servo/components/script/dom/subtlecrypto.rs
Josh Matthews d35da38a2f
Cleanups for future script crate split (#35987)
* script: Avoid direct impl blocks on generated dicts and unions.

Signed-off-by: Josh Matthews <josh@joshmatthews.net>

* script: Remove references to codegen-specific import module.

Signed-off-by: Josh Matthews <josh@joshmatthews.net>

* Fix tidy.

Signed-off-by: Josh Matthews <josh@joshmatthews.net>

---------

Signed-off-by: Josh Matthews <josh@joshmatthews.net>
2025-03-16 13:46:14 +00:00

3191 lines
121 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use std::num::NonZero;
use std::ptr;
use std::rc::Rc;
use aes::cipher::block_padding::Pkcs7;
use aes::cipher::generic_array::GenericArray;
use aes::cipher::{BlockDecryptMut, BlockEncryptMut, KeyIvInit, StreamCipher};
use aes::{Aes128, Aes192, Aes256};
use aes_gcm::{AeadInPlace, AesGcm, KeyInit};
use aes_kw::{KekAes128, KekAes192, KekAes256};
use aws_lc_rs::{digest, hkdf, hmac, pbkdf2};
use base64::prelude::*;
use cipher::consts::{U12, U16, U32};
use dom_struct::dom_struct;
use js::conversions::ConversionResult;
use js::jsapi::{JS_NewObject, JSObject};
use js::jsval::ObjectValue;
use js::rust::MutableHandleObject;
use js::typedarray::ArrayBufferU8;
use servo_rand::{RngCore, ServoRng};
use crate::dom::bindings::buffer_source::create_buffer_source;
use crate::dom::bindings::cell::DomRefCell;
use crate::dom::bindings::codegen::Bindings::CryptoKeyBinding::{
CryptoKeyMethods, KeyType, KeyUsage,
};
use crate::dom::bindings::codegen::Bindings::SubtleCryptoBinding::{
AesCbcParams, AesCtrParams, AesDerivedKeyParams, AesGcmParams, AesKeyAlgorithm,
AesKeyGenParams, Algorithm, AlgorithmIdentifier, HkdfParams, HmacImportParams,
HmacKeyAlgorithm, HmacKeyGenParams, JsonWebKey, KeyAlgorithm, KeyFormat, Pbkdf2Params,
SubtleCryptoMethods,
};
use crate::dom::bindings::codegen::UnionTypes::{
ArrayBufferViewOrArrayBuffer, ArrayBufferViewOrArrayBufferOrJsonWebKey,
};
use crate::dom::bindings::error::{Error, Fallible};
use crate::dom::bindings::refcounted::{Trusted, TrustedPromise};
use crate::dom::bindings::reflector::{DomGlobal, Reflector, reflect_dom_object};
use crate::dom::bindings::root::DomRoot;
use crate::dom::bindings::str::DOMString;
use crate::dom::bindings::trace::RootedTraceableBox;
use crate::dom::cryptokey::{CryptoKey, Handle};
use crate::dom::globalscope::GlobalScope;
use crate::dom::promise::Promise;
use crate::realms::InRealm;
use crate::script_runtime::{CanGc, JSContext};
// String constants for algorithms/curves
const ALG_AES_CBC: &str = "AES-CBC";
const ALG_AES_CTR: &str = "AES-CTR";
const ALG_AES_GCM: &str = "AES-GCM";
const ALG_AES_KW: &str = "AES-KW";
const ALG_SHA1: &str = "SHA-1";
const ALG_SHA256: &str = "SHA-256";
const ALG_SHA384: &str = "SHA-384";
const ALG_SHA512: &str = "SHA-512";
const ALG_HMAC: &str = "HMAC";
const ALG_HKDF: &str = "HKDF";
const ALG_PBKDF2: &str = "PBKDF2";
const ALG_RSASSA_PKCS1: &str = "RSASSA-PKCS1-v1_5";
const ALG_RSA_OAEP: &str = "RSA-OAEP";
const ALG_RSA_PSS: &str = "RSA-PSS";
const ALG_ECDH: &str = "ECDH";
const ALG_ECDSA: &str = "ECDSA";
#[allow(dead_code)]
static SUPPORTED_ALGORITHMS: &[&str] = &[
ALG_AES_CBC,
ALG_AES_CTR,
ALG_AES_GCM,
ALG_AES_KW,
ALG_SHA1,
ALG_SHA256,
ALG_SHA384,
ALG_SHA512,
ALG_HMAC,
ALG_HKDF,
ALG_PBKDF2,
ALG_RSASSA_PKCS1,
ALG_RSA_OAEP,
ALG_RSA_PSS,
ALG_ECDH,
ALG_ECDSA,
];
const NAMED_CURVE_P256: &str = "P-256";
const NAMED_CURVE_P384: &str = "P-384";
const NAMED_CURVE_P521: &str = "P-521";
#[allow(dead_code)]
static SUPPORTED_CURVES: &[&str] = &[NAMED_CURVE_P256, NAMED_CURVE_P384, NAMED_CURVE_P521];
type Aes128CbcEnc = cbc::Encryptor<Aes128>;
type Aes128CbcDec = cbc::Decryptor<Aes128>;
type Aes192CbcEnc = cbc::Encryptor<Aes192>;
type Aes192CbcDec = cbc::Decryptor<Aes192>;
type Aes256CbcEnc = cbc::Encryptor<Aes256>;
type Aes256CbcDec = cbc::Decryptor<Aes256>;
type Aes128Ctr = ctr::Ctr64BE<Aes128>;
type Aes192Ctr = ctr::Ctr64BE<Aes192>;
type Aes256Ctr = ctr::Ctr64BE<Aes256>;
type Aes128Gcm96Iv = AesGcm<Aes128, U12>;
type Aes128Gcm128Iv = AesGcm<Aes128, U16>;
type Aes192Gcm96Iv = AesGcm<Aes192, U12>;
type Aes256Gcm96Iv = AesGcm<Aes256, U12>;
type Aes128Gcm256Iv = AesGcm<Aes128, U32>;
type Aes192Gcm256Iv = AesGcm<Aes192, U32>;
type Aes256Gcm256Iv = AesGcm<Aes256, U32>;
#[dom_struct]
pub(crate) struct SubtleCrypto {
reflector_: Reflector,
#[no_trace]
rng: DomRefCell<ServoRng>,
}
impl SubtleCrypto {
fn new_inherited() -> SubtleCrypto {
SubtleCrypto {
reflector_: Reflector::new(),
rng: DomRefCell::new(ServoRng::default()),
}
}
pub(crate) fn new(global: &GlobalScope, can_gc: CanGc) -> DomRoot<SubtleCrypto> {
reflect_dom_object(Box::new(SubtleCrypto::new_inherited()), global, can_gc)
}
}
impl SubtleCryptoMethods<crate::DomTypeHolder> for SubtleCrypto {
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-encrypt>
fn Encrypt(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
key: &CryptoKey,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_encrypt_or_decrypt(cx, &algorithm)
{
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e, can_gc);
return promise;
},
};
let data = match data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_key = Trusted::new(key);
let key_alg = key.algorithm();
let valid_usage = key.usages().contains(&KeyUsage::Encrypt);
self.global()
.task_manager()
.dom_manipulation_task_source()
.queue(task!(encrypt: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = trusted_key.root();
if !valid_usage || normalized_algorithm.name() != key_alg {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
if let Err(e) = normalized_algorithm.encrypt(
&subtle,
&key,
&data,
cx,
array_buffer_ptr.handle_mut(),
CanGc::note(),
) {
promise.reject_error(e, CanGc::note());
return;
}
promise.resolve_native(&*array_buffer_ptr.handle(), CanGc::note());
}));
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-decrypt>
fn Decrypt(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
key: &CryptoKey,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_encrypt_or_decrypt(cx, &algorithm)
{
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e, can_gc);
return promise;
},
};
let data = match data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_key = Trusted::new(key);
let key_alg = key.algorithm();
let valid_usage = key.usages().contains(&KeyUsage::Decrypt);
self.global()
.task_manager()
.dom_manipulation_task_source()
.queue(task!(decrypt: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = trusted_key.root();
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
if !valid_usage || normalized_algorithm.name() != key_alg {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
if let Err(e) = normalized_algorithm.decrypt(
&subtle,
&key,
&data,
cx,
array_buffer_ptr.handle_mut(),
CanGc::note(),
) {
promise.reject_error(e, CanGc::note());
return;
}
promise.resolve_native(&*array_buffer_ptr.handle(), CanGc::note());
}));
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-sign>
fn Sign(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
key: &CryptoKey,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
// Step 1. Let algorithm and key be the algorithm and key parameters passed to the sign() method, respectively.
// Step 2. Let data be the result of getting a copy of the bytes held by the data parameter passed to
// the sign() method.
let data = match &data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
// Step 3. Let normalizedAlgorithm be the result of normalizing an algorithm, with alg set to algorithm and
// op set to "sign".
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_sign_or_verify(cx, &algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
// Step 4. If an error occurred, return a Promise rejected with normalizedAlgorithm.
promise.reject_error(e, can_gc);
return promise;
},
};
// Step 5. Let promise be a new Promise.
// NOTE: We did that in preparation of Step 4.
// Step 6. Return promise and perform the remaining steps in parallel.
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_key = Trusted::new(key);
self.global()
.task_manager()
.dom_manipulation_task_source()
.queue(task!(sign: move || {
// Step 7. If the following steps or referenced procedures say to throw an error, reject promise
// with the returned error and then terminate the algorithm.
let promise = trusted_promise.root();
let key = trusted_key.root();
// Step 8. If the name member of normalizedAlgorithm is not equal to the name attribute of the
// [[algorithm]] internal slot of key then throw an InvalidAccessError.
if normalized_algorithm.name() != key.algorithm() {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
// Step 9. If the [[usages]] internal slot of key does not contain an entry that is "sign",
// then throw an InvalidAccessError.
if !key.usages().contains(&KeyUsage::Sign) {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
// Step 10. Let result be the result of performing the sign operation specified by normalizedAlgorithm
// using key and algorithm and with data as message.
let cx = GlobalScope::get_cx();
let result = match normalized_algorithm.sign(cx, &key, &data) {
Ok(signature) => signature,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
};
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
create_buffer_source::<ArrayBufferU8>(cx, &result, array_buffer_ptr.handle_mut(), CanGc::note())
.expect("failed to create buffer source for exported key.");
// Step 9. Resolve promise with result.
promise.resolve_native(&*array_buffer_ptr, CanGc::note());
}));
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-verify>
fn Verify(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
key: &CryptoKey,
signature: ArrayBufferViewOrArrayBuffer,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
// Step 1. Let algorithm and key be the algorithm and key parameters passed to the verify() method,
// respectively.
// Step 2. Let signature be the result of getting a copy of the bytes held by the signature parameter passed
// to the verify() method.
let signature = match &signature {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
// Step 3. Let data be the result of getting a copy of the bytes held by the data parameter passed to the
// verify() method.
let data = match &data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
// Step 4. Let normalizedAlgorithm be the result of normalizing an algorithm, with alg set to
// algorithm and op set to "verify".
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_sign_or_verify(cx, &algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
// Step 5. If an error occurred, return a Promise rejected with normalizedAlgorithm.
promise.reject_error(e, can_gc);
return promise;
},
};
// Step 6. Let promise be a new Promise.
// NOTE: We did that in preparation of Step 6.
// Step 7. Return promise and perform the remaining steps in parallel.
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_key = Trusted::new(key);
self.global()
.task_manager()
.dom_manipulation_task_source()
.queue(task!(sign: move || {
// Step 8. If the following steps or referenced procedures say to throw an error, reject promise
// with the returned error and then terminate the algorithm.
let promise = trusted_promise.root();
let key = trusted_key.root();
// Step 9. If the name member of normalizedAlgorithm is not equal to the name attribute of the
// [[algorithm]] internal slot of key then throw an InvalidAccessError.
if normalized_algorithm.name() != key.algorithm() {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
// Step 10. If the [[usages]] internal slot of key does not contain an entry that is "verify",
// then throw an InvalidAccessError.
if !key.usages().contains(&KeyUsage::Verify) {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
// Step 1. Let result be the result of performing the verify operation specified by normalizedAlgorithm
// using key, algorithm and signature and with data as message.
let cx = GlobalScope::get_cx();
let result = match normalized_algorithm.verify(cx, &key, &data, &signature) {
Ok(result) => result,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
};
// Step 9. Resolve promise with result.
promise.resolve_native(&result, CanGc::note());
}));
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-digest>
fn Digest(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
data: ArrayBufferViewOrArrayBuffer,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
// Step 1. Let algorithm be the algorithm parameter passed to the digest() method.
// Step 2. Let data be the result of getting a copy of the bytes held by the
// data parameter passed to the digest() method.
let data = match data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
// Step 3. Let normalizedAlgorithm be the result of normalizing an algorithm,
// with alg set to algorithm and op set to "digest".
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_digest(cx, &algorithm) {
Ok(normalized_algorithm) => normalized_algorithm,
Err(e) => {
// Step 4. If an error occurred, return a Promise rejected with normalizedAlgorithm.
promise.reject_error(e, can_gc);
return promise;
},
};
// Step 5. Let promise be a new Promise.
// NOTE: We did that in preparation of Step 4.
// Step 6. Return promise and perform the remaining steps in parallel.
let trusted_promise = TrustedPromise::new(promise.clone());
self.global().task_manager().dom_manipulation_task_source().queue(
task!(generate_key: move || {
// Step 7. If the following steps or referenced procedures say to throw an error, reject promise
// with the returned error and then terminate the algorithm.
let promise = trusted_promise.root();
// Step 8. Let result be the result of performing the digest operation specified by
// normalizedAlgorithm using algorithm, with data as message.
let digest = match normalized_algorithm.digest(&data) {
Ok(digest) => digest,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
};
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
create_buffer_source::<ArrayBufferU8>(cx, digest.as_ref(), array_buffer_ptr.handle_mut(), CanGc::note())
.expect("failed to create buffer source for exported key.");
// Step 9. Resolve promise with result.
promise.resolve_native(&*array_buffer_ptr, CanGc::note());
})
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-generateKey>
fn GenerateKey(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
extractable: bool,
key_usages: Vec<KeyUsage>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_generate_key(cx, &algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e, can_gc);
return promise;
},
};
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
self.global()
.task_manager()
.dom_manipulation_task_source()
.queue(task!(generate_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = normalized_algorithm.generate_key(&subtle, key_usages, extractable, CanGc::note());
match key {
Ok(key) => promise.resolve_native(&key, CanGc::note()),
Err(e) => promise.reject_error(e, CanGc::note()),
}
}));
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-deriveKey>
fn DeriveKey(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
base_key: &CryptoKey,
derived_key_type: AlgorithmIdentifier,
extractable: bool,
key_usages: Vec<KeyUsage>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
// Step 1. Let algorithm, baseKey, derivedKeyType, extractable and usages be the algorithm, baseKey,
// derivedKeyType, extractable and keyUsages parameters passed to the deriveKey() method, respectively.
// Step 2. Let normalizedAlgorithm be the result of normalizing an algorithm, with alg set to algorithm
// and op set to "deriveBits".
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_derive_bits(cx, &algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
// Step 3. If an error occurred, return a Promise rejected with normalizedAlgorithm.
promise.reject_error(e, can_gc);
return promise;
},
};
// Step 4. Let normalizedDerivedKeyAlgorithmImport be the result of normalizing an algorithm,
// with alg set to derivedKeyType and op set to "importKey".
let normalized_derived_key_algorithm_import =
match normalize_algorithm_for_import_key(cx, &derived_key_type) {
Ok(algorithm) => algorithm,
Err(e) => {
// Step 5. If an error occurred, return a Promise rejected with normalizedDerivedKeyAlgorithmImport.
promise.reject_error(e, can_gc);
return promise;
},
};
// Step 6. Let normalizedDerivedKeyAlgorithmLength be the result of normalizing an algorithm, with alg set
// to derivedKeyType and op set to "get key length".
let normalized_derived_key_algorithm_length =
match normalize_algorithm_for_get_key_length(cx, &derived_key_type) {
Ok(algorithm) => algorithm,
Err(e) => {
// Step 7. If an error occurred, return a Promise rejected with normalizedDerivedKeyAlgorithmLength.
promise.reject_error(e, can_gc);
return promise;
},
};
// Step 8. Let promise be a new Promise.
// NOTE: We created the promise earlier, after Step 1.
// Step 9. Return promise and perform the remaining steps in parallel.
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_base_key = Trusted::new(base_key);
let this = Trusted::new(self);
self.global().task_manager().dom_manipulation_task_source().queue(
task!(derive_key: move || {
// Step 10. If the following steps or referenced procedures say to throw an error, reject promise
// with the returned error and then terminate the algorithm.
// TODO Step 11. If the name member of normalizedAlgorithm is not equal to the name attribute of the #
// [[algorithm]] internal slot of baseKey then throw an InvalidAccessError.
let promise = trusted_promise.root();
let base_key = trusted_base_key.root();
let subtle = this.root();
// Step 12. If the [[usages]] internal slot of baseKey does not contain an entry that is
// "deriveKey", then throw an InvalidAccessError.
if !base_key.usages().contains(&KeyUsage::DeriveKey) {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
// Step 13. Let length be the result of performing the get key length algorithm specified by
// normalizedDerivedKeyAlgorithmLength using derivedKeyType.
let length = match normalized_derived_key_algorithm_length.get_key_length() {
Ok(length) => length,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
};
// Step 14. Let secret be the result of performing the derive bits operation specified by
// normalizedAlgorithm using key, algorithm and length.
let secret = match normalized_algorithm.derive_bits(&base_key, Some(length)){
Ok(secret) => secret,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
};
// Step 15. Let result be the result of performing the import key operation specified by
// normalizedDerivedKeyAlgorithmImport using "raw" as format, secret as keyData, derivedKeyType as
// algorithm and using extractable and usages.
let result = normalized_derived_key_algorithm_import.import_key(
&subtle,
KeyFormat::Raw,
&secret,
extractable,
key_usages,
CanGc::note()
);
let result = match result {
Ok(key) => key,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
};
// Step 17. If the [[type]] internal slot of result is "secret" or "private" and usages
// is empty, then throw a SyntaxError.
if matches!(result.Type(), KeyType::Secret | KeyType::Private) && result.usages().is_empty() {
promise.reject_error(Error::Syntax, CanGc::note());
return;
}
// Step 17. Resolve promise with result.
promise.resolve_native(&*result, CanGc::note());
}),
);
promise
}
/// <https://w3c.github.io/webcrypto/#dfn-SubtleCrypto-method-deriveBits>
fn DeriveBits(
&self,
cx: JSContext,
algorithm: AlgorithmIdentifier,
base_key: &CryptoKey,
length: Option<u32>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
// Step 1. Let algorithm, baseKey and length, be the algorithm, baseKey and
// length parameters passed to the deriveBits() method, respectively.
// Step 2. Let normalizedAlgorithm be the result of normalizing an algorithm,
// with alg set to algorithm and op set to "deriveBits".
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_derive_bits(cx, &algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
// Step 3. If an error occurred, return a Promise rejected with normalizedAlgorithm.
promise.reject_error(e, can_gc);
return promise;
},
};
// Step 4. Let promise be a new Promise object.
// NOTE: We did that in preparation of Step 3.
// Step 5. Return promise and perform the remaining steps in parallel.
let trusted_promise = TrustedPromise::new(promise.clone());
let trusted_base_key = Trusted::new(base_key);
self.global()
.task_manager()
.dom_manipulation_task_source()
.queue(task!(import_key: move || {
// Step 6. If the following steps or referenced procedures say to throw an error,
// reject promise with the returned error and then terminate the algorithm.
// TODO Step 7. If the name member of normalizedAlgorithm is not equal to the name attribute
// of the [[algorithm]] internal slot of baseKey then throw an InvalidAccessError.
let promise = trusted_promise.root();
let base_key = trusted_base_key.root();
// Step 8. If the [[usages]] internal slot of baseKey does not contain an entry that
// is "deriveBits", then throw an InvalidAccessError.
if !base_key.usages().contains(&KeyUsage::DeriveBits) {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
// Step 9. Let result be the result of creating an ArrayBuffer containing the result of performing the
// derive bits operation specified by normalizedAlgorithm using baseKey, algorithm and length.
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
let result = match normalized_algorithm.derive_bits(&base_key, length) {
Ok(derived_bits) => derived_bits,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
};
create_buffer_source::<ArrayBufferU8>(cx, &result, array_buffer_ptr.handle_mut(), CanGc::note())
.expect("failed to create buffer source for derived bits.");
// Step 10. Resolve promise with result.
