servo/components/style/rule_tree/mod.rs
Nicholas Nethercote 32548e5312 Overhaul MallocSizeOf and related things.
This patch makes the MallocSizeOf stuff in Stylo work more like the HeapSizeOf
stuff already in Servo, except better. In particular, it adds deriving support
for MallocSizeOf, which will make it easier to improve coverage.

The patch does the following.

- Combines servo/components/style/stylesheets/memory.rs and the heapsize crate
  into a new crate, malloc_size_of.

- Forks the heapsize_derive crate, calling it malloc_size_of, so that
  MallocSizeOf can be derived.

- Both the new crates have MIT/Apache licenses, like heapsize, in case they are
  incorporated into heapsize in the future.

- Renames the methods within MallocSizeOf and the related traits so they are
  more concise.

- Removes MallocSizeOfWithGuard.

- Adds `derive(MallocSizeOf)` to a lot of types, in some cases replacing an
  equivalent or almost-equivalent hand-written implementation.

- Adds stuff so that Rc/Arc can be handled properly.
2017-09-12 12:37:51 +10:00

1580 lines
58 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#![allow(unsafe_code)]
//! The rule tree.
use applicable_declarations::ApplicableDeclarationList;
#[cfg(feature = "servo")]
use heapsize::HeapSizeOf;
#[cfg(feature = "gecko")]
use malloc_size_of::{MallocSizeOf, MallocSizeOfOps};
use properties::{Importance, LonghandIdSet, PropertyDeclarationBlock};
use servo_arc::{Arc, ArcBorrow, NonZeroPtrMut};
use shared_lock::{Locked, StylesheetGuards, SharedRwLockReadGuard};
use smallvec::SmallVec;
use std::io::{self, Write};
use std::mem;
use std::ptr;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use stylesheets::StyleRule;
use thread_state;
/// The rule tree, the structure servo uses to preserve the results of selector
/// matching.
///
/// This is organized as a tree of rules. When a node matches a set of rules,
/// they're inserted in order in the tree, starting with the less specific one.
///
/// When a rule is inserted in the tree, other elements may share the path up to
/// a given rule. If that's the case, we don't duplicate child nodes, but share
/// them.
///
/// When the rule node refcount drops to zero, it doesn't get freed. It gets
/// instead put into a free list, and it is potentially GC'd after a while in a
/// single-threaded fashion.
///
/// That way, a rule node that represents a likely-to-match-again rule (like a
/// :hover rule) can be reused if we haven't GC'd it yet.
///
/// See the discussion at https://github.com/servo/servo/pull/15562 and the IRC
/// logs at http://logs.glob.uno/?c=mozilla%23servo&s=3+Apr+2017&e=3+Apr+2017
/// logs from http://logs.glob.uno/?c=mozilla%23servo&s=3+Apr+2017&e=3+Apr+2017#c644094
/// to se a discussion about the different memory orderings used here.
#[derive(Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct RuleTree {
root: StrongRuleNode,
}
impl Drop for RuleTree {
fn drop(&mut self) {
// GC the rule tree.
unsafe { self.gc(); }
// After the GC, the free list should be empty.
debug_assert!(self.root.get().next_free.load(Ordering::Relaxed) == FREE_LIST_SENTINEL);
// Remove the sentinel. This indicates that GCs will no longer occur.
// Any further drops of StrongRuleNodes must occur on the main thread,
// and will trigger synchronous dropping of the Rule nodes.
self.root.get().next_free.store(ptr::null_mut(), Ordering::Relaxed);
}
}
#[cfg(feature = "gecko")]
impl MallocSizeOf for RuleTree {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = ops.malloc_size_of(self.root.ptr());
n += self.root.get().size_of(ops);
n
}
}
/// A style source for the rule node. It can either be a CSS style rule or a
/// declaration block.
///
/// Note that, even though the declaration block from inside the style rule
/// could be enough to implement the rule tree, keeping the whole rule provides
/// more debuggability, and also the ability of show those selectors to
/// devtools.
#[derive(Clone, Debug)]
pub enum StyleSource {
/// A style rule stable pointer.
Style(Arc<Locked<StyleRule>>),
/// A declaration block stable pointer.
Declarations(Arc<Locked<PropertyDeclarationBlock>>),
/// Indicates no style source. Used to save an Option wrapper around the stylesource in
/// RuleNode
None,
}
impl PartialEq for StyleSource {
fn eq(&self, other: &Self) -> bool {
self.ptr_equals(other)
}
}
impl StyleSource {
#[inline]
fn ptr_equals(&self, other: &Self) -> bool {
use self::StyleSource::*;
match (self, other) {
(&Style(ref one), &Style(ref other)) => Arc::ptr_eq(one, other),
(&Declarations(ref one), &Declarations(ref other)) => Arc::ptr_eq(one, other),
(&None, _) | (_, &None) => panic!("Should not check for equality between null StyleSource objects"),
_ => false,
}
}
fn dump<W: Write>(&self, guard: &SharedRwLockReadGuard, writer: &mut W) {
use self::StyleSource::*;
if let Style(ref rule) = *self {
let rule = rule.read_with(guard);
let _ = write!(writer, "{:?}", rule.selectors);
}
let _ = write!(writer, " -> {:?}", self.read(guard).declarations());
}
/// Read the style source guard, and obtain thus read access to the
/// underlying property declaration block.
#[inline]
pub fn read<'a>(&'a self, guard: &'a SharedRwLockReadGuard) -> &'a PropertyDeclarationBlock {
let block = match *self {
StyleSource::Style(ref rule) => &rule.read_with(guard).block,
StyleSource::Declarations(ref block) => block,
StyleSource::None => panic!("Cannot call read on StyleSource::None"),
};
block.read_with(guard)
}
/// Indicates if this StyleSource has a value
pub fn is_some(&self) -> bool {
match *self {
StyleSource::None => false,
_ => true,
}
}
}
/// This value exists here so a node that pushes itself to the list can know
/// that is in the free list by looking at is next pointer, and comparing it
/// with null.
///
/// The root node doesn't have a null pointer in the free list, but this value.
const FREE_LIST_SENTINEL: *mut RuleNode = 0x01 as *mut RuleNode;
/// A second sentinel value for the free list, indicating that it's locked (i.e.
/// another thread is currently adding an entry). We spin if we find this value.
const FREE_LIST_LOCKED: *mut RuleNode = 0x02 as *mut RuleNode;
impl RuleTree {
/// Construct a new rule tree.
pub fn new() -> Self {
RuleTree {
root: StrongRuleNode::new(Box::new(RuleNode::root())),
}
}
/// Get the root rule node.
pub fn root(&self) -> &StrongRuleNode {
&self.root
}
fn dump<W: Write>(&self, guards: &StylesheetGuards, writer: &mut W) {
let _ = writeln!(writer, " + RuleTree");
self.root.get().dump(guards, writer, 0);
}
/// Dump the rule tree to stdout.
pub fn dump_stdout(&self, guards: &StylesheetGuards) {
let mut stdout = io::stdout();
self.dump(guards, &mut stdout);
}
/// Inserts the given rules, that must be in proper order by specifity, and
/// returns the corresponding rule node representing the last inserted one.
///
/// !important rules are detected and inserted into the appropriate position
/// in the rule tree. This allows selector matching to ignore importance,
/// while still maintaining the appropriate cascade order in the rule tree.
pub fn insert_ordered_rules_with_important<'a, I>(
&self,
iter: I,
guards: &StylesheetGuards
) -> StrongRuleNode
where
I: Iterator<Item=(StyleSource, CascadeLevel)>,
{
use self::CascadeLevel::*;
let mut current = self.root.clone();
let mut last_level = current.get().level;
let mut found_important = false;
let mut important_style_attr = None;
let mut important_author = SmallVec::<[StyleSource; 4]>::new();
let mut important_user = SmallVec::<[StyleSource; 4]>::new();
let mut important_ua = SmallVec::<[StyleSource; 4]>::new();
let mut transition = None;
for (source, level) in iter {
debug_assert!(last_level <= level, "Not really ordered");
debug_assert!(!level.is_important(), "Important levels handled internally");
let any_important = {
let pdb = source.read(level.guard(guards));
pdb.any_important()
};
if any_important {
found_important = true;
match level {
AuthorNormal => important_author.push(source.clone()),
UANormal => important_ua.push(source.clone()),
UserNormal => important_user.push(source.clone()),
StyleAttributeNormal => {
debug_assert!(important_style_attr.is_none());
important_style_attr = Some(source.clone());
},
_ => {},
};
}
// We don't optimize out empty rules, even though we could.
//
// Inspector relies on every rule being inserted in the normal level
// at least once, in order to return the rules with the correct
// specificity order.
//
// TODO(emilio): If we want to apply these optimizations without
// breaking inspector's expectations, we'd need to run
// selector-matching again at the inspector's request. That may or
// may not be a better trade-off.
if matches!(level, Transitions) && found_important {
// There can be at most one transition, and it will come at
// the end of the iterator. Stash it and apply it after
// !important rules.
debug_assert!(transition.is_none());
transition = Some(source);
} else {
current = current.ensure_child(self.root.downgrade(), source, level);
}
last_level = level;
}
// Early-return in the common case of no !important declarations.
if !found_important {
return current;
}
//
// Insert important declarations, in order of increasing importance,
// followed by any transition rule.
//
for source in important_author.drain() {
current = current.ensure_child(self.root.downgrade(), source, AuthorImportant);
}
if let Some(source) = important_style_attr {
current = current.ensure_child(self.root.downgrade(), source, StyleAttributeImportant);
}
for source in important_user.drain() {
current = current.ensure_child(self.root.downgrade(), source, UserImportant);
}
for source in important_ua.drain() {
current = current.ensure_child(self.root.downgrade(), source, UAImportant);
}
if let Some(source) = transition {
current = current.ensure_child(self.root.downgrade(), source, Transitions);
}
current
}
/// Given a list of applicable declarations, insert the rules and return the
/// corresponding rule node.
pub fn compute_rule_node(
&self,
applicable_declarations: &mut ApplicableDeclarationList,
guards: &StylesheetGuards
) -> StrongRuleNode {
let rules = applicable_declarations.drain().map(|d| d.order_and_level());
let rule_node = self.insert_ordered_rules_with_important(rules, guards);
rule_node
}
/// Insert the given rules, that must be in proper order by specifity, and
/// return the corresponding rule node representing the last inserted one.
pub fn insert_ordered_rules<'a, I>(&self, iter: I) -> StrongRuleNode
where I: Iterator<Item=(StyleSource, CascadeLevel)>,
{
self.insert_ordered_rules_from(self.root.clone(), iter)
}
fn insert_ordered_rules_from<'a, I>(&self,
from: StrongRuleNode,
iter: I) -> StrongRuleNode
where I: Iterator<Item=(StyleSource, CascadeLevel)>,
{
let mut current = from;
let mut last_level = current.get().level;
for (source, level) in iter {
debug_assert!(last_level <= level, "Not really ordered");
current = current.ensure_child(self.root.downgrade(), source, level);
last_level = level;
}
current
}
/// This can only be called when no other threads is accessing this tree.
pub unsafe fn gc(&self) {
self.root.gc();
}
/// This can only be called when no other threads is accessing this tree.
pub unsafe fn maybe_gc(&self) {
self.root.maybe_gc();
}
/// Replaces a rule in a given level (if present) for another rule.
///
/// Returns the resulting node that represents the new path, or None if
/// the old path is still valid.
pub fn update_rule_at_level(&self,
level: CascadeLevel,
pdb: Option<ArcBorrow<Locked<PropertyDeclarationBlock>>>,
path: &StrongRuleNode,
guards: &StylesheetGuards,
important_rules_changed: &mut bool)
-> Option<StrongRuleNode> {
debug_assert!(level.is_unique_per_element());
// TODO(emilio): Being smarter with lifetimes we could avoid a bit of
// the refcount churn.
let mut current = path.clone();
*important_rules_changed = false;
// First walk up until the first less-or-equally specific rule.
let mut children = SmallVec::<[_; 10]>::new();
while current.get().level > level {
children.push((current.get().source.clone(), current.get().level));
current = current.parent().unwrap().clone();
}
// Then remove the one at the level we want to replace, if any.
//
// NOTE: Here we assume that only one rule can be at the level we're
// replacing.
//
// This is certainