servo/src/components/main/layout/layout_task.rs
Patrick Walton 30bbaa49b7 Revert "auto merge of #1356 : ksh8281/servo/remove_@_in_LayoutTask.FontContext, r=pcwalton"
This reverts commit e8ffac13d7, reversing
changes made to db923feffe.

Reverting this change because FreeType is *not* thread safe. See the
documentation here:

http://www.freetype.org/freetype2/docs/reference/ft2-base_interface.html

"In multi-threaded applications, make sure that the same FT_Library
object or any of its children doesn't get accessed in parallel."

We will need to use a `MutexArc` instead.
2013-12-09 19:40:08 -08:00

653 lines
25 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The layout task. Performs layout on the DOM, builds display lists and sends them to be
/// rendered.
use css::matching::MatchMethods;
use css::select::new_stylist;
use css::node_style::StyledNode;
use layout::construct::{FlowConstructionResult, FlowConstructor, NoConstructionResult};
use layout::context::LayoutContext;
use layout::display_list_builder::{DisplayListBuilder, ToGfxColor};
use layout::extra::LayoutAuxMethods;
use layout::flow::{Flow, ImmutableFlowUtils, MutableFlowUtils, PreorderFlowTraversal};
use layout::flow::{PostorderFlowTraversal};
use layout::flow;
use layout::incremental::{RestyleDamage, BubbleWidths};
use layout::util::{LayoutData, LayoutDataAccess};
use extra::arc::{Arc, RWArc, MutexArc};
use geom::point::Point2D;
use geom::rect::Rect;
use geom::size::Size2D;
use gfx::display_list::{ClipDisplayItemClass, DisplayItem, DisplayItemIterator, DisplayList};
use gfx::font_context::FontContext;
use gfx::opts::Opts;
use gfx::render_task::{RenderMsg, RenderChan, RenderLayer};
use gfx::{render_task, color};
use script::dom::event::ReflowEvent;
use script::dom::node::{AbstractNode, LayoutDataRef, LayoutView, ElementNodeTypeId};
use script::dom::element::{HTMLBodyElementTypeId, HTMLHtmlElementTypeId};
use script::layout_interface::{AddStylesheetMsg, ContentBoxQuery};
use script::layout_interface::{ContentBoxesQuery, ContentBoxesResponse, ExitNowMsg, LayoutQuery};
use script::layout_interface::{HitTestQuery, ContentBoxResponse, HitTestResponse};
use script::layout_interface::{ContentChangedDocumentDamage, Msg, PrepareToExitMsg};
use script::layout_interface::{QueryMsg, ReapLayoutDataMsg, Reflow, ReflowDocumentDamage};
use script::layout_interface::{ReflowForDisplay, ReflowMsg};
use script::script_task::{ReflowCompleteMsg, ScriptChan, SendEventMsg};
use servo_msg::constellation_msg::{ConstellationChan, PipelineId};
use servo_net::image_cache_task::{ImageCacheTask, ImageResponseMsg};
use servo_net::local_image_cache::{ImageResponder, LocalImageCache};
use servo_util::geometry::Au;
use servo_util::time::{ProfilerChan, profile};
use servo_util::time;
use servo_util::tree::TreeNodeRef;
use std::cast::transmute;
use std::cast;
use std::cell::Cell;
use std::comm::Port;
use std::task;
use std::util;
use style::AuthorOrigin;
use style::Stylesheet;
use style::Stylist;
/// Information needed by the layout task.
struct LayoutTask {
/// The ID of the pipeline that we belong to.
id: PipelineId,
/// The port on which we receive messages.
port: Port<Msg>,
/// The channel on which messages can be sent to the constellation.
constellation_chan: ConstellationChan,
/// The channel on which messages can be sent to the script task.
script_chan: ScriptChan,
/// The channel on which messages can be sent to the painting task.
render_chan: RenderChan<AbstractNode<()>>,
/// The channel on which messages can be sent to the image cache.
image_cache_task: ImageCacheTask,
/// The local image cache.
local_image_cache: MutexArc<LocalImageCache>,
/// The local font context.
font_ctx: @mut FontContext,
/// The size of the viewport.
screen_size: Option<Size2D<Au>>,
/// A cached display list.
display_list: Option<Arc<DisplayList<AbstractNode<()>>>>,
stylist: RWArc<Stylist>,
/// The channel on which messages can be sent to the profiler.
profiler_chan: ProfilerChan,
}
/// The damage computation traversal.