promise.resolve_native(&*array_buffer_ptr, CanGc::note());
}));
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-importKey>
fn ImportKey(
&self,
cx: JSContext,
format: KeyFormat,
key_data: ArrayBufferViewOrArrayBufferOrJsonWebKey,
algorithm: AlgorithmIdentifier,
extractable: bool,
key_usages: Vec<KeyUsage>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_import_key(cx, &algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e, can_gc);
return promise;
},
};
let data = match key_data {
ArrayBufferViewOrArrayBufferOrJsonWebKey::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBufferOrJsonWebKey::JsonWebKey(json_web_key) => {
let data_string = match json_web_key.k {
Some(s) => s.to_string(),
None => {
promise.reject_error(Error::Syntax, can_gc);
return promise;
},
};
match base64::engine::general_purpose::STANDARD_NO_PAD
.decode(data_string.as_bytes())
{
Ok(data) => data,
Err(_) => {
promise.reject_error(Error::Syntax, can_gc);
return promise;
},
}
},
ArrayBufferViewOrArrayBufferOrJsonWebKey::ArrayBuffer(array_buffer) => {
array_buffer.to_vec()
},
};
let this = Trusted::new(self);
let trusted_promise = TrustedPromise::new(promise.clone());
self.global()
.task_manager()
.dom_manipulation_task_source()
.queue(task!(import_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let imported_key = normalized_algorithm.import_key(&subtle,
format, &data, extractable, key_usages, CanGc::note());
match imported_key {
Ok(k) => promise.resolve_native(&k, CanGc::note()),
Err(e) => promise.reject_error(e, CanGc::note()),
};
}));
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-exportKey>
fn ExportKey(
&self,
format: KeyFormat,
key: &CryptoKey,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let this = Trusted::new(self);
let trusted_key = Trusted::new(key);
let trusted_promise = TrustedPromise::new(promise.clone());
self.global().task_manager().dom_manipulation_task_source().queue(
task!(export_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = trusted_key.root();
let alg_name = key.algorithm();
if matches!(
alg_name.as_str(), ALG_SHA1 | ALG_SHA256 | ALG_SHA384 | ALG_SHA512 | ALG_HKDF | ALG_PBKDF2
) {
promise.reject_error(Error::NotSupported, CanGc::note());
return;
}
if !key.Extractable() {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
let exported_key = match alg_name.as_str() {
ALG_AES_CBC | ALG_AES_CTR | ALG_AES_KW | ALG_AES_GCM => subtle.export_key_aes(format, &key),
_ => Err(Error::NotSupported),
};
match exported_key {
Ok(k) => {
match k {
AesExportedKey::Raw(k) => {
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
create_buffer_source::<ArrayBufferU8>(cx, &k, array_buffer_ptr.handle_mut(),
CanGc::note())
.expect("failed to create buffer source for exported key.");
promise.resolve_native(&array_buffer_ptr.get(), CanGc::note())
},
AesExportedKey::Jwk(k) => {
promise.resolve_native(&k, CanGc::note())
},
}
},
Err(e) => promise.reject_error(e, CanGc::note()),
}
}),
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-wrapKey>
fn WrapKey(
&self,
cx: JSContext,
format: KeyFormat,
key: &CryptoKey,
wrapping_key: &CryptoKey,
wrap_algorithm: AlgorithmIdentifier,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let normalized_algorithm = match normalize_algorithm_for_key_wrap(cx, &wrap_algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e, can_gc);
return promise;
},
};
let this = Trusted::new(self);
let trusted_key = Trusted::new(key);
let trusted_wrapping_key = Trusted::new(wrapping_key);
let trusted_promise = TrustedPromise::new(promise.clone());
self.global().task_manager().dom_manipulation_task_source().queue(
task!(wrap_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let key = trusted_key.root();
let wrapping_key = trusted_wrapping_key.root();
let alg_name = key.algorithm();
let wrapping_alg_name = wrapping_key.algorithm();
let valid_wrap_usage = wrapping_key.usages().contains(&KeyUsage::WrapKey);
let names_match = normalized_algorithm.name() == wrapping_alg_name.as_str();
if !valid_wrap_usage || !names_match || !key.Extractable() {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
if matches!(
alg_name.as_str(), ALG_SHA1 | ALG_SHA256 | ALG_SHA384 | ALG_SHA512 | ALG_HKDF | ALG_PBKDF2
) {
promise.reject_error(Error::NotSupported, CanGc::note());
return;
}
let exported_key = match subtle.export_key_aes(format, &key) {
Ok(k) => k,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
},
};
let bytes = match exported_key {
AesExportedKey::Raw(k) => k,
AesExportedKey::Jwk(key) => {
// The spec states to convert this to an ECMAscript object and stringify it, but since we know
// that the output will be a string of JSON we can just construct it manually
// TODO: Support more than just a subset of the JWK dict, or find a way to
// stringify via SM internals
let Some(k) = key.k else {
promise.reject_error(Error::Syntax, CanGc::note());
return;
};
let Some(alg) = key.alg else {
promise.reject_error(Error::Syntax, CanGc::note());
return;
};
let Some(ext) = key.ext else {
promise.reject_error(Error::Syntax, CanGc::note());
return;
};
let Some(key_ops) = key.key_ops else {
promise.reject_error(Error::Syntax, CanGc::note());
return;
};
let key_ops_str = key_ops.iter().map(|op| op.to_string()).collect::<Vec<String>>();
format!("{{
\"kty\": \"oct\",
\"k\": \"{}\",
\"alg\": \"{}\",
\"ext\": {},
\"key_ops\": {:?}
}}", k, alg, ext, key_ops_str)
.into_bytes()
},
};
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
let result = match normalized_algorithm {
KeyWrapAlgorithm::AesKw => {
subtle.wrap_key_aes_kw(&wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(), CanGc::note())
},
KeyWrapAlgorithm::AesCbc(params) => {
subtle.encrypt_aes_cbc(&params, &wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(),
CanGc::note())
},
KeyWrapAlgorithm::AesCtr(params) => {
subtle.encrypt_decrypt_aes_ctr(
&params, &wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(), CanGc::note()
)
},
KeyWrapAlgorithm::AesGcm(params) => {
subtle.encrypt_aes_gcm(
&params, &wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(), CanGc::note()
)
},
};
match result {
Ok(_) => promise.resolve_native(&*array_buffer_ptr, CanGc::note()),
Err(e) => promise.reject_error(e, CanGc::note()),
}
}),
);
promise
}
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-unwrapKey>
fn UnwrapKey(
&self,
cx: JSContext,
format: KeyFormat,
wrapped_key: ArrayBufferViewOrArrayBuffer,
unwrapping_key: &CryptoKey,
unwrap_algorithm: AlgorithmIdentifier,
unwrapped_key_algorithm: AlgorithmIdentifier,
extractable: bool,
key_usages: Vec<KeyUsage>,
comp: InRealm,
can_gc: CanGc,
) -> Rc<Promise> {
let promise = Promise::new_in_current_realm(comp, can_gc);
let wrapped_key_bytes = match wrapped_key {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let normalized_algorithm = match normalize_algorithm_for_key_wrap(cx, &unwrap_algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e, can_gc);
return promise;
},
};
let normalized_key_algorithm =
match normalize_algorithm_for_import_key(cx, &unwrapped_key_algorithm) {
Ok(algorithm) => algorithm,
Err(e) => {
promise.reject_error(e, can_gc);
return promise;
},
};
let this = Trusted::new(self);
let trusted_key = Trusted::new(unwrapping_key);
let trusted_promise = TrustedPromise::new(promise.clone());
self.global().task_manager().dom_manipulation_task_source().queue(
task!(unwrap_key: move || {
let subtle = this.root();
let promise = trusted_promise.root();
let unwrapping_key = trusted_key.root();
let alg_name = unwrapping_key.algorithm();
let valid_usage = unwrapping_key.usages().contains(&KeyUsage::UnwrapKey);
if !valid_usage || normalized_algorithm.name() != alg_name.as_str() {
promise.reject_error(Error::InvalidAccess, CanGc::note());
return;
}
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
let result = match normalized_algorithm {
KeyWrapAlgorithm::AesKw => {
subtle.unwrap_key_aes_kw(&unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
CanGc::note())
},
KeyWrapAlgorithm::AesCbc(params) => {
subtle.decrypt_aes_cbc(
&params, &unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
CanGc::note()
)
},
KeyWrapAlgorithm::AesCtr(params) => {
subtle.encrypt_decrypt_aes_ctr(
&params, &unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
CanGc::note()
)
},
KeyWrapAlgorithm::AesGcm(params) => {
subtle.decrypt_aes_gcm(
&params, &unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
CanGc::note()
)
},
};
let bytes = match result {
Ok(bytes) => bytes,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
},
};
let import_key_bytes = match format {
KeyFormat::Raw | KeyFormat::Spki | KeyFormat::Pkcs8 => bytes,
KeyFormat::Jwk => {
match parse_jwk(&bytes, normalized_key_algorithm.clone(), extractable, &key_usages) {
Ok(bytes) => bytes,
Err(e) => {
promise.reject_error(e, CanGc::note());
return;
}
}
},
};
match normalized_key_algorithm.import_key(&subtle, format, &import_key_bytes,
extractable, key_usages, CanGc::note()) {
Ok(imported_key) => promise.resolve_native(&imported_key, CanGc::note()),
Err(e) => promise.reject_error(e, CanGc::note()),
}
}),
);
promise
}
}
// These "subtle" structs are proxies for the codegen'd dicts which don't hold a DOMString
// so they can be sent safely when running steps in parallel.
#[derive(Clone, Debug)]
pub(crate) struct SubtleAlgorithm {
#[allow(dead_code)]
pub(crate) name: String,
}
impl From<DOMString> for SubtleAlgorithm {
fn from(name: DOMString) -> Self {
SubtleAlgorithm {
name: name.to_string(),
}
}
}
#[derive(Clone, Debug)]
pub(crate) struct SubtleAesCbcParams {
#[allow(dead_code)]
pub(crate) name: String,
pub(crate) iv: Vec<u8>,
}
impl From<RootedTraceableBox<AesCbcParams>> for SubtleAesCbcParams {
fn from(params: RootedTraceableBox<AesCbcParams>) -> Self {
let iv = match &params.iv {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
SubtleAesCbcParams {
name: params.parent.name.to_string(),
iv,
}
}
}
#[derive(Clone, Debug)]
pub(crate) struct SubtleAesCtrParams {
pub(crate) name: String,
pub(crate) counter: Vec<u8>,
pub(crate) length: u8,
}
impl From<RootedTraceableBox<AesCtrParams>> for SubtleAesCtrParams {
fn from(params: RootedTraceableBox<AesCtrParams>) -> Self {
let counter = match &params.counter {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
SubtleAesCtrParams {
name: params.parent.name.to_string(),
counter,
length: params.length,
}
}
}
#[derive(Clone, Debug)]
pub(crate) struct SubtleAesGcmParams {
pub(crate) name: String,
pub(crate) iv: Vec<u8>,
pub(crate) additional_data: Option<Vec<u8>>,
pub(crate) tag_length: Option<u8>,
}
impl From<RootedTraceableBox<AesGcmParams>> for SubtleAesGcmParams {
fn from(params: RootedTraceableBox<AesGcmParams>) -> Self {
let iv = match &params.iv {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let additional_data = params.additionalData.as_ref().map(|data| match data {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
});
SubtleAesGcmParams {
name: params.parent.name.to_string(),
iv,
additional_data,
tag_length: params.tagLength,
}
}
}
#[derive(Clone, Debug)]
pub(crate) struct SubtleAesKeyGenParams {
pub(crate) name: String,
pub(crate) length: u16,
}
impl From<AesKeyGenParams> for SubtleAesKeyGenParams {
fn from(params: AesKeyGenParams) -> Self {
SubtleAesKeyGenParams {
name: params.parent.name.to_string().to_uppercase(),
length: params.length,
}
}
}
/// <https://w3c.github.io/webcrypto/#dfn-HmacImportParams>
#[derive(Clone)]
struct SubtleHmacImportParams {
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyAlgorithm-hash>
hash: DigestAlgorithm,
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyGenParams-length>
length: Option<u32>,
}
impl SubtleHmacImportParams {
fn new(cx: JSContext, params: RootedTraceableBox<HmacImportParams>) -> Fallible<Self> {
let hash = normalize_algorithm_for_digest(cx, &params.hash)?;
let params = Self {
hash,
length: params.length,
};
Ok(params)
}
/// <https://w3c.github.io/webcrypto/#hmac-operations>
fn get_key_length(&self) -> Result<u32, Error> {
// Step 1.
let length = match self.length {
// If the length member of normalizedDerivedKeyAlgorithm is not present:
None => {
// Let length be the block size in bits of the hash function identified by the hash member of
// normalizedDerivedKeyAlgorithm.
match self.hash {
DigestAlgorithm::Sha1 => 160,
DigestAlgorithm::Sha256 => 256,
DigestAlgorithm::Sha384 => 384,
DigestAlgorithm::Sha512 => 512,
}
},
// Otherwise, if the length member of normalizedDerivedKeyAlgorithm is non-zero:
Some(length) if length != 0 => {
// Let length be equal to the length member of normalizedDerivedKeyAlgorithm.
length
},
// Otherwise:
_ => {
// throw a TypeError.
return Err(Error::Type("[[length]] must not be zero".to_string()));
},
};
// Step 2. Return length.
Ok(length)
}
}
struct SubtleHmacKeyGenParams {
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyGenParams-hash>
hash: DigestAlgorithm,
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyGenParams-length>
length: Option<u32>,
}
impl SubtleHmacKeyGenParams {
fn new(cx: JSContext, params: RootedTraceableBox<HmacKeyGenParams>) -> Fallible<Self> {
let hash = normalize_algorithm_for_digest(cx, &params.hash)?;
let params = Self {
hash,
length: params.length,
};
Ok(params)
}
}
/// <https://w3c.github.io/webcrypto/#hkdf-params>
#[derive(Clone, Debug)]
pub(crate) struct SubtleHkdfParams {
/// <https://w3c.github.io/webcrypto/#dfn-HkdfParams-hash>
hash: DigestAlgorithm,
/// <https://w3c.github.io/webcrypto/#dfn-HkdfParams-salt>
salt: Vec<u8>,
/// <https://w3c.github.io/webcrypto/#dfn-HkdfParams-info>
info: Vec<u8>,
}
impl SubtleHkdfParams {
fn new(cx: JSContext, params: RootedTraceableBox<HkdfParams>) -> Fallible<Self> {
let hash = normalize_algorithm_for_digest(cx, &params.hash)?;
let salt = match &params.salt {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let info = match &params.info {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let params = Self { hash, salt, info };
Ok(params)
}
}
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params>
#[derive(Clone, Debug)]
pub(crate) struct SubtlePbkdf2Params {
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-salt>
salt: Vec<u8>,
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-iterations>
iterations: u32,
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-hash>
hash: DigestAlgorithm,
}
impl SubtlePbkdf2Params {
fn new(cx: JSContext, params: RootedTraceableBox<Pbkdf2Params>) -> Fallible<Self> {
let salt = match &params.salt {
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
};
let params = Self {
salt,
iterations: params.iterations,
hash: normalize_algorithm_for_digest(cx, &params.hash)?,
};
Ok(params)
}
}
enum GetKeyLengthAlgorithm {
Aes(u16),
Hmac(SubtleHmacImportParams),
}
#[derive(Clone, Copy, Debug)]
enum DigestAlgorithm {
/// <https://w3c.github.io/webcrypto/#sha>
Sha1,
/// <https://w3c.github.io/webcrypto/#sha>
Sha256,
/// <https://w3c.github.io/webcrypto/#sha>
Sha384,
/// <https://w3c.github.io/webcrypto/#sha>
Sha512,
}
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"importKey"`
///
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
#[derive(Clone)]
enum ImportKeyAlgorithm {
AesCbc,
AesCtr,
AesKw,
AesGcm,
Hmac(SubtleHmacImportParams),
Pbkdf2,
Hkdf,
}
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"deriveBits"`
///
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
enum DeriveBitsAlgorithm {
Pbkdf2(SubtlePbkdf2Params),
Hkdf(SubtleHkdfParams),
}
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"encrypt"` or `"decrypt"`
///
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
#[allow(clippy::enum_variant_names)]
enum EncryptionAlgorithm {
AesCbc(SubtleAesCbcParams),
AesCtr(SubtleAesCtrParams),
AesGcm(SubtleAesGcmParams),
}
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"sign"` or `"verify"`
///
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
enum SignatureAlgorithm {
Hmac,
}
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"generateKey"`
///
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
enum KeyGenerationAlgorithm {
Aes(SubtleAesKeyGenParams),
Hmac(SubtleHmacKeyGenParams),
}
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"wrapKey"` or `"unwrapKey"`
///
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
#[allow(clippy::enum_variant_names)]
enum KeyWrapAlgorithm {
AesKw,
AesCbc(SubtleAesCbcParams),
AesCtr(SubtleAesCtrParams),
AesGcm(SubtleAesGcmParams),
}
macro_rules! value_from_js_object {
($t: ty, $cx: ident, $value: ident) => {{
let params_result = <$t>::new($cx, $value.handle()).map_err(|_| Error::JSFailed)?;
let ConversionResult::Success(params) = params_result else {
return Err(Error::Syntax);
};
params
}};
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"get key length"`
fn normalize_algorithm_for_get_key_length(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<GetKeyLengthAlgorithm, Error> {
match algorithm {
AlgorithmIdentifier::Object(obj) => {
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
let name = algorithm.name.str();
let normalized_algorithm = if name.eq_ignore_ascii_case(ALG_AES_CBC) ||
name.eq_ignore_ascii_case(ALG_AES_CTR) ||
name.eq_ignore_ascii_case(ALG_AES_GCM)
{
let params = value_from_js_object!(AesDerivedKeyParams, cx, value);
GetKeyLengthAlgorithm::Aes(params.length)
} else if name.eq_ignore_ascii_case(ALG_HMAC) {
let params = value_from_js_object!(HmacImportParams, cx, value);
let subtle_params = SubtleHmacImportParams::new(cx, params)?;
return Ok(GetKeyLengthAlgorithm::Hmac(subtle_params));
} else {
return Err(Error::NotSupported);
};
Ok(normalized_algorithm)
},
AlgorithmIdentifier::String(_) => {
// All algorithms that support "get key length" require additional parameters
Err(Error::NotSupported)
},
}
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"digest"`
fn normalize_algorithm_for_digest(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<DigestAlgorithm, Error> {
let name = match algorithm {
AlgorithmIdentifier::Object(obj) => {
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
algorithm.name.str().to_uppercase()
},
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
};
let normalized_algorithm = match name.as_str() {
ALG_SHA1 => DigestAlgorithm::Sha1,
ALG_SHA256 => DigestAlgorithm::Sha256,
ALG_SHA384 => DigestAlgorithm::Sha384,
ALG_SHA512 => DigestAlgorithm::Sha512,
_ => return Err(Error::NotSupported),
};
Ok(normalized_algorithm)
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"importKey"`
fn normalize_algorithm_for_import_key(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<ImportKeyAlgorithm, Error> {
let name = match algorithm {
AlgorithmIdentifier::Object(obj) => {
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
let name = algorithm.name.str().to_uppercase();
if name == ALG_HMAC {
let params = value_from_js_object!(HmacImportParams, cx, value);
let subtle_params = SubtleHmacImportParams::new(cx, params)?;
return Ok(ImportKeyAlgorithm::Hmac(subtle_params));
}
name
},
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
};
let normalized_algorithm = match name.as_str() {
ALG_AES_CBC => ImportKeyAlgorithm::AesCbc,
ALG_AES_CTR => ImportKeyAlgorithm::AesCtr,
ALG_AES_KW => ImportKeyAlgorithm::AesKw,
ALG_AES_GCM => ImportKeyAlgorithm::AesGcm,
ALG_PBKDF2 => ImportKeyAlgorithm::Pbkdf2,
ALG_HKDF => ImportKeyAlgorithm::Hkdf,
_ => return Err(Error::NotSupported),
};
Ok(normalized_algorithm)
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"deriveBits"`
fn normalize_algorithm_for_derive_bits(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<DeriveBitsAlgorithm, Error> {
let AlgorithmIdentifier::Object(obj) = algorithm else {
// All algorithms that support "deriveBits" require additional parameters
return Err(Error::NotSupported);
};
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
let normalized_algorithm = if algorithm.name.str().eq_ignore_ascii_case(ALG_PBKDF2) {
let params = value_from_js_object!(Pbkdf2Params, cx, value);
let subtle_params = SubtlePbkdf2Params::new(cx, params)?;
DeriveBitsAlgorithm::Pbkdf2(subtle_params)
} else if algorithm.name.str().eq_ignore_ascii_case(ALG_HKDF) {
let params = value_from_js_object!(HkdfParams, cx, value);
let subtle_params = SubtleHkdfParams::new(cx, params)?;
DeriveBitsAlgorithm::Hkdf(subtle_params)
} else {
return Err(Error::NotSupported);
};
Ok(normalized_algorithm)
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"deriveBits"`
fn normalize_algorithm_for_encrypt_or_decrypt(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<EncryptionAlgorithm, Error> {
let AlgorithmIdentifier::Object(obj) = algorithm else {
// All algorithms that support "encrypt" or "decrypt" require additional parameters
return Err(Error::NotSupported);
};
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
let name = algorithm.name.str();
let normalized_algorithm = if name.eq_ignore_ascii_case(ALG_AES_CBC) {
let params = value_from_js_object!(AesCbcParams, cx, value);
EncryptionAlgorithm::AesCbc(params.into())
} else if name.eq_ignore_ascii_case(ALG_AES_CTR) {
let params = value_from_js_object!(AesCtrParams, cx, value);
EncryptionAlgorithm::AesCtr(params.into())
} else if name.eq_ignore_ascii_case(ALG_AES_GCM) {
let params = value_from_js_object!(AesGcmParams, cx, value);
EncryptionAlgorithm::AesGcm(params.into())
} else {
return Err(Error::NotSupported);
};
Ok(normalized_algorithm)
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"sign"`
/// or `"verify"`
fn normalize_algorithm_for_sign_or_verify(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<SignatureAlgorithm, Error> {
let name = match algorithm {
AlgorithmIdentifier::Object(obj) => {
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
algorithm.name.str().to_uppercase()
},
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
};
let normalized_algorithm = match name.as_str() {
ALG_HMAC => SignatureAlgorithm::Hmac,
_ => return Err(Error::NotSupported),
};
Ok(normalized_algorithm)
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"generateKey"`
fn normalize_algorithm_for_generate_key(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<KeyGenerationAlgorithm, Error> {
let AlgorithmIdentifier::Object(obj) = algorithm else {
// All algorithms that support "generateKey" require additional parameters
return Err(Error::NotSupported);
};
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
let name = algorithm.name.str();
let normalized_algorithm = if name.eq_ignore_ascii_case(ALG_AES_CBC) ||
name.eq_ignore_ascii_case(ALG_AES_CTR) ||
name.eq_ignore_ascii_case(ALG_AES_KW) ||
name.eq_ignore_ascii_case(ALG_AES_GCM)
{
let params = value_from_js_object!(AesKeyGenParams, cx, value);
KeyGenerationAlgorithm::Aes(params.into())
} else if name.eq_ignore_ascii_case(ALG_HMAC) {
let params = value_from_js_object!(HmacKeyGenParams, cx, value);
let subtle_params = SubtleHmacKeyGenParams::new(cx, params)?;
KeyGenerationAlgorithm::Hmac(subtle_params)
} else {
return Err(Error::NotSupported);
};
Ok(normalized_algorithm)
}
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"wrapKey"` or `"unwrapKey"`
fn normalize_algorithm_for_key_wrap(
cx: JSContext,
algorithm: &AlgorithmIdentifier,
) -> Result<KeyWrapAlgorithm, Error> {
let name = match algorithm {
AlgorithmIdentifier::Object(obj) => {
rooted!(in(*cx) let value = ObjectValue(obj.get()));
let algorithm = value_from_js_object!(Algorithm, cx, value);
algorithm.name.str().to_uppercase()
},
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
};
let normalized_algorithm = match name.as_str() {
ALG_AES_KW => KeyWrapAlgorithm::AesKw,
ALG_AES_CBC => {
let AlgorithmIdentifier::Object(obj) = algorithm else {
return Err(Error::Syntax);
};
rooted!(in(*cx) let value = ObjectValue(obj.get()));
KeyWrapAlgorithm::AesCbc(value_from_js_object!(AesCbcParams, cx, value).into())
},
ALG_AES_CTR => {
let AlgorithmIdentifier::Object(obj) = algorithm else {
return Err(Error::Syntax);
};
rooted!(in(*cx) let value = ObjectValue(obj.get()));
KeyWrapAlgorithm::AesCtr(value_from_js_object!(AesCtrParams, cx, value).into())
},
ALG_AES_GCM => {
let AlgorithmIdentifier::Object(obj) = algorithm else {
return Err(Error::Syntax);
};
rooted!(in(*cx) let value = ObjectValue(obj.get()));
KeyWrapAlgorithm::AesGcm(value_from_js_object!(AesGcmParams, cx, value).into())
},
_ => return Err(Error::NotSupported),
};
Ok(normalized_algorithm)
}
impl SubtleCrypto {
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
fn encrypt_aes_cbc(
&self,
params: &SubtleAesCbcParams,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
handle: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
if params.iv.len() != 16 {
return Err(Error::Operation);
}
let plaintext = Vec::from(data);
let iv = GenericArray::from_slice(&params.iv);
let ct = match key.handle() {
Handle::Aes128(data) => {
let key_data = GenericArray::from_slice(data);
Aes128CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
},
Handle::Aes192(data) => {
let key_data = GenericArray::from_slice(data);
Aes192CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
},
Handle::Aes256(data) => {
let key_data = GenericArray::from_slice(data);
Aes256CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
},
_ => return Err(Error::Data),
};
create_buffer_source::<ArrayBufferU8>(cx, &ct, handle, can_gc)
.expect("failed to create buffer source for exported key.");
Ok(ct)
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
fn decrypt_aes_cbc(
&self,
params: &SubtleAesCbcParams,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
handle: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
if params.iv.len() != 16 {
return Err(Error::Operation);
}
let mut ciphertext = Vec::from(data);
let iv = GenericArray::from_slice(&params.iv);
let plaintext = match key.handle() {
Handle::Aes128(data) => {
let key_data = GenericArray::from_slice(data);
Aes128CbcDec::new(key_data, iv)
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
.map_err(|_| Error::Operation)?
