servo/components/layout/layout_task.rs
Patrick Walton 2a790d06dd Use Gecko's simpler Bloom filter instead of one based on hash
stretching.

This preserves the usage of the Bloom filter throughout style recalc,
but the implementation is rewritten. Provides a 15% improvement on
Guardians of the Galaxy.
2014-10-10 17:02:27 -07:00

1013 lines
41 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The layout task. Performs layout on the DOM, builds display lists and sends them to be
//! rendered.
use css::matching::{ApplicableDeclarations, MatchMethods};
use css::node_style::StyledNode;
use construct::{FlowConstructionResult, NoConstructionResult};
use context::{LayoutContext, SharedLayoutContext};
use flow::{Flow, ImmutableFlowUtils, MutableFlowUtils, MutableOwnedFlowUtils};
use flow::{PreorderFlowTraversal, PostorderFlowTraversal};
use flow;
use flow_ref::FlowRef;
use layout_debug;
use parallel::UnsafeFlow;
use parallel;
use traversal;
use util::{LayoutDataAccess, LayoutDataWrapper, OpaqueNodeMethods, ToGfxColor};
use wrapper::{LayoutNode, TLayoutNode, ThreadSafeLayoutNode};
use collections::dlist::DList;
use encoding::EncodingRef;
use encoding::all::UTF_8;
use geom::point::Point2D;
use geom::rect::Rect;
use geom::size::Size2D;
use gfx::display_list::{ClipDisplayItemClass, ContentStackingLevel, DisplayItem};
use gfx::display_list::{DisplayItemIterator, DisplayList, OpaqueNode};
use gfx::render_task::{RenderInitMsg, RenderChan, RenderLayer};
use gfx::{render_task, color};
use layout_traits;
use layout_traits::{LayoutControlMsg, LayoutTaskFactory};
use script::dom::bindings::js::JS;
use script::dom::node::{ElementNodeTypeId, LayoutDataRef, Node};
use script::dom::element::{HTMLBodyElementTypeId, HTMLHtmlElementTypeId};
use script::layout_interface::{AddStylesheetMsg, LoadStylesheetMsg, ScriptLayoutChan};
use script::layout_interface::{TrustedNodeAddress, ContentBoxesResponse, ExitNowMsg};
use script::layout_interface::{ContentBoxResponse, HitTestResponse, MouseOverResponse};
use script::layout_interface::{LayoutChan, Msg, PrepareToExitMsg};
use script::layout_interface::{GetRPCMsg, LayoutRPC, ReapLayoutDataMsg, Reflow};
use script::layout_interface::{ReflowForDisplay, ReflowMsg};
use script_traits::{SendEventMsg, ReflowEvent, ReflowCompleteMsg, OpaqueScriptLayoutChannel};
use script_traits::{ScriptControlChan, UntrustedNodeAddress};
use servo_msg::compositor_msg::Scrollable;
use servo_msg::constellation_msg::{ConstellationChan, PipelineId, Failure, FailureMsg};
use servo_net::image_cache_task::{ImageCacheTask, ImageResponseMsg};
use gfx::font_cache_task::{FontCacheTask};
use servo_net::local_image_cache::{ImageResponder, LocalImageCache};
use servo_util::bloom::BloomFilter;
use servo_net::resource_task::{ResourceTask, load_bytes_iter};
use servo_util::geometry::Au;
use servo_util::geometry;
use servo_util::logical_geometry::LogicalPoint;
use servo_util::opts::Opts;
use servo_util::smallvec::{SmallVec, SmallVec1, VecLike};
use servo_util::task::spawn_named_with_send_on_failure;
use servo_util::time::{TimeProfilerChan, profile};
use servo_util::time;
use servo_util::workqueue::WorkQueue;
use std::cell::Cell;
use std::comm::{channel, Sender, Receiver, Select};
use std::mem;
use std::ptr;
use style::{AuthorOrigin, Stylesheet, Stylist, TNode, iter_font_face_rules};
use sync::{Arc, Mutex, MutexGuard};
use url::Url;
/// Mutable data belonging to the LayoutTask.