#[deriving(Clone)]
struct ComputeDamageTraversal;
impl PostorderFlowTraversal for ComputeDamageTraversal {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
let mut damage = flow::base(flow).restyle_damage;
for child in flow::child_iter(flow) {
damage.union_in_place(flow::base(*child).restyle_damage)
}
flow::mut_base(flow).restyle_damage = damage;
true
}
}
/// Propagates restyle damage up and down the tree as appropriate.
///
/// FIXME(pcwalton): Merge this with flow tree building and/or other traversals.
struct PropagateDamageTraversal {
all_style_damage: bool,
}
impl PreorderFlowTraversal for PropagateDamageTraversal {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
if self.all_style_damage {
flow::mut_base(flow).restyle_damage.union_in_place(RestyleDamage::all())
}
let prop = flow::base(flow).restyle_damage.propagate_down();
if prop.is_nonempty() {
for kid_ctx in flow::child_iter(flow) {
flow::mut_base(*kid_ctx).restyle_damage.union_in_place(prop)
}
}
true
}
}
/// The bubble-widths traversal, the first part of layout computation. This computes preferred
/// and intrinsic widths and bubbles them up the tree.
struct BubbleWidthsTraversal<'self>(&'self mut LayoutContext);
impl<'self> PostorderFlowTraversal for BubbleWidthsTraversal<'self> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.bubble_widths(**self);
true
}
#[inline]
fn should_prune(&mut self, flow: &mut Flow) -> bool {
flow::mut_base(flow).restyle_damage.lacks(BubbleWidths)
}
}
/// The assign-widths traversal. In Gecko this corresponds to `Reflow`.
struct AssignWidthsTraversal<'self>(&'self mut LayoutContext);
impl<'self> PreorderFlowTraversal for AssignWidthsTraversal<'self> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_widths(**self);
true
}
}
/// The assign-heights-and-store-overflow traversal, the last (and most expensive) part of layout
/// computation. Determines the final heights for all layout objects, computes positions, and
/// computes overflow regions. In Gecko this corresponds to `FinishAndStoreOverflow`.
struct AssignHeightsAndStoreOverflowTraversal<'self>(&'self mut LayoutContext);
impl<'self> PostorderFlowTraversal for AssignHeightsAndStoreOverflowTraversal<'self> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_height(**self);
flow.store_overflow(**self);
true
}
#[inline]
fn should_process(&mut self, flow: &mut Flow) -> bool {
!flow::base(flow).is_inorder
}
}
struct LayoutImageResponder {
id: PipelineId,
script_chan: ScriptChan,
}
impl ImageResponder for LayoutImageResponder {
fn respond(&self) -> ~fn(ImageResponseMsg) {
let id = self.id.clone();
let script_chan = self.script_chan.clone();
let f: ~fn(ImageResponseMsg) = |_| {
script_chan.send(SendEventMsg(id.clone(), ReflowEvent))
};
f
}
}
impl LayoutTask {
/// Spawns a new layout task.
pub fn create(id: PipelineId,
port: Port<Msg>,
constellation_chan: ConstellationChan,
script_chan: ScriptChan,
render_chan: RenderChan<AbstractNode<()>>,
img_cache_task: ImageCacheTask,
opts: Opts,
profiler_chan: ProfilerChan) {
spawn_with!(task::task(), [port, constellation_chan, script_chan,
render_chan, img_cache_task, profiler_chan], {
let mut layout = LayoutTask::new(id,
port,
constellation_chan,
script_chan,
render_chan,
img_cache_task,
&opts,
profiler_chan);
layout.start();
});
}
/// Creates a new `LayoutTask` structure.
fn new(id: PipelineId,
port: Port<Msg>,
constellation_chan: ConstellationChan,
script_chan: ScriptChan,
render_chan: RenderChan<AbstractNode<()>>,
image_cache_task: ImageCacheTask,
opts: &Opts,
profiler_chan: ProfilerChan)
-> LayoutTask {
let fctx = @mut FontContext::new(opts.render_backend, true, profiler_chan.clone());
LayoutTask {
id: id,
port: port,
constellation_chan: constellation_chan,
script_chan: script_chan,
render_chan: render_chan,
image_cache_task: image_cache_task.clone(),
local_image_cache: MutexArc::new(LocalImageCache(image_cache_task)),
font_ctx: fctx,
screen_size: None,
display_list: None,
stylist: RWArc::new(new_stylist()),
profiler_chan: profiler_chan,
}
}
/// Starts listening on the port.
fn start(&mut self) {
while self.handle_request() {
// Loop indefinitely.