},
Handle::Aes192(data) => {
let key_data = GenericArray::from_slice(data);
Aes192CbcDec::new(key_data, iv)
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
.map_err(|_| Error::Operation)?
},
Handle::Aes256(data) => {
let key_data = GenericArray::from_slice(data);
Aes256CbcDec::new(key_data, iv)
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
.map_err(|_| Error::Operation)?
},
_ => return Err(Error::Data),
};
create_buffer_source::<ArrayBufferU8>(cx, plaintext, handle, can_gc)
.expect("failed to create buffer source for exported key.");
Ok(plaintext.to_vec())
}
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
fn encrypt_decrypt_aes_ctr(
&self,
params: &SubtleAesCtrParams,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
handle: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
if params.counter.len() != 16 || params.length == 0 || params.length > 128 {
return Err(Error::Operation);
}
let mut ciphertext = Vec::from(data);
let counter = GenericArray::from_slice(&params.counter);
match key.handle() {
Handle::Aes128(data) => {
let key_data = GenericArray::from_slice(data);
Aes128Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
},
Handle::Aes192(data) => {
let key_data = GenericArray::from_slice(data);
Aes192Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
},
Handle::Aes256(data) => {
let key_data = GenericArray::from_slice(data);
Aes256Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
},
_ => return Err(Error::Data),
};
create_buffer_source::<ArrayBufferU8>(cx, &ciphertext, handle, can_gc)
.expect("failed to create buffer source for exported key.");
Ok(ciphertext)
}
/// <https://w3c.github.io/webcrypto/#aes-gcm-operations>
fn encrypt_aes_gcm(
&self,
params: &SubtleAesGcmParams,
key: &CryptoKey,
plaintext: &[u8],
cx: JSContext,
handle: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
// Step 1. If plaintext has a length greater than 2^39 - 256 bytes, then throw an OperationError.
if plaintext.len() as u64 > (2 << 39) - 256 {
return Err(Error::Operation);
}
// Step 2. If the iv member of normalizedAlgorithm has a length greater than 2^64 - 1 bytes,
// then throw an OperationError.
// NOTE: servo does not currently support 128-bit platforms, so this can never happen
// Step 3. If the additionalData member of normalizedAlgorithm is present and has a length greater than 2^64 - 1
// bytes, then throw an OperationError.
if params
.additional_data
.as_ref()
.is_some_and(|data| data.len() > u64::MAX as usize)
{
return Err(Error::Operation);
}
// Step 4.
let tag_length = match params.tag_length {
// If the tagLength member of normalizedAlgorithm is not present:
None => {
// Let tagLength be 128.
128
},
// If the tagLength member of normalizedAlgorithm is one of 32, 64, 96, 104, 112, 120 or 128:
Some(length) if matches!(length, 32 | 64 | 96 | 104 | 112 | 120 | 128) => {
// Let tagLength be equal to the tagLength member of normalizedAlgorithm
length
},
// Otherwise:
_ => {
// throw an OperationError.
return Err(Error::Operation);
},
};
// Step 5. Let additionalData be the contents of the additionalData member of normalizedAlgorithm if present
// or the empty octet string otherwise.
let additional_data = params.additional_data.as_deref().unwrap_or_default();
// Step 6. Let C and T be the outputs that result from performing the Authenticated Encryption Function
// described in Section 7.1 of [NIST-SP800-38D] using AES as the block cipher, the contents of the iv member
// of normalizedAlgorithm as the IV input parameter, the contents of additionalData as the A input parameter,
// tagLength as the t pre-requisite and the contents of plaintext as the input plaintext.
let key_length = key.handle().as_bytes().len();
let iv_length = params.iv.len();
let mut ciphertext = plaintext.to_vec();
let key_bytes = key.handle().as_bytes();
let tag = match (key_length, iv_length) {
(16, 12) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes128Gcm96Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
},
(16, 16) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes128Gcm128Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
},
(24, 12) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes192Gcm96Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
},
(32, 12) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes256Gcm96Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
},
(16, 32) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes128Gcm256Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
},
(24, 32) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes192Gcm256Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
},
(32, 32) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes256Gcm256Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
},
_ => {
log::warn!(
"Missing AES-GCM encryption implementation with {key_length}-byte key and {iv_length}-byte IV"
);
return Err(Error::NotSupported);
},
};
// Step 7. Let ciphertext be equal to C | T, where '|' denotes concatenation.
ciphertext.extend_from_slice(&tag.unwrap()[..tag_length as usize / 8]);
// Step 8. Return the result of creating an ArrayBuffer containing ciphertext.
create_buffer_source::<ArrayBufferU8>(cx, &ciphertext, handle, can_gc)
.expect("failed to create buffer source for encrypted ciphertext");
Ok(ciphertext)
}
/// <https://w3c.github.io/webcrypto/#aes-gcm-operations>
fn decrypt_aes_gcm(
&self,
params: &SubtleAesGcmParams,
key: &CryptoKey,
ciphertext: &[u8],
cx: JSContext,
handle: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
// Step 1.
// FIXME: aes_gcm uses a fixed tag length
let tag_length = match params.tag_length {
// If the tagLength member of normalizedAlgorithm is not present:
None => {
// Let tagLength be 128.
128
},
// If the tagLength member of normalizedAlgorithm is one of 32, 64, 96, 104, 112, 120 or 128:
Some(length) if matches!(length, 32 | 64 | 96 | 104 | 112 | 120 | 128) => {
// Let tagLength be equal to the tagLength member of normalizedAlgorithm
length as usize
},
// Otherwise:
_ => {
// throw an OperationError.
return Err(Error::Operation);
},
};
// Step 2. If ciphertext has a length less than tagLength bits, then throw an OperationError.
if ciphertext.len() < tag_length / 8 {
return Err(Error::Operation);
}
// Step 3. If the iv member of normalizedAlgorithm has a length greater than 2^64 - 1 bytes,
// then throw an OperationError.
// NOTE: servo does not currently support 128-bit platforms, so this can never happen
// Step 4. If the additionalData member of normalizedAlgorithm is present and has a length greater than 2^64 - 1
// bytes, then throw an OperationError.
// NOTE: servo does not currently support 128-bit platforms, so this can never happen
// Step 5. Let tag be the last tagLength bits of ciphertext.
// Step 6. Let actualCiphertext be the result of removing the last tagLength bits from ciphertext.
// NOTE: aes_gcm splits the ciphertext for us
// Step 7. Let additionalData be the contents of the additionalData member of normalizedAlgorithm if present or
// the empty octet string otherwise.
let additional_data = params.additional_data.as_deref().unwrap_or_default();
// Step 8. Perform the Authenticated Decryption Function described in Section 7.2 of [NIST-SP800-38D] using AES
// as the block cipher, the contents of the iv member of normalizedAlgorithm as the IV input parameter, the
// contents of additionalData as the A input parameter, tagLength as the t pre-requisite, the contents of
// actualCiphertext as the input ciphertext, C and the contents of tag as the authentication tag, T.
let mut plaintext = ciphertext.to_vec();
let key_length = key.handle().as_bytes().len();
let iv_length = params.iv.len();
let key_bytes = key.handle().as_bytes();
let result = match (key_length, iv_length) {
(16, 12) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes128Gcm96Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.decrypt_in_place(nonce, additional_data, &mut plaintext)
},
(16, 16) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes128Gcm128Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.decrypt_in_place(nonce, additional_data, &mut plaintext)
},
(24, 12) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes192Gcm96Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.decrypt_in_place(nonce, additional_data, &mut plaintext)
},
(32, 12) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes256Gcm96Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.decrypt_in_place(nonce, additional_data, &mut plaintext)
},
(16, 32) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes128Gcm256Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.decrypt_in_place(nonce, additional_data, &mut plaintext)
},
(24, 32) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes192Gcm256Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.decrypt_in_place(nonce, additional_data, &mut plaintext)
},
(32, 32) => {
let nonce = GenericArray::from_slice(&params.iv);
<Aes256Gcm256Iv>::new_from_slice(key_bytes)
.expect("key length did not match")
.decrypt_in_place(nonce, additional_data, &mut plaintext)
},
_ => {
log::warn!(
"Missing AES-GCM decryption implementation with {key_length}-byte key and {iv_length}-byte IV"
);
return Err(Error::NotSupported);
},
};
// If the result of the algorithm is the indication of inauthenticity, "FAIL":
if result.is_err() {
// throw an OperationError
return Err(Error::Operation);
}
// Otherwise:
// Let plaintext be the output P of the Authenticated Decryption Function.
