
},
&GenericArgument::Binding(ref data) => {
GenericArgument::Binding(Binding {
ty: map_type_params(&data.ty, params, self_type, f),
..data.clone()
})
},
ref arg => panic!("arguments {:?} cannot be mapped yet", arg),
})
.collect(),
..data.clone()
})
},
ref arg @ PathArguments::None => arg.clone(),
ref parameters => panic!("parameters {:?} cannot be mapped yet", parameters),
},
})
.collect(),
}
}
fn path_to_ident(path: &Path) -> Option<&Ident> {
match *path {
Path {
leading_colon: None,
ref segments,
} if segments.len() == 1 => {
if segments[0].arguments.is_empty() {
Some(&segments[0].ident)
} else {
None
}
},
_ => None,
}
}
pub fn parse_field_attrs<A>(field: &Field) -> A
where
A: FromField,
{
match A::from_field(field) {
Ok(attrs) => attrs,
Err(e) => panic!("failed to parse field attributes: {}", e),
}
}
pub fn parse_input_attrs<A>(input: &DeriveInput) -> A
where
A: FromDeriveInput,
{
match A::from_derive_input(input) {
Ok(attrs) => attrs,
Err(e) => panic!("failed to parse input attributes: {}", e),
}
}
pub fn parse_variant_attrs_from_ast<A>(variant: &VariantAst) -> A
where
A: FromVariant,
{
let v = Variant {
ident: variant.ident.clone(),
attrs: variant.attrs.to_vec(),
fields: variant.fields.clone(),
discriminant: variant.discriminant.clone(),
};
parse_variant_attrs(&v)
}
pub fn parse_variant_attrs<A>(variant: &Variant) -> A
where
A: FromVariant,
{
match A::from_variant(variant) {
Ok(attrs) => attrs,
Err(e) => panic!("failed to parse variant attributes: {}", e),
}
}
pub fn ref_pattern<'a>(
variant: &'a VariantInfo,
prefix: &str,
) -> (TokenStream, Vec<BindingInfo<'a>>) {
let mut v = variant.clone();
v.bind_with(|_| BindStyle::Ref);
v.bindings_mut().iter_mut().for_each(|b| {
b.binding = Ident::new(&format!("{}_{}", b.binding, prefix), Span::call_site())
});
(v.pat(), v.bindings().to_vec())
}
pub fn value<'a>(variant: &'a VariantInfo, prefix: &str) -> (TokenStream, Vec<BindingInfo<'a>>) {
let mut v = variant.clone();
v.bindings_mut().iter_mut().for_each(|b| {
b.binding = Ident::new(&format!("{}_{}", b.binding, prefix), Span::call_site())
});
v.bind_with(|_| BindStyle::Move);
(v.pat(), v.bindings().to_vec())
}
/// Transforms "FooBar" to "foo-bar".
///
/// If the first Camel segment is "Moz", "Webkit", or "Servo", the result string
/// is prepended with "-".
pub fn to_css_identifier(mut camel_case: &str) -> String {
camel_case = camel_case.trim_end_matches('_');
let mut first = true;
let mut result = String::with_capacity(camel_case.len());
while let Some(segment) = split_camel_segment(&mut camel_case) {
if first {
match segment {
"Moz" | "Webkit" | "Servo" => first = false,
_ => {},
}
}
if !first {
result.push_str("-");
}
first = false;
result.push_str(&segment.to_lowercase());
}
result
}
/// Given "FooBar", returns "Foo" and sets `camel_case` to "Bar".
fn split_camel_segment<'input>(camel_case: &mut &'input str) -> Option<&'input str> {
let index = match camel_case.chars().next() {
None => return None,
Some(ch) => ch.len_utf8(),
};
let end_position = camel_case[index..]
.find(char::is_uppercase)
.map_or(camel_case.len(), |pos| index + pos);
let result = &camel_case[..end_position];
*camel_case = &camel_case[end_position..];
Some(result)
}