}
}
// Create a layout context for use in building display lists, hit testing, &c.
fn build_layout_context(&self) -> LayoutContext {
let image_cache = self.local_image_cache.clone();
let font_ctx = self.font_ctx;
let screen_size = self.screen_size.unwrap();
LayoutContext {
image_cache: image_cache,
font_ctx: font_ctx,
screen_size: Rect(Point2D(Au(0), Au(0)), screen_size),
}
}
/// Receives and dispatches messages from the port.
fn handle_request(&mut self) -> bool {
match self.port.recv() {
AddStylesheetMsg(sheet) => self.handle_add_stylesheet(sheet),
ReflowMsg(data) => {
let data = Cell::new(data);
do profile(time::LayoutPerformCategory, self.profiler_chan.clone()) {
self.handle_reflow(data.take());
}
}
QueryMsg(query) => {
let query = Cell::new(query);
do profile(time::LayoutQueryCategory, self.profiler_chan.clone()) {
self.handle_query(query.take());
}
}
ReapLayoutDataMsg(dead_layout_data) => {
unsafe {
self.handle_reap_layout_data(dead_layout_data)
}
}
PrepareToExitMsg(response_chan) => {
self.prepare_to_exit(response_chan)
}
ExitNowMsg => {
debug!("layout: ExitNowMsg received");
self.exit_now();
return false
}
}
true
}
/// Enters a quiescent state in which no new messages except for `ReapLayoutDataMsg` will be
/// processed until an `ExitNowMsg` is received. A pong is immediately sent on the given
/// response channel.
fn prepare_to_exit(&mut self, response_chan: Chan<()>) {
response_chan.send(());
match self.port.recv() {
ReapLayoutDataMsg(dead_layout_data) => {
unsafe {
self.handle_reap_layout_data(dead_layout_data)
}
}
ExitNowMsg => self.exit_now(),
_ => {
fail!("layout: message that wasn't `ExitNowMsg` received after `PrepareToExitMsg`")
}
}
}
/// Shuts down the layout task now. If there are any DOM nodes left, layout will now (safely)
/// crash.
fn exit_now(&mut self) {
let (response_port, response_chan) = stream();
self.render_chan.send(render_task::ExitMsg(response_chan));
response_port.recv()
}
fn handle_add_stylesheet(&mut self, sheet: Stylesheet) {
let sheet = Cell::new(sheet);
do self.stylist.write |stylist| {
stylist.add_stylesheet(sheet.take(), AuthorOrigin)
}
}
/// Builds the flow tree.
///
/// This corresponds to the various `nsCSSFrameConstructor` methods in Gecko or
/// `createRendererIfNeeded` in WebKit. Note, however that in WebKit `createRendererIfNeeded`
/// is intertwined with selector matching, making it difficult to compare directly. It is
/// marked `#[inline(never)]` to aid benchmarking in sampling profilers.
#[inline(never)]
fn construct_flow_tree(&self, layout_context: &LayoutContext, node: AbstractNode<LayoutView>)
-> ~Flow: {
node.traverse_postorder(&FlowConstructor::init(layout_context));
let result = match *node.mutate_layout_data().ptr {
Some(ref mut layout_data) => {
util::replace(&mut layout_data.flow_construction_result, NoConstructionResult)
}
None => fail!("no layout data for root node"),
};
let mut flow = match result {
FlowConstructionResult(flow) => flow,
_ => fail!("Flow construction didn't result in a flow at the root of the tree!"),
};
flow.mark_as_root();
flow
}
/// Performs layout constraint solving.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints(&mut self,
layout_root: &mut Flow,
layout_context: &mut LayoutContext) {
let _ = layout_root.traverse_postorder(&mut BubbleWidthsTraversal(layout_context));
// FIXME(kmc): We want to do
// for flow in layout_root.traverse_preorder_prune(|f|
// f.restyle_damage().lacks(Reflow))
// but FloatContext values can't be reused, so we need to recompute them every time.
// NOTE: this currently computes borders, so any pruning should separate that operation out.
let _ = layout_root.traverse_preorder(&mut AssignWidthsTraversal(layout_context));
// For now, this is an inorder traversal
// FIXME: prune this traversal as well
let _ = layout_root.traverse_postorder(&mut
AssignHeightsAndStoreOverflowTraversal(layout_context));
}
/// The high-level routine that performs layout tasks.
fn handle_reflow(&mut self, data: &Reflow) {
// FIXME: Isolate this transmutation into a "bridge" module.
let node: &AbstractNode<LayoutView> = unsafe {
transmute(&data.document_root)
};
debug!("layout: received layout request for: {:s}", data.url.to_str());
debug!("layout: damage is {:?}", data.damage);
debug!("layout: parsed Node tree");
debug!("{:?}", node.dump());
// Reset the image cache.
unsafe {
self.local_image_cache.unsafe_access(
|cache| cache.next_round(self.make_on_image_available_cb()));
}
// true => Do the reflow with full style damage, because content
// changed or the window was resized.
let mut all_style_damage = match data.damage.level {
ContentChangedDocumentDamage => true,
_ => false
};
let screen_size = Size2D(Au::from_px(data.window_size.width as int),
Au::from_px(data.window_size.height as int));
if self.screen_size != Some(screen_size) {
all_style_damage = true;
}
self.screen_size = Some(screen_size);
// Create a layout context for use throughout the following passes.
let mut layout_ctx = self.build_layout_context();
// Initialize layout data for each node.
//
// FIXME: This is inefficient. We don't need an entire traversal to do this!
do profile(time::LayoutAuxInitCategory, self.profiler_chan.clone()) {
node.initialize_style_for_subtree();
}
// Perform CSS selector matching if necessary.
match data.damage.level {
ReflowDocumentDamage => {}
_ => {
do profile(time::LayoutSelectorMatchCategory, self.profiler_chan.clone()) {
node.match_subtree(self.stylist.clone());
node.cascade_subtree(None);
}
}
}
// Construct the flow tree.
let mut layout_root = profile(time::LayoutTreeBuilderCategory,
self.profiler_chan.clone(),
|| self.construct_flow_tree(&layout_ctx, *node));
// Propagate damage.
layout_root.traverse_preorder(&mut PropagateDamageTraversal {
all_style_damage: all_style_damage
});
layout_root.traverse_postorder(&mut ComputeDamageTraversal.clone());
debug!("layout: constructed Flow tree");
debug!("{:?}", layout_root.dump());
// Perform the primary layout passes over the flow tree to compute the locations of all
// the boxes.
do profile(time::LayoutMainCategory, self.profiler_chan.clone()) {
self.solve_constraints(layout_root, &mut layout_ctx)
}
// Build the display list if necessary, and send it to the renderer.
if data.goal == ReflowForDisplay {
do profile(time::LayoutDispListBuildCategory, self.profiler_chan.clone()) {
let root_size = flow::base(layout_root).position.size;
let display_list= ~Cell::new(DisplayList::<AbstractNode<()>>::new());
let dirty = flow::base(layout_root).position.clone();
layout_root.build_display_list(
&DisplayListBuilder {
ctx: &layout_ctx,
},
&dirty,
display_list);
let display_list = Arc::new(display_list.take());
let mut color = color::rgba(255.0, 255.0, 255.0, 255.0);
for child in node.traverse_preorder() {
if child.type_id() == ElementNodeTypeId(HTMLHtmlElementTypeId) ||
child.type_id() == ElementNodeTypeId(HTMLBodyElementTypeId) {
let element_bg_color = child.style().resolve_color(
child.style().Background.background_color
).to_gfx_color();
match element_bg_color {
color::rgba(0., 0., 0., 0.) => {}
_ => {
color = element_bg_color;
break;
}
}
}
}
let render_layer = RenderLayer {
display_list: display_list.clone(),
size: Size2D(root_size.width.to_nearest_px() as uint,
root_size.height.to_nearest_px() as uint),
color: color
};
self.display_list = Some(display_list.clone());
self.render_chan.send(RenderMsg(render_layer));
} // time(layout: display list building)
}
// Tell script that we're done.
//
// FIXME(pcwalton): This should probably be *one* channel, but we can't fix this without
// either select or a filtered recv() that only looks for messages of a given type.
data.script_join_chan.send(());
data.script_chan.send(ReflowCompleteMsg(self.id, data.id));
}
/// Handles a query from the script task. This is the main routine that DOM functions like
/// `getClientRects()` or `getBoundingClientRect()` ultimately invoke.
fn handle_query(&self, query: LayoutQuery) {
match query {
ContentBoxQuery(node, reply_chan) => {
// FIXME: Isolate this transmutation into a single "bridge" module.
let node: AbstractNode<()> = unsafe {
transmute(node)
};
fn union_boxes_for_node<'a>(
accumulator: &mut Option<Rect<Au>>,
mut iter: DisplayItemIterator<'a,AbstractNode<()>>,
node: AbstractNode<()>) {
for item in iter {
union_boxes_for_node(accumulator, item.children(), node);
if item.base().extra == node {
match *accumulator {
None => *accumulator = Some(item.base().bounds),
Some(ref mut acc) => *acc = acc.union(&item.base().bounds),
}
}
}
}
let mut rect = None;
let display_list = self.display_list.as_ref().unwrap().get();
union_boxes_for_node(&mut rect, display_list.iter(), node);
reply_chan.send(ContentBoxResponse(rect.unwrap_or(Au::zero_rect())))
}
ContentBoxesQuery(node, reply_chan) => {
// FIXME: Isolate this transmutation into a single "bridge" module.
let node: AbstractNode<()> = unsafe {
transmute(node)
};
fn add_boxes_for_node<'a>(
accumulator: &mut ~[Rect<Au>],
mut iter: DisplayItemIterator<'a,AbstractNode<()>>,
node: AbstractNode<()>) {
for item in iter {
add_boxes_for_node(accumulator, item.children(), node);
if item.base().extra == node {
accumulator.push(item.base().bounds)
}
}
}
let mut boxes = ~[];
let display_list = self.display_list.as_ref().unwrap().get();
add_boxes_for_node(&mut boxes, display_list.iter(), node);
reply_chan.send(ContentBoxesResponse(boxes))
}
HitTestQuery(_, point, reply_chan) => {
fn hit_test(x: Au, y: Au, list: &[DisplayItem<AbstractNode<()>>])
-> Option<HitTestResponse> {
for item in list.rev_iter() {
match *item {
ClipDisplayItemClass(ref cc) => {
let ret = hit_test(x, y, cc.child_list);
if !ret.is_none() {
return ret;
}
}
_ => {}
}
}
for item in list.rev_iter() {
match *item {
ClipDisplayItemClass(_) => continue,
_ => {}
}
let bounds = item.bounds();
// TODO this check should really be performed by a method of DisplayItem
if x < bounds.origin.x + bounds.size.width &&
bounds.origin.x <= x &&
y < bounds.origin.y + bounds.size.height &&
bounds.origin.y <= y {
let node: AbstractNode<LayoutView> = unsafe {
transmute(item.base().extra)
};
let resp = Some(HitTestResponse(node));
return resp;
}
}
let ret: Option<HitTestResponse> = None;
ret
}
let response = {
match self.display_list {
Some(ref list) => {
let display_list = list.get();
let (x, y) = (Au::from_frac_px(point.x as f64),
Au::from_frac_px(point.y as f64));
let resp = hit_test(x,y,display_list.list);
if resp.is_none() {
Err(())
} else {
Ok(resp.unwrap())
}
}
None => {
error!("Can't hit test: no display list");
Err(())
},
}
};
reply_chan.send(response)
}
}
}
// When images can't be loaded in time to display they trigger
// this callback in some task somewhere. This will send a message
// to the script task, and ultimately cause the image to be
// re-requested. We probably don't need to go all the way back to
// the script task for this.
fn make_on_image_available_cb(&self) -> ~ImageResponder:Send {
// This has a crazy signature because the image cache needs to
// make multiple copies of the callback, and the dom event
// channel is not a copyable type, so this is actually a
// little factory to produce callbacks
~LayoutImageResponder {
id: self.id.clone(),
script_chan: self.script_chan.clone(),
} as ~ImageResponder:Send
}
/// Handles a message to destroy layout data. Layout data must be destroyed on *this* task
/// because it contains local managed pointers.
unsafe fn handle_reap_layout_data(&self, layout_data: LayoutDataRef) {
let ptr: &mut Option<~LayoutData> = cast::transmute(layout_data.borrow_unchecked());
*ptr = None
}
}