// Step 9. Return the result of creating an ArrayBuffer containing plaintext.
create_buffer_source::<ArrayBufferU8>(cx, &plaintext, handle, can_gc)
.expect("failed to create buffer source for decrypted plaintext");
Ok(plaintext)
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
/// <https://w3c.github.io/webcrypto/#aes-kw-operations>
#[allow(unsafe_code)]
fn generate_key_aes(
&self,
usages: Vec<KeyUsage>,
key_gen_params: &SubtleAesKeyGenParams,
extractable: bool,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
let mut rand = vec![0; key_gen_params.length as usize / 8];
self.rng.borrow_mut().fill_bytes(&mut rand);
let handle = match key_gen_params.length {
128 => Handle::Aes128(rand),
192 => Handle::Aes192(rand),
256 => Handle::Aes256(rand),
_ => return Err(Error::Operation),
};
match key_gen_params.name.as_str() {
ALG_AES_CBC | ALG_AES_CTR | ALG_AES_GCM => {
if usages.iter().any(|usage| {
!matches!(
usage,
KeyUsage::Encrypt |
KeyUsage::Decrypt |
KeyUsage::WrapKey |
KeyUsage::UnwrapKey
)
}) || usages.is_empty()
{
return Err(Error::Syntax);
}
},
ALG_AES_KW => {
if usages
.iter()
.any(|usage| !matches!(usage, KeyUsage::WrapKey | KeyUsage::UnwrapKey)) ||
usages.is_empty()
{
return Err(Error::Syntax);
}
},
_ => return Err(Error::NotSupported),
}
let name = match key_gen_params.name.as_str() {
ALG_AES_CBC => DOMString::from(ALG_AES_CBC),
ALG_AES_CTR => DOMString::from(ALG_AES_CTR),
ALG_AES_KW => DOMString::from(ALG_AES_KW),
ALG_AES_GCM => DOMString::from(ALG_AES_GCM),
_ => return Err(Error::NotSupported),
};
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
AesKeyAlgorithm::from_name_and_size(
name.clone(),
key_gen_params.length,
algorithm_object.handle_mut(),
cx,
);
let crypto_key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
handle,
can_gc,
);
Ok(crypto_key)
}
/// <https://w3c.github.io/webcrypto/#hmac-operations>
#[allow(unsafe_code)]
fn generate_key_hmac(
&self,
usages: Vec<KeyUsage>,
params: &SubtleHmacKeyGenParams,
extractable: bool,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
// Step 1. If usages contains any entry which is not "sign" or "verify", then throw a SyntaxError.
if usages
.iter()
.any(|usage| !matches!(usage, KeyUsage::Sign | KeyUsage::Verify))
{
return Err(Error::Syntax);
}
// Step 2.
let length = match params.length {
// If the length member of normalizedAlgorithm is not present:
None => {
// Let length be the block size in bits of the hash function identified by the
// hash member of normalizedAlgorithm.
params.hash.block_size_in_bits() as u32
},
// Otherwise, if the length member of normalizedAlgorithm is non-zero:
Some(length) if length != 0 => {
// Let length be equal to the length member of normalizedAlgorithm.
length
},
// Otherwise:
_ => {
// throw an OperationError.
return Err(Error::Operation);
},
};
// Step 3. Generate a key of length length bits.
let mut key_data = vec![0; length as usize];
self.rng.borrow_mut().fill_bytes(&mut key_data);
// Step 4. If the key generation step fails, then throw an OperationError.
// NOTE: Our key generation is infallible.
// Step 5. Let key be a new CryptoKey object representing the generated key.
// Step 6. Let algorithm be a new HmacKeyAlgorithm.
// Step 7. Set the name attribute of algorithm to "HMAC".
// Step 8. Let hash be a new KeyAlgorithm.
// Step 9. Set the name attribute of hash to equal the name member of the hash member of normalizedAlgorithm.
// Step 10. Set the hash attribute of algorithm to hash.
// Step 11. Set the [[type]] internal slot of key to "secret".
// Step 12. Set the [[algorithm]] internal slot of key to algorithm.
// Step 13. Set the [[extractable]] internal slot of key to be extractable.
// Step 14. Set the [[usages]] internal slot of key to be usages.
let name = DOMString::from(ALG_HMAC);
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
HmacKeyAlgorithm::from_length_and_hash(
length,
params.hash,
algorithm_object.handle_mut(),
cx,
);
let key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
Handle::Hmac(key_data),
can_gc,
);
// Step 15. Return key.
Ok(key)
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
#[allow(unsafe_code)]
fn import_key_aes(
&self,
format: KeyFormat,
data: &[u8],
extractable: bool,
usages: Vec<KeyUsage>,
alg_name: &str,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
if usages.iter().any(|usage| {
!matches!(
usage,
KeyUsage::Encrypt | KeyUsage::Decrypt | KeyUsage::WrapKey | KeyUsage::UnwrapKey
)
}) || usages.is_empty()
{
return Err(Error::Syntax);
}
if !matches!(format, KeyFormat::Raw | KeyFormat::Jwk) {
return Err(Error::NotSupported);
}
let handle = match data.len() * 8 {
128 => Handle::Aes128(data.to_vec()),
192 => Handle::Aes192(data.to_vec()),
256 => Handle::Aes256(data.to_vec()),
_ => {
return Err(Error::Data);
},
};
let name = DOMString::from(alg_name.to_string());
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe { JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
AesKeyAlgorithm::from_name_and_size(
name.clone(),
(data.len() * 8) as u16,
algorithm_object.handle_mut(),
cx,
);
let crypto_key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
handle,
can_gc,
);
Ok(crypto_key)
}
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
fn export_key_aes(&self, format: KeyFormat, key: &CryptoKey) -> Result<AesExportedKey, Error> {
match format {
KeyFormat::Raw => match key.handle() {
Handle::Aes128(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
Handle::Aes192(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
Handle::Aes256(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
_ => Err(Error::Data),
},
KeyFormat::Jwk => {
let (alg, k) = match key.handle() {
Handle::Aes128(key_data) => {
data_to_jwk_params(key.algorithm().as_str(), "128", key_data.as_slice())
},
Handle::Aes192(key_data) => {
data_to_jwk_params(key.algorithm().as_str(), "192", key_data.as_slice())
},
Handle::Aes256(key_data) => {
data_to_jwk_params(key.algorithm().as_str(), "256", key_data.as_slice())
},
_ => return Err(Error::Data),
};
let key_ops = key
.usages()
.iter()
.map(|usage| DOMString::from(usage.as_str()))
.collect::<Vec<DOMString>>();
let jwk = JsonWebKey {
alg: Some(alg),
crv: None,
d: None,
dp: None,
dq: None,
e: None,
ext: Some(key.Extractable()),
k: Some(k),
key_ops: Some(key_ops),
kty: Some(DOMString::from("oct")),
n: None,
oth: None,
p: None,
q: None,
qi: None,
use_: None,
x: None,
y: None,
};
Ok(AesExportedKey::Jwk(Box::new(jwk)))
},
_ => Err(Error::NotSupported),
}
}
/// <https://w3c.github.io/webcrypto/#hkdf-operations>
#[allow(unsafe_code)]
fn import_key_hkdf(
&self,
format: KeyFormat,
data: &[u8],
extractable: bool,
usages: Vec<KeyUsage>,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
// Step 1. Let keyData be the key data to be imported.
// Step 2. If format is "raw":
if format == KeyFormat::Raw {
// Step 1. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
if usages
.iter()
.any(|usage| !matches!(usage, KeyUsage::DeriveKey | KeyUsage::DeriveBits)) ||
usages.is_empty()
{
return Err(Error::Syntax);
}
// Step 2. If extractable is not false, then throw a SyntaxError.
if extractable {
return Err(Error::Syntax);
}
// Step 3. Let key be a new CryptoKey representing the key data provided in keyData.
// Step 4. Set the [[type]] internal slot of key to "secret".
// Step 5. Let algorithm be a new KeyAlgorithm object.
// Step 6. Set the name attribute of algorithm to "HKDF".
// Step 7. Set the [[algorithm]] internal slot of key to algorithm.
let name = DOMString::from(ALG_HKDF);
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
KeyAlgorithm::from_name(name.clone(), algorithm_object.handle_mut(), cx);
let key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
Handle::Hkdf(data.to_vec()),
can_gc,
);
// Step 8. Return key.
Ok(key)
} else {
// throw a NotSupportedError.
Err(Error::NotSupported)
}
}
/// <https://w3c.github.io/webcrypto/#hmac-operations>
#[allow(unsafe_code)]
fn import_key_hmac(
&self,
normalized_algorithm: &SubtleHmacImportParams,
format: KeyFormat,
key_data: &[u8],
extractable: bool,
usages: Vec<KeyUsage>,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
// Step 1. Let keyData be the key data to be imported.
// Step 2. If usages contains an entry which is not "sign" or "verify", then throw a SyntaxError.
// Note: This is not explicitly spec'ed, but also throw a SyntaxError if usages is empty
if usages
.iter()
.any(|usage| !matches!(usage, KeyUsage::Sign | KeyUsage::Verify)) ||
usages.is_empty()
{
return Err(Error::Syntax);
}
// Step 3. Let hash be a new KeyAlgorithm.
let hash;
// Step 4.
let data;
match format {
// Key data has already been extracted in the case of JWK,
// so both raw and jwk can be treated the same here.
KeyFormat::Raw | KeyFormat::Jwk => {
// Step 4.1 Let data be the octet string contained in keyData.
data = key_data.to_vec();
// Step 4.2 Set hash to equal the hash member of normalizedAlgorithm.
hash = normalized_algorithm.hash;
},
// Otherwise:
_ => {
// throw a NotSupportedError.
return Err(Error::NotSupported);
},
}
// Step 5. Let length be equivalent to the length, in octets, of data, multiplied by 8.
let mut length = data.len() as u32 * 8;
// Step 6. If length is zero then throw a DataError.
if length == 0 {
return Err(Error::Data);
}
// Step 7. If the length member of normalizedAlgorithm is present:
if let Some(given_length) = normalized_algorithm.length {
// If the length member of normalizedAlgorithm is greater than length:
if given_length > length {
// throw a DataError.
return Err(Error::Data);
}
// Otherwise:
else {
// Set length equal to the length member of normalizedAlgorithm.
length = given_length;
}
}
// Step 8. Let key be a new CryptoKey object representing an HMAC key with the first length bits of data.
// Step 9. Set the [[type]] internal slot of key to "secret".
// Step 10. Let algorithm be a new HmacKeyAlgorithm.
// Step 11. Set the name attribute of algorithm to "HMAC".
// Step 12. Set the length attribute of algorithm to length.
// Step 13. Set the hash attribute of algorithm to hash.
// Step 14. Set the [[algorithm]] internal slot of key to algorithm.
let truncated_data = data[..length as usize / 8].to_vec();
let name = DOMString::from(ALG_HMAC);
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe { JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
HmacKeyAlgorithm::from_length_and_hash(length, hash, algorithm_object.handle_mut(), cx);
let key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
Handle::Hmac(truncated_data),
can_gc,
);
// Step 15. Return key.
Ok(key)
}
/// <https://w3c.github.io/webcrypto/#aes-kw-operations>
fn wrap_key_aes_kw(
&self,
wrapping_key: &CryptoKey,
bytes: &[u8],
cx: JSContext,
handle: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
// Step 1. If plaintext is not a multiple of 64 bits in length, then throw an OperationError.
if bytes.len() % 8 != 0 {
return Err(Error::Operation);
}
// Step 2. Let ciphertext be the result of performing the Key Wrap operation described in Section 2.2.1
// of [RFC3394] with plaintext as the plaintext to be wrapped and using the default Initial Value
// defined in Section 2.2.3.1 of the same document.
let wrapped_key = match wrapping_key.handle() {
Handle::Aes128(key_data) => {
let key_array = GenericArray::from_slice(key_data.as_slice());
let kek = KekAes128::new(key_array);
match kek.wrap_vec(bytes) {
Ok(key) => key,
Err(_) => return Err(Error::Operation),
}
},
Handle::Aes192(key_data) => {
let key_array = GenericArray::from_slice(key_data.as_slice());
let kek = KekAes192::new(key_array);
match kek.wrap_vec(bytes) {
Ok(key) => key,
Err(_) => return Err(Error::Operation),
}
},
Handle::Aes256(key_data) => {
let key_array = GenericArray::from_slice(key_data.as_slice());
let kek = KekAes256::new(key_array);
match kek.wrap_vec(bytes) {
Ok(key) => key,
Err(_) => return Err(Error::Operation),
}
},
_ => return Err(Error::Operation),
};
create_buffer_source::<ArrayBufferU8>(cx, &wrapped_key, handle, can_gc)
.expect("failed to create buffer source for wrapped key.");
// 3. Return ciphertext.
Ok(wrapped_key)
}
/// <https://w3c.github.io/webcrypto/#aes-kw-operations>
fn unwrap_key_aes_kw(
&self,
wrapping_key: &CryptoKey,
bytes: &[u8],
cx: JSContext,
handle: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
// Step 1. Let plaintext be the result of performing the Key Unwrap operation described in Section 2.2.2
// of [RFC3394] with ciphertext as the input ciphertext and using the default Initial Value defined
// in Section 2.2.3.1 of the same document.
// Step 2. If the Key Unwrap operation returns an error, then throw an OperationError.
let unwrapped_key = match wrapping_key.handle() {
Handle::Aes128(key_data) => {
let key_array = GenericArray::from_slice(key_data.as_slice());
let kek = KekAes128::new(key_array);
match kek.unwrap_vec(bytes) {
Ok(key) => key,
Err(_) => return Err(Error::Operation),
}
},
Handle::Aes192(key_data) => {
let key_array = GenericArray::from_slice(key_data.as_slice());
let kek = KekAes192::new(key_array);
match kek.unwrap_vec(bytes) {
Ok(key) => key,
Err(_) => return Err(Error::Operation),
}
},
Handle::Aes256(key_data) => {
let key_array = GenericArray::from_slice(key_data.as_slice());
let kek = KekAes256::new(key_array);
match kek.unwrap_vec(bytes) {
Ok(key) => key,
Err(_) => return Err(Error::Operation),
}
},
_ => return Err(Error::Operation),
};
create_buffer_source::<ArrayBufferU8>(cx, &unwrapped_key, handle, can_gc)
.expect("failed to create buffer source for unwrapped key.");
// 3. Return plaintext.
Ok(unwrapped_key)
}
/// <https://w3c.github.io/webcrypto/#pbkdf2-operations>
#[allow(unsafe_code)]
fn import_key_pbkdf2(
&self,
format: KeyFormat,
data: &[u8],
extractable: bool,
usages: Vec<KeyUsage>,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
// Step 1. If format is not "raw", throw a NotSupportedError
if format != KeyFormat::Raw {
return Err(Error::NotSupported);
}
// Step 2. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
if usages
.iter()
.any(|usage| !matches!(usage, KeyUsage::DeriveKey | KeyUsage::DeriveBits)) ||
usages.is_empty()
{
return Err(Error::Syntax);
}
// Step 3. If extractable is not false, then throw a SyntaxError.
if extractable {
return Err(Error::Syntax);
}
// Step 4. Let key be a new CryptoKey representing keyData.
// Step 5. Set the [[type]] internal slot of key to "secret".
// Step 6. Let algorithm be a new KeyAlgorithm object.
// Step 7. Set the name attribute of algorithm to "PBKDF2".
// Step 8. Set the [[algorithm]] internal slot of key to algorithm.
let name = DOMString::from(ALG_PBKDF2);
let cx = GlobalScope::get_cx();
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
assert!(!algorithm_object.is_null());
KeyAlgorithm::from_name(name.clone(), algorithm_object.handle_mut(), cx);
let key = CryptoKey::new(
&self.global(),
KeyType::Secret,
extractable,
name,
algorithm_object.handle(),
usages,
Handle::Pbkdf2(data.to_vec()),
can_gc,
);
// Step 9. Return key.
Ok(key)
}
}
pub(crate) enum AesExportedKey {
Raw(Vec<u8>),
Jwk(Box<JsonWebKey>),
}
fn data_to_jwk_params(alg: &str, size: &str, key: &[u8]) -> (DOMString, DOMString) {
let jwk_alg = match alg {
ALG_AES_CBC => DOMString::from(format!("A{}CBC", size)),
ALG_AES_CTR => DOMString::from(format!("A{}CTR", size)),
ALG_AES_KW => DOMString::from(format!("A{}KW", size)),
ALG_AES_GCM => DOMString::from(format!("A{}GCM", size)),
_ => unreachable!(),
};
let data = base64::engine::general_purpose::STANDARD_NO_PAD.encode(key);
(jwk_alg, DOMString::from(data))
}
trait AlgorithmFromName {
fn from_name(name: DOMString, out: MutableHandleObject, cx: JSContext);
}
impl AlgorithmFromName for KeyAlgorithm {
/// Fill the object referenced by `out` with an [KeyAlgorithm]
/// of the specified name and size.
#[allow(unsafe_code)]
fn from_name(name: DOMString, out: MutableHandleObject, cx: JSContext) {
let key_algorithm = Self { name };
unsafe {
key_algorithm.to_jsobject(*cx, out);
}
}
}
trait AlgorithmFromLengthAndHash {
fn from_length_and_hash(
length: u32,
hash: DigestAlgorithm,
out: MutableHandleObject,
cx: JSContext,
);
}
impl AlgorithmFromLengthAndHash for HmacKeyAlgorithm {
#[allow(unsafe_code)]
fn from_length_and_hash(
length: u32,
hash: DigestAlgorithm,
out: MutableHandleObject,
cx: JSContext,
) {
let hmac_key_algorithm = Self {
parent: KeyAlgorithm {
name: ALG_HMAC.into(),
},
length,
hash: KeyAlgorithm { name: hash.name() },
};
unsafe {
hmac_key_algorithm.to_jsobject(*cx, out);
}
}
}
trait AlgorithmFromNameAndSize {
fn from_name_and_size(name: DOMString, size: u16, out: MutableHandleObject, cx: JSContext);
}
impl AlgorithmFromNameAndSize for AesKeyAlgorithm {
/// Fill the object referenced by `out` with an [AesKeyAlgorithm]
/// of the specified name and size.
#[allow(unsafe_code)]
fn from_name_and_size(name: DOMString, size: u16, out: MutableHandleObject, cx: JSContext) {
let key_algorithm = Self {
parent: KeyAlgorithm { name },
length: size,
};
unsafe {
key_algorithm.to_jsobject(*cx, out);
}
}
}
impl SubtleHkdfParams {
/// <https://w3c.github.io/webcrypto/#hkdf-operations>
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
// Step 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
let Some(length) = length else {
return Err(Error::Operation);
};
if length == 0 || length % 8 != 0 {
return Err(Error::Operation);
};
// Step 3. Let keyDerivationKey be the secret represented by [[handle]] internal slot of key.
let key_derivation_key = key.handle().as_bytes();
// Step 4. Let result be the result of performing the HKDF extract and then the HKDF expand step described
// in Section 2 of [RFC5869] using:
// * the hash member of normalizedAlgorithm as Hash,
// * keyDerivationKey as the input keying material, IKM,
// * the contents of the salt member of normalizedAlgorithm as salt,
// * the contents of the info member of normalizedAlgorithm as info,
// * length divided by 8 as the value of L,
let mut result = vec![0; length as usize / 8];
let algorithm = match self.hash {
DigestAlgorithm::Sha1 => hkdf::HKDF_SHA1_FOR_LEGACY_USE_ONLY,
DigestAlgorithm::Sha256 => hkdf::HKDF_SHA256,
DigestAlgorithm::Sha384 => hkdf::HKDF_SHA384,
DigestAlgorithm::Sha512 => hkdf::HKDF_SHA512,
};
let salt = hkdf::Salt::new(algorithm, &self.salt);
let info = self.info.as_slice();
let pseudo_random_key = salt.extract(key_derivation_key);
let Ok(output_key_material) =
pseudo_random_key.expand(std::slice::from_ref(&info), algorithm)
else {
// Step 5. If the key derivation operation fails, then throw an OperationError.
return Err(Error::Operation);
};
if output_key_material.fill(&mut result).is_err() {
return Err(Error::Operation);
};
// Step 6. Return the result of creating an ArrayBuffer containing result.
// NOTE: The ArrayBuffer is created by the caller
Ok(result)
}
}
impl SubtlePbkdf2Params {
/// <https://w3c.github.io/webcrypto/#pbkdf2-operations>
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
// Step 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
let Some(length) = length else {
return Err(Error::Operation);
};
if length == 0 || length % 8 != 0 {
return Err(Error::Operation);
};
// Step 2. If the iterations member of normalizedAlgorithm is zero, then throw an OperationError.
let Ok(iterations) = NonZero::<u32>::try_from(self.iterations) else {
return Err(Error::Operation);
};
// Step 3. Let prf be the MAC Generation function described in Section 4 of [FIPS-198-1]
// using the hash function described by the hash member of normalizedAlgorithm.
let prf = match self.hash {
DigestAlgorithm::Sha1 => pbkdf2::PBKDF2_HMAC_SHA1,
DigestAlgorithm::Sha256 => pbkdf2::PBKDF2_HMAC_SHA256,
DigestAlgorithm::Sha384 => pbkdf2::PBKDF2_HMAC_SHA384,
DigestAlgorithm::Sha512 => pbkdf2::PBKDF2_HMAC_SHA512,
};
// Step 4. Let result be the result of performing the PBKDF2 operation defined in Section 5.2 of [RFC8018] using
// prf as the pseudo-random function, PRF, the password represented by [[handle]] internal slot of key as
// the password, P, the contents of the salt attribute of normalizedAlgorithm as the salt, S, the value of
// the iterations attribute of normalizedAlgorithm as the iteration count, c, and length divided by 8 as the
// intended key length, dkLen.
let mut result = vec![0; length as usize / 8];
pbkdf2::derive(
prf,
iterations,
&self.salt,
key.handle().as_bytes(),
&mut result,
);
// Step 5. If the key derivation operation fails, then throw an OperationError.
// TODO: Investigate when key derivation can fail and how ring handles that case
// (pbkdf2::derive does not return a Result type)
// Step 6. Return result
Ok(result)
}
}
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
fn get_key_length_for_aes(length: u16) -> Result<u32, Error> {
// Step 1. If the length member of normalizedDerivedKeyAlgorithm is not 128, 192 or 256,
// then throw an OperationError.
if !matches!(length, 128 | 192 | 256) {
return Err(Error::Operation);
}
// Step 2. Return the length member of normalizedDerivedKeyAlgorithm.