///
/// This needs to be protected by a mutex so we can do fast RPCs.
pub struct LayoutTaskData {
/// The local image cache.
pub local_image_cache: Arc<Mutex<LocalImageCache<UntrustedNodeAddress>>>,
/// The size of the viewport.
pub screen_size: Size2D<Au>,
/// A cached display list.
pub display_list: Option<Arc<DisplayList>>,
pub stylist: Box<Stylist>,
/// The workers that we use for parallel operation.
pub parallel_traversal: Option<WorkQueue<*const SharedLayoutContext, UnsafeFlow>>,
/// The dirty rect. Used during display list construction.
pub dirty: Rect<Au>,
/// Starts at zero, and increased by one every time a layout completes.
/// This can be used to easily check for invalid stale data.
pub generation: uint,
/// True if a style sheet was added since the last reflow. Currently, this causes all nodes to
/// be dirtied at the next reflow.
pub stylesheet_dirty: bool,
}
/// Information needed by the layout task.
pub struct LayoutTask {
/// The ID of the pipeline that we belong to.
pub id: PipelineId,
/// The port on which we receive messages from the script task.
pub port: Receiver<Msg>,
/// The port on which we receive messages from the constellation
pub pipeline_port: Receiver<LayoutControlMsg>,
//// The channel to send messages to ourself.
pub chan: LayoutChan,
/// The channel on which messages can be sent to the constellation.
pub constellation_chan: ConstellationChan,
/// The channel on which messages can be sent to the script task.
pub script_chan: ScriptControlChan,
/// The channel on which messages can be sent to the painting task.
pub render_chan: RenderChan,
/// The channel on which messages can be sent to the time profiler.
pub time_profiler_chan: TimeProfilerChan,
/// The channel on which messages can be sent to the resource task.
pub resource_task: ResourceTask,
/// The channel on which messages can be sent to the image cache.
pub image_cache_task: ImageCacheTask,
/// Public interface to the font cache task.
pub font_cache_task: FontCacheTask,
/// The command-line options.
pub opts: Opts,
/// Is this the first reflow in this LayoutTask?
pub first_reflow: Cell<bool>,
/// A mutex to allow for fast, read-only RPC of layout's internal data
/// structures, while still letting the LayoutTask modify them.
///
/// All the other elements of this struct are read-only.
pub rw_data: Arc<Mutex<LayoutTaskData>>,
}
struct LayoutImageResponder {
id: PipelineId,
script_chan: ScriptControlChan,
}
impl ImageResponder<UntrustedNodeAddress> for LayoutImageResponder {
fn respond(&self) -> proc(ImageResponseMsg, UntrustedNodeAddress):Send {
let id = self.id.clone();
let script_chan = self.script_chan.clone();
let f: proc(ImageResponseMsg, UntrustedNodeAddress):Send =
proc(_, node_address) {
let ScriptControlChan(chan) = script_chan;
let mut nodes = SmallVec1::new();
nodes.vec_push(node_address);
drop(chan.send_opt(SendEventMsg(id.clone(), ReflowEvent(nodes))))
};
f
}
}
impl LayoutTaskFactory for LayoutTask {
/// Spawns a new layout task.
fn create(_phantom: Option<&mut LayoutTask>,
id: PipelineId,
chan: OpaqueScriptLayoutChannel,
pipeline_port: Receiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
failure_msg: Failure,
script_chan: ScriptControlChan,
render_chan: RenderChan,
resource_task: ResourceTask,
img_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
opts: Opts,
time_profiler_chan: TimeProfilerChan,
shutdown_chan: Sender<()>) {
let ConstellationChan(con_chan) = constellation_chan.clone();
spawn_named_with_send_on_failure("LayoutTask", proc() {
{ // Ensures layout task is destroyed before we send shutdown message
let sender = chan.sender();
let layout =
LayoutTask::new(
id,
chan.receiver(),
LayoutChan(sender),
pipeline_port,
constellation_chan,
script_chan,
render_chan,
resource_task,
img_cache_task,
font_cache_task,
&opts,
time_profiler_chan);
layout.start();
}
shutdown_chan.send(());
}, FailureMsg(failure_msg), con_chan, false);
}
}
/// The `LayoutTask` `rw_data` lock must remain locked until the first reflow,
/// as RPC calls don't make sense until then. Use this in combination with
/// `LayoutTask::lock_rw_data` and `LayoutTask::return_rw_data`.
enum RWGuard<'a> {
/// If the lock was previously held, from when the task started.