Ok(length as u32)
}
impl GetKeyLengthAlgorithm {
fn get_key_length(&self) -> Result<u32, Error> {
match self {
Self::Aes(length) => get_key_length_for_aes(*length),
Self::Hmac(params) => params.get_key_length(),
}
}
}
impl DigestAlgorithm {
/// <https://w3c.github.io/webcrypto/#dom-algorithm-name>
fn name(&self) -> DOMString {
match self {
Self::Sha1 => ALG_SHA1,
Self::Sha256 => ALG_SHA256,
Self::Sha384 => ALG_SHA384,
Self::Sha512 => ALG_SHA512,
}
.into()
}
fn digest(&self, data: &[u8]) -> Result<impl AsRef<[u8]>, Error> {
let algorithm = match self {
Self::Sha1 => &digest::SHA1_FOR_LEGACY_USE_ONLY,
Self::Sha256 => &digest::SHA256,
Self::Sha384 => &digest::SHA384,
Self::Sha512 => &digest::SHA512,
};
Ok(digest::digest(algorithm, data))
}
fn block_size_in_bits(&self) -> usize {
match self {
Self::Sha1 => 160,
Self::Sha256 => 256,
Self::Sha384 => 384,
Self::Sha512 => 512,
}
}
}
impl ImportKeyAlgorithm {
fn import_key(
&self,
subtle: &SubtleCrypto,
format: KeyFormat,
secret: &[u8],
extractable: bool,
key_usages: Vec<KeyUsage>,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
match self {
Self::AesCbc => {
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_CBC, can_gc)
},
Self::AesCtr => {
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_CTR, can_gc)
},
Self::AesKw => {
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_KW, can_gc)
},
Self::AesGcm => {
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_GCM, can_gc)
},
Self::Hmac(params) => {
subtle.import_key_hmac(params, format, secret, extractable, key_usages, can_gc)
},
Self::Pbkdf2 => {
subtle.import_key_pbkdf2(format, secret, extractable, key_usages, can_gc)
},
Self::Hkdf => subtle.import_key_hkdf(format, secret, extractable, key_usages, can_gc),
}
}
}
impl DeriveBitsAlgorithm {
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
match self {
Self::Pbkdf2(pbkdf2_params) => pbkdf2_params.derive_bits(key, length),
Self::Hkdf(hkdf_params) => hkdf_params.derive_bits(key, length),
}
}
}
impl EncryptionAlgorithm {
/// <https://w3c.github.io/webcrypto/#dom-algorithm-name>
fn name(&self) -> &str {
match self {
Self::AesCbc(params) => &params.name,
Self::AesCtr(params) => &params.name,
Self::AesGcm(params) => &params.name,
}
}
// FIXME: This doesn't really need the "SubtleCrypto" argument
fn encrypt(
&self,
subtle: &SubtleCrypto,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
result: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
match self {
Self::AesCbc(params) => subtle.encrypt_aes_cbc(params, key, data, cx, result, can_gc),
Self::AesCtr(params) => {
subtle.encrypt_decrypt_aes_ctr(params, key, data, cx, result, can_gc)
},
Self::AesGcm(params) => subtle.encrypt_aes_gcm(params, key, data, cx, result, can_gc),
}
}
// FIXME: This doesn't really need the "SubtleCrypto" argument
fn decrypt(
&self,
subtle: &SubtleCrypto,
key: &CryptoKey,
data: &[u8],
cx: JSContext,
result: MutableHandleObject,
can_gc: CanGc,
) -> Result<Vec<u8>, Error> {
match self {
Self::AesCbc(params) => subtle.decrypt_aes_cbc(params, key, data, cx, result, can_gc),
Self::AesCtr(params) => {
subtle.encrypt_decrypt_aes_ctr(params, key, data, cx, result, can_gc)
},
Self::AesGcm(params) => subtle.decrypt_aes_gcm(params, key, data, cx, result, can_gc),
}
}
}
impl SignatureAlgorithm {
fn name(&self) -> &str {
match self {
Self::Hmac => ALG_HMAC,
}
}
fn sign(&self, cx: JSContext, key: &CryptoKey, data: &[u8]) -> Result<Vec<u8>, Error> {
match self {
Self::Hmac => sign_hmac(cx, key, data).map(|s| s.as_ref().to_vec()),
}
}
fn verify(
&self,
cx: JSContext,
key: &CryptoKey,
data: &[u8],
signature: &[u8],
) -> Result<bool, Error> {
match self {
Self::Hmac => verify_hmac(cx, key, data, signature),
}
}
}
impl KeyGenerationAlgorithm {
// FIXME: This doesn't really need the "SubtleCrypto" argument
fn generate_key(
&self,
subtle: &SubtleCrypto,
usages: Vec<KeyUsage>,
extractable: bool,
can_gc: CanGc,
) -> Result<DomRoot<CryptoKey>, Error> {
match self {
Self::Aes(params) => subtle.generate_key_aes(usages, params, extractable, can_gc),
Self::Hmac(params) => subtle.generate_key_hmac(usages, params, extractable, can_gc),
}
}
}
/// <https://w3c.github.io/webcrypto/#hmac-operations>
fn sign_hmac(cx: JSContext, key: &CryptoKey, data: &[u8]) -> Result<impl AsRef<[u8]>, Error> {
// Step 1. Let mac be the result of performing the MAC Generation operation described in Section 4 of [FIPS-198-1]
// using the key represented by [[handle]] internal slot of key, the hash function identified by the hash attribute
// of the [[algorithm]] internal slot of key and message as the input data text.
rooted!(in(*cx) let mut algorithm_slot = ObjectValue(key.Algorithm(cx).as_ptr()));
let params = value_from_js_object!(HmacKeyAlgorithm, cx, algorithm_slot);
let hash_algorithm = match params.hash.name.str() {
ALG_SHA1 => hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
ALG_SHA256 => hmac::HMAC_SHA256,
ALG_SHA384 => hmac::HMAC_SHA384,
ALG_SHA512 => hmac::HMAC_SHA512,
_ => return Err(Error::NotSupported),
};
let sign_key = hmac::Key::new(hash_algorithm, key.handle().as_bytes());
let mac = hmac::sign(&sign_key, data);
// Step 2. Return the result of creating an ArrayBuffer containing mac.
// NOTE: This is done by the caller
Ok(mac)
}
/// <https://w3c.github.io/webcrypto/#hmac-operations>
fn verify_hmac(
cx: JSContext,
key: &CryptoKey,
data: &[u8],
signature: &[u8],
) -> Result<bool, Error> {
// Step 1. Let mac be the result of performing the MAC Generation operation described in Section 4 of [FIPS-198-1]
// using the key represented by [[handle]] internal slot of key, the hash function identified by the hash attribute
// of the [[algorithm]] internal slot of key and message as the input data text.
let mac = sign_hmac(cx, key, data)?;
// Step 2. Return true if mac is equal to signature and false otherwise.
let is_valid = mac.as_ref() == signature;
Ok(is_valid)
}
impl KeyWrapAlgorithm {
/// <https://w3c.github.io/webcrypto/#dom-algorithm-name>
fn name(&self) -> &str {
match self {
Self::AesKw => ALG_AES_KW,
Self::AesCbc(key_gen_params) => &key_gen_params.name,
Self::AesCtr(key_gen_params) => &key_gen_params.name,
Self::AesGcm(_) => ALG_AES_GCM,
}
}
}
/// <https://w3c.github.io/webcrypto/#concept-parse-a-jwk>
fn parse_jwk(
bytes: &[u8],
import_alg: ImportKeyAlgorithm,
extractable: bool,
key_usages: &[KeyUsage],
) -> Result<Vec<u8>, Error> {
let value = serde_json::from_slice(bytes)
.map_err(|_| Error::Type("Failed to parse JWK string".into()))?;
let serde_json::Value::Object(obj) = value else {
return Err(Error::Data);
};
let kty = get_jwk_string(&obj, "kty")?;
let ext = get_jwk_bool(&obj, "ext")?;
if !ext && extractable {
return Err(Error::Data);
}
// If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK]
// or does not contain all of the specified usages values, then throw a DataError.
if let Some(serde_json::Value::Array(key_ops)) = obj.get("key_ops") {
if key_ops.iter().any(|op| {
let op_string = match op {
serde_json::Value::String(op_string) => op_string,
_ => return true,
};
let usage = match usage_from_str(op_string) {
Ok(usage) => usage,
Err(_) => {
return true;
},
};
!key_usages.contains(&usage)
}) {
return Err(Error::Data);
}
}
match import_alg {
ImportKeyAlgorithm::AesCbc |
ImportKeyAlgorithm::AesCtr |
ImportKeyAlgorithm::AesKw |
ImportKeyAlgorithm::AesGcm => {
if kty != "oct" {
return Err(Error::Data);
}
let k = get_jwk_string(&obj, "k")?;
let alg = get_jwk_string(&obj, "alg")?;
let data = base64::engine::general_purpose::STANDARD_NO_PAD
.decode(k.as_bytes())
.map_err(|_| Error::Data)?;
let expected_alg = match (data.len() * 8, &import_alg) {
(128, ImportKeyAlgorithm::AesCbc) => "A128CBC",
(128, ImportKeyAlgorithm::AesCtr) => "A128CTR",
(128, ImportKeyAlgorithm::AesKw) => "A128KW",
(128, ImportKeyAlgorithm::AesGcm) => "A128GCM",
(192, ImportKeyAlgorithm::AesCbc) => "A192CBC",
(192, ImportKeyAlgorithm::AesCtr) => "A192CTR",
(192, ImportKeyAlgorithm::AesKw) => "A192KW",
(192, ImportKeyAlgorithm::AesGcm) => "A192GCM",
(256, ImportKeyAlgorithm::AesCbc) => "A256CBC",
(256, ImportKeyAlgorithm::AesCtr) => "A256CTR",
(256, ImportKeyAlgorithm::AesKw) => "A256KW",
(256, ImportKeyAlgorithm::AesGcm) => "A256GCM",
_ => return Err(Error::Data),
};
if alg != expected_alg {
return Err(Error::Data);
}
if let Some(serde_json::Value::String(use_)) = obj.get("use") {
if use_ != "enc" {
return Err(Error::Data);
}
}
Ok(data)
},
ImportKeyAlgorithm::Hmac(params) => {
if kty != "oct" {
return Err(Error::Data);
}
let k = get_jwk_string(&obj, "k")?;
let alg = get_jwk_string(&obj, "alg")?;
let expected_alg = match params.hash {
DigestAlgorithm::Sha1 => "HS1",
DigestAlgorithm::Sha256 => "HS256",
DigestAlgorithm::Sha384 => "HS384",
DigestAlgorithm::Sha512 => "HS512",
};
if alg != expected_alg {
return Err(Error::Data);
}
if let Some(serde_json::Value::String(use_)) = obj.get("use") {
if use_ != "sign" {
return Err(Error::Data);
}
}
base64::engine::general_purpose::STANDARD_NO_PAD
.decode(k.as_bytes())
.map_err(|_| Error::Data)
},
_ => Err(Error::NotSupported),
}
}
fn get_jwk_string(
value: &serde_json::Map<String, serde_json::Value>,
key: &str,
) -> Result<String, Error> {
let s = value
.get(key)
.ok_or(Error::Data)?
.as_str()
.ok_or(Error::Data)?;
Ok(s.to_string())
}
fn get_jwk_bool(
value: &serde_json::Map<String, serde_json::Value>,
key: &str,
) -> Result<bool, Error> {
let b = value
.get(key)
.ok_or(Error::Data)?
.as_bool()
.ok_or(Error::Data)?;
Ok(b)
}
fn usage_from_str(op: &str) -> Result<KeyUsage, Error> {
let usage = match op {
"encrypt" => KeyUsage::Encrypt,
"decrypt" => KeyUsage::Decrypt,
"sign" => KeyUsage::Sign,
"verify" => KeyUsage::Verify,
"deriveKey" => KeyUsage::DeriveKey,
"deriveBits" => KeyUsage::DeriveBits,
"wrapKey" => KeyUsage::WrapKey,
"unwrapKey" => KeyUsage::UnwrapKey,
_ => {
return Err(Error::Data);
},
};
Ok(usage)
}