Held(MutexGuard<'a, LayoutTaskData>),
/// If the lock was just used, and has been returned since there has been
/// a reflow already.
Used(MutexGuard<'a, LayoutTaskData>),
}
impl<'a> Deref<LayoutTaskData> for RWGuard<'a> {
fn deref(&self) -> &LayoutTaskData {
match *self {
Held(ref x) => x.deref(),
Used(ref x) => x.deref(),
}
}
}
impl<'a> DerefMut<LayoutTaskData> for RWGuard<'a> {
fn deref_mut(&mut self) -> &mut LayoutTaskData {
match *self {
Held(ref mut x) => x.deref_mut(),
Used(ref mut x) => x.deref_mut(),
}
}
}
impl LayoutTask {
/// Creates a new `LayoutTask` structure.
fn new(id: PipelineId,
port: Receiver<Msg>,
chan: LayoutChan,
pipeline_port: Receiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
script_chan: ScriptControlChan,
render_chan: RenderChan,
resource_task: ResourceTask,
image_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
opts: &Opts,
time_profiler_chan: TimeProfilerChan)
-> LayoutTask {
let local_image_cache = Arc::new(Mutex::new(LocalImageCache::new(image_cache_task.clone())));
let screen_size = Size2D(Au(0), Au(0));
let parallel_traversal = if opts.layout_threads != 1 {
Some(WorkQueue::new("LayoutWorker", opts.layout_threads, ptr::null()))
} else {
None
};
LayoutTask {
id: id,
port: port,
pipeline_port: pipeline_port,
chan: chan,
constellation_chan: constellation_chan,
script_chan: script_chan,
render_chan: render_chan,
time_profiler_chan: time_profiler_chan,
resource_task: resource_task,
image_cache_task: image_cache_task.clone(),
font_cache_task: font_cache_task,
opts: opts.clone(),
first_reflow: Cell::new(true),
rw_data: Arc::new(Mutex::new(
LayoutTaskData {
local_image_cache: local_image_cache,
screen_size: screen_size,
display_list: None,
stylist: box Stylist::new(),
parallel_traversal: parallel_traversal,
dirty: Rect::zero(),
generation: 0,
stylesheet_dirty: false,
})),
}
}
/// Starts listening on the port.
fn start(self) {
let mut possibly_locked_rw_data = Some(self.rw_data.lock());
while self.handle_request(&mut possibly_locked_rw_data) {
// Loop indefinitely.
}
}
// Create a layout context for use in building display lists, hit testing, &c.
fn build_shared_layout_context(
&self,
rw_data: &LayoutTaskData,
reflow_root: &LayoutNode,
url: &Url)
-> SharedLayoutContext {
SharedLayoutContext {
image_cache: rw_data.local_image_cache.clone(),
screen_size: rw_data.screen_size.clone(),
constellation_chan: self.constellation_chan.clone(),
layout_chan: self.chan.clone(),
font_cache_task: self.font_cache_task.clone(),
stylist: &*rw_data.stylist,
url: (*url).clone(),
reflow_root: OpaqueNodeMethods::from_layout_node(reflow_root),
opts: self.opts.clone(),
dirty: Rect::zero(),
generation: rw_data.generation,
}
}
/// Receives and dispatches messages from the script and constellation tasks
fn handle_request<'a>(&'a self, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) -> bool {
enum PortToRead {
Pipeline,
Script,
}
let port_to_read = {
let sel = Select::new();
let mut port1 = sel.handle(&self.port);
let mut port2 = sel.handle(&self.pipeline_port);
unsafe {
port1.add();
port2.add();
}
let ret = sel.wait();
if ret == port1.id() {
Script
} else if ret == port2.id() {
Pipeline
} else {
fail!("invalid select result");
}
};
match port_to_read {
Pipeline => match self.pipeline_port.recv() {
layout_traits::ExitNowMsg => self.handle_script_request(ExitNowMsg, possibly_locked_rw_data),
},
Script => {
let msg = self.port.recv();
self.handle_script_request(msg, possibly_locked_rw_data)
}
}
}
/// If no reflow has happened yet, this will just return the lock in
/// `possibly_locked_rw_data`. Otherwise, it will acquire the `rw_data` lock.
///
/// If you do not wish RPCs to remain blocked, just drop the `RWGuard`
/// returned from this function. If you _do_ wish for them to remain blocked,
/// use `return_rw_data`.
fn lock_rw_data<'a>(&'a self, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) -> RWGuard<'a> {
match possibly_locked_rw_data.take() {
None => Used(self.rw_data.lock()),
Some(x) => Held(x),
}
}
/// If no reflow has ever been trigger, this will keep the lock, locked
/// (and saved in `possibly_locked_rw_data`). If it has been, the lock will
/// be unlocked.
fn return_rw_data<'a>(possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>, rw_data: RWGuard<'a>) {
match rw_data {
Used(x) => drop(x),
Held(x) => *possibly_locked_rw_data = Some(x),
}
}
/// Receives and dispatches messages from the script task.
fn handle_script_request<'a>(&'a self, request: Msg, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) -> bool {
match request {
AddStylesheetMsg(sheet) => self.handle_add_stylesheet(sheet, possibly_locked_rw_data),
LoadStylesheetMsg(url) => self.handle_load_stylesheet(url, possibly_locked_rw_data),
GetRPCMsg(response_chan) => {
response_chan.send(
box LayoutRPCImpl(
self.rw_data.clone()) as Box<LayoutRPC + Send>);
},
ReflowMsg(data) => {
profile(time::LayoutPerformCategory, Some((&data.url, data.iframe, self.first_reflow.get())),
self.time_profiler_chan.clone(), || {
self.handle_reflow(&*data, possibly_locked_rw_data);
});
},
ReapLayoutDataMsg(dead_layout_data) => {
unsafe {
LayoutTask::handle_reap_layout_data(dead_layout_data)
}
},
PrepareToExitMsg(response_chan) => {
debug!("layout: PrepareToExitMsg received");
self.prepare_to_exit(response_chan, possibly_locked_rw_data);
return false
},
ExitNowMsg => {
debug!("layout: ExitNowMsg received");
self.exit_now(possibly_locked_rw_data);
return false
}
}
true
}
/// Enters a quiescent state in which no new messages except for `ReapLayoutDataMsg` will be
/// processed until an `ExitNowMsg` is received. A pong is immediately sent on the given
/// response channel.
fn prepare_to_exit<'a>(&'a self, response_chan: Sender<()>, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
response_chan.send(());
loop {
match self.port.recv() {
ReapLayoutDataMsg(dead_layout_data) => {
unsafe {
LayoutTask::handle_reap_layout_data(dead_layout_data)
}
}
ExitNowMsg => {
debug!("layout task is exiting...");
self.exit_now(possibly_locked_rw_data);
break
}
_ => {
fail!("layout: message that wasn't `ExitNowMsg` received after \
`PrepareToExitMsg`")
}
}
}
}
/// Shuts down the layout task now. If there are any DOM nodes left, layout will now (safely)
/// crash.
fn exit_now<'a>(&'a self, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
let (response_chan, response_port) = channel();
{
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
match rw_data.deref_mut().parallel_traversal {
None => {}
Some(ref mut traversal) => traversal.shutdown(),
}
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
self.render_chan.send(render_task::ExitMsg(Some(response_chan)));
response_port.recv()
}
fn handle_load_stylesheet<'a>(&'a self, url: Url, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// TODO: Get the actual value. http://dev.w3.org/csswg/css-syntax/#environment-encoding
let environment_encoding = UTF_8 as EncodingRef;
let (metadata, iter) = load_bytes_iter(&self.resource_task, url);
let protocol_encoding_label = metadata.charset.as_ref().map(|s| s.as_slice());
let final_url = metadata.final_url;
let sheet = Stylesheet::from_bytes_iter(iter, final_url, protocol_encoding_label, Some(environment_encoding));
self.handle_add_stylesheet(sheet, possibly_locked_rw_data);
}
fn handle_add_stylesheet<'a>(&'a self, sheet: Stylesheet, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// Find all font-face rules and notify the font cache of them.
// GWTODO: Need to handle unloading web fonts (when we handle unloading stylesheets!)
iter_font_face_rules(&sheet, |family, url| {
self.font_cache_task.add_web_font(family.to_string(), url.clone());
});
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
rw_data.stylist.add_stylesheet(sheet, AuthorOrigin);
rw_data.stylesheet_dirty = true;
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
/// Retrieves the flow tree root from the root node.
fn get_layout_root(&self, node: LayoutNode) -> FlowRef {
let mut layout_data_ref = node.mutate_layout_data();
let result = match &mut *layout_data_ref {
&Some(ref mut layout_data) => {
mem::replace(&mut layout_data.data.flow_construction_result, NoConstructionResult)
}
&None => fail!("no layout data for root node"),
};
let mut flow = match result {
FlowConstructionResult(mut flow, abs_descendants) => {
// Note: Assuming that the root has display 'static' (as per
// CSS Section 9.3.1). Otherwise, if it were absolutely
// positioned, it would return a reference to itself in
// `abs_descendants` and would lead to a circular reference.
// Set Root as CB for any remaining absolute descendants.
flow.set_absolute_descendants(abs_descendants);
flow
}
_ => fail!("Flow construction didn't result in a flow at the root of the tree!"),
};
flow.get_mut().mark_as_root();
flow
}
/// Performs layout constraint solving.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints<'a>(&self,
layout_root: &mut Flow,
layout_context: &'a LayoutContext<'a>) {
let _scope = layout_debug_scope!("solve_constraints");
if layout_context.shared.opts.bubble_inline_sizes_separately {
let mut traversal = traversal::BubbleISizes {
layout_context: layout_context,
};
layout_root.traverse_postorder(&mut traversal);
}
// FIXME(pcwalton): Prune these two passes.
{
let mut traversal = traversal::AssignISizes {
layout_context: layout_context,
};
layout_root.traverse_preorder(&mut traversal);
}
{
let mut traversal = traversal::AssignBSizesAndStoreOverflow {
layout_context: layout_context,
};
layout_root.traverse_postorder(&mut traversal);
}
}
/// Performs layout constraint solving in parallel.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints_parallel(&self,
data: &Reflow,
rw_data: &mut LayoutTaskData,
layout_root: &mut FlowRef,
shared_layout_context: &SharedLayoutContext) {
if shared_layout_context.opts.bubble_inline_sizes_separately {
let mut traversal = traversal::BubbleISizes {
layout_context: &LayoutContext::new(shared_layout_context),
};
layout_root.get_mut().traverse_postorder(&mut traversal);
}
match rw_data.parallel_traversal {
None => fail!("solve_contraints_parallel() called with no parallel traversal ready"),
Some(ref mut traversal) => {
// NOTE: this currently computes borders, so any pruning should separate that
// operation out.
parallel::traverse_flow_tree_preorder(layout_root,
&data.url,
data.iframe,
self.first_reflow.get(),
self.time_profiler_chan.clone(),
shared_layout_context,
traversal);
}
}
}
/// Verifies that every node was either marked as a leaf or as a nonleaf in the flow tree.
/// This is only on in debug builds.
#[inline(never)]
#[cfg(debug)]
fn verify_flow_tree(&self, layout_root: &mut FlowRef) {
let mut traversal = traversal::FlowTreeVerification;
layout_root.traverse_preorder(&mut traversal);
}
#[cfg(not(debug))]
fn verify_flow_tree(&self, _: &mut FlowRef) {
}
/// The high-level routine that performs layout tasks.
fn handle_reflow<'a>(&'a self, data: &Reflow, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// FIXME: Isolate this transmutation into a "bridge" module.
// FIXME(rust#16366): The following line had to be moved because of a
// rustc bug. It should be in the next unsafe block.
let mut node: JS<Node> = unsafe { JS::from_trusted_node_address(data.document_root) };
let node: &mut LayoutNode = unsafe {
mem::transmute(&mut node)
};
debug!("layout: received layout request for: {:s}", data.url.serialize());
debug!("layout: parsed Node tree");
debug!("{:?}", node.dump());
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
{
// Reset the image cache.
let mut local_image_cache = rw_data.local_image_cache.lock();
local_image_cache.next_round(self.make_on_image_available_cb());
}
// TODO: Calculate the "actual viewport":
// http://www.w3.org/TR/css-device-adapt/#actual-viewport
let viewport_size = data.window_size.initial_viewport;
let current_screen_size = Size2D(Au::from_frac32_px(viewport_size.width.get()),
Au::from_frac32_px(viewport_size.height.get()));
let old_screen_size = mem::replace(&mut rw_data.screen_size, current_screen_size);
// Create a layout context for use throughout the following passes.
let mut shared_layout_ctx =
self.build_shared_layout_context(
rw_data.deref(),
node,
&data.url);
// Handle conditions where the entire flow tree is invalid.
let mut needs_dirtying = false;
needs_dirtying |= current_screen_size != old_screen_size;
needs_dirtying |= rw_data.stylesheet_dirty;
unsafe {
if needs_dirtying {
LayoutTask::dirty_all_nodes(node);
}
}
rw_data.stylesheet_dirty = false;
let mut layout_root = profile(time::LayoutStyleRecalcCategory,
Some((&data.url,
data.iframe,
self.first_reflow.get())),
self.time_profiler_chan.clone(),
|| {
// Perform CSS selector matching and flow construction.
let rw_data = rw_data.deref_mut();
match rw_data.parallel_traversal {
None => {
let layout_ctx = LayoutContext::new(&shared_layout_ctx);
let mut applicable_declarations = ApplicableDeclarations::new();
let mut parent_bf = Some(box BloomFilter::new());
node.recalc_style_for_subtree(&*rw_data.stylist,
&layout_ctx,
&mut parent_bf,
&mut applicable_declarations,
None)
}
Some(ref mut traversal) => {
parallel::traverse_dom_preorder(*node, &mut shared_layout_ctx, traversal)
}
}
self.get_layout_root((*node).clone())
});
// Verification of the flow tree, which ensures that all nodes were either marked as leaves
// or as non-leaves. This becomes a no-op in release builds. (It is inconsequential to
// memory safety but is a useful debugging tool.)
self.verify_flow_tree(&mut layout_root);
if self.opts.trace_layout {
layout_debug::begin_trace(layout_root.clone());
}
if self.opts.dump_flow_tree {
layout_root.get_mut().dump();
}
// Perform the primary layout passes over the flow tree to compute the locations of all
// the boxes.
profile(time::LayoutMainCategory, Some((&data.url, data.iframe, self.first_reflow.get())),
self.time_profiler_chan.clone(), || {
let rw_data = rw_data.deref_mut();
match rw_data.parallel_traversal {
None => {
// Sequential mode.
let layout_ctx = LayoutContext::new(&shared_layout_ctx);
self.solve_constraints(layout_root.get_mut(), &layout_ctx)
}
Some(_) => {
// Parallel mode.
self.solve_constraints_parallel(data, rw_data, &mut layout_root, &mut shared_layout_ctx)
}
}
});
// Build the display list if necessary, and send it to the renderer.
if data.goal == ReflowForDisplay {
let writing_mode = flow::base(layout_root.get()).writing_mode;
profile(time::LayoutDispListBuildCategory, Some((&data.url, data.iframe, self.first_reflow.get())), self.time_profiler_chan.clone(), || {
shared_layout_ctx.dirty = flow::base(layout_root.get()).position.to_physical(
writing_mode, rw_data.screen_size);
flow::mut_base(layout_root.get_mut()).abs_position =
LogicalPoint::zero(writing_mode).to_physical(writing_mode, rw_data.screen_size);
let rw_data = rw_data.deref_mut();
match rw_data.parallel_traversal {
None => {
let layout_ctx = LayoutContext::new(&shared_layout_ctx);
let mut traversal = traversal::BuildDisplayList {
layout_context: &layout_ctx,
};
traversal.process(layout_root.get_mut());
}
Some(ref mut traversal) => {
parallel::build_display_list_for_subtree(&mut layout_root,
&data.url,
data.iframe,
self.first_reflow.get(),
self.time_profiler_chan.clone(),
&mut shared_layout_ctx,
traversal);
}
}
debug!("Done building display list. Display List = {}",
flow::base(layout_root.get()).display_list);
let root_display_list =
mem::replace(&mut flow::mut_base(layout_root.get_mut()).display_list,
DisplayList::new());
root_display_list.debug();
let display_list = Arc::new(root_display_list.flatten(ContentStackingLevel));
// FIXME(pcwalton): This is really ugly and can't handle overflow: scroll. Refactor
// it with extreme prejudice.
let mut color = color::rgba(1.0, 1.0, 1.0, 1.0);
for child in node.traverse_preorder() {
if child.type_id() == Some(ElementNodeTypeId(HTMLHtmlElementTypeId)) ||
child.type_id() == Some(ElementNodeTypeId(HTMLBodyElementTypeId)) {
let element_bg_color = {
let thread_safe_child = ThreadSafeLayoutNode::new(&child);
thread_safe_child.style()
.resolve_color(thread_safe_child.style()
.get_background()
.background_color)
.to_gfx_color()
};
match element_bg_color {
color::rgba(0., 0., 0., 0.) => {}
_ => {
color = element_bg_color;
break;
}
}
}
}
let root_size = {
let root_flow = flow::base(layout_root.get());
root_flow.position.size.to_physical(root_flow.writing_mode)
};
let root_size = Size2D(root_size.width.to_nearest_px() as uint,
root_size.height.to_nearest_px() as uint);
let render_layer = RenderLayer {
id: layout_root.get().layer_id(0),
display_list: display_list.clone(),
position: Rect(Point2D(0u, 0u), root_size),
background_color: color,
scroll_policy: Scrollable,
};
rw_data.display_list = Some(display_list.clone());
// TODO(pcwalton): Eventually, when we have incremental reflow, this will have to
// be smarter in order to handle retained layer contents properly from reflow to
// reflow.
let mut layers = SmallVec1::new();
layers.push(render_layer);
for layer in mem::replace(&mut flow::mut_base(layout_root.get_mut()).layers,
DList::new()).into_iter() {
layers.push(layer)
}
debug!("Layout done!");
self.render_chan.send(RenderInitMsg(layers));
});
}
self.first_reflow.set(false);
if self.opts.trace_layout {
layout_debug::end_trace();
}
rw_data.generation += 1;
// Tell script that we're done.
//
// FIXME(pcwalton): This should probably be *one* channel, but we can't fix this without
// either select or a filtered recv() that only looks for messages of a given type.
data.script_join_chan.send(());
let ScriptControlChan(ref chan) = data.script_chan;
chan.send(ReflowCompleteMsg(self.id, data.id));
}
unsafe fn dirty_all_nodes(node: &mut LayoutNode) {
node.set_dirty(true);
let mut has_children = false;
for mut kid in node.children() {
LayoutTask::dirty_all_nodes(&mut kid);
has_children = true;
}
if has_children {
node.set_dirty_descendants(true);
}
}
// When images can't be loaded in time to display they trigger
// this callback in some task somewhere. This will send a message
// to the script task, and ultimately cause the image to be
// re-requested. We probably don't need to go all the way back to
// the script task for this.
fn make_on_image_available_cb(&self) -> Box<ImageResponder<UntrustedNodeAddress>+Send> {
// This has a crazy signature because the image cache needs to
// make multiple copies of the callback, and the dom event
// channel is not a copyable type, so this is actually a
// little factory to produce callbacks
box LayoutImageResponder {
id: self.id.clone(),
script_chan: self.script_chan.clone(),
} as Box<ImageResponder<UntrustedNodeAddress>+Send>
}
/// Handles a message to destroy layout data. Layout data must be destroyed on *this* task
/// because it contains local managed pointers.
unsafe fn handle_reap_layout_data(layout_data: LayoutDataRef) {
let mut layout_data_ref = layout_data.borrow_mut();
let _: Option<LayoutDataWrapper> = mem::transmute(
mem::replace(&mut *layout_data_ref, None));
}
}
struct LayoutRPCImpl(Arc<Mutex<LayoutTaskData>>);
impl LayoutRPC for LayoutRPCImpl {
// The neat thing here is that in order to answer the following two queries we only
// need to compare nodes for equality. Thus we can safely work only with `OpaqueNode`.
fn content_box(&self, node: TrustedNodeAddress) -> ContentBoxResponse {
let node: OpaqueNode = OpaqueNodeMethods::from_script_node(node);
fn union_boxes_for_node(accumulator: &mut Option<Rect<Au>>,
mut iter: DisplayItemIterator,
node: OpaqueNode) {
for item in iter {
union_boxes_for_node(accumulator, item.children(), node);
if item.base().node == node {
match *accumulator {
None => *accumulator = Some(item.base().bounds),
Some(ref mut acc) => *acc = acc.union(&item.base().bounds),
}
}
}
}
let mut rect = None;
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => {
union_boxes_for_node(&mut rect, display_list.iter(), node)
}
}
}
ContentBoxResponse(rect.unwrap_or(Rect::zero()))
}
/// Requests the dimensions of all the content boxes, as in the `getClientRects()` call.
fn content_boxes(&self, node: TrustedNodeAddress) -> ContentBoxesResponse {
let node: OpaqueNode = OpaqueNodeMethods::from_script_node(node);
fn add_boxes_for_node(accumulator: &mut Vec<Rect<Au>>,
mut iter: DisplayItemIterator,
node: OpaqueNode) {
for item in iter {
add_boxes_for_node(accumulator, item.children(), node);
if item.base().node == node {
accumulator.push(item.base().bounds)
}
}
}
let mut boxes = vec!();
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => {
add_boxes_for_node(&mut boxes, display_list.iter(), node)
}
}
}
ContentBoxesResponse(boxes)
}
/// Requests the node containing the point of interest
fn hit_test(&self, _: TrustedNodeAddress, point: Point2D<f32>) -> Result<HitTestResponse, ()> {
fn hit_test<'a,I:Iterator<&'a DisplayItem>>(x: Au, y: Au, mut iterator: I)
-> Option<HitTestResponse> {
for item in iterator {
match *item {
ClipDisplayItemClass(ref cc) => {
if geometry::rect_contains_point(cc.base.bounds, Point2D(x, y)) {
let ret = hit_test(x, y, cc.children.list.iter().rev());
if !ret.is_none() {
return ret
}
}
continue
}
_ => {}
}
let bounds = item.bounds();
// TODO(tikue): This check should really be performed by a method of
// DisplayItem.
if x < bounds.origin.x + bounds.size.width &&
bounds.origin.x <= x &&
y < bounds.origin.y + bounds.size.height &&
bounds.origin.y <= y {
return Some(HitTestResponse(item.base()
.node
.to_untrusted_node_address()))
}
}
let ret: Option<HitTestResponse> = None;
ret
}
let (x, y) = (Au::from_frac_px(point.x as f64),
Au::from_frac_px(point.y as f64));
let resp = {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => hit_test(x, y, display_list.list.iter().rev()),
}
};
if resp.is_some() {
return Ok(resp.unwrap());
}
Err(())
}
fn mouse_over(&self, _: TrustedNodeAddress, point: Point2D<f32>) -> Result<MouseOverResponse, ()> {
fn mouse_over_test<'a,
I:Iterator<&'a DisplayItem>>(
x: Au,
y: Au,
mut iterator: I,
result: &mut Vec<UntrustedNodeAddress>) {
for item in iterator {
match *item {
ClipDisplayItemClass(ref cc) => {
mouse_over_test(x, y, cc.children.list.iter().rev(), result);
}
_ => {
let bounds = item.bounds();
// TODO(tikue): This check should really be performed by a method
// of DisplayItem.
if x < bounds.origin.x + bounds.size.width &&
bounds.origin.x <= x &&
y < bounds.origin.y + bounds.size.height &&
bounds.origin.y <= y {
result.push(item.base()
.node
.to_untrusted_node_address());
}
}
}
}
}
let mut mouse_over_list: Vec<UntrustedNodeAddress> = vec!();
let (x, y) = (Au::from_frac_px(point.x as f64), Au::from_frac_px(point.y as f64));
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => {
mouse_over_test(x,
y,
display_list.list.iter().rev(),
&mut mouse_over_list);
}
};
}
if mouse_over_list.is_empty() {
Err(())
} else {
Ok(MouseOverResponse(mouse_over_list))
}
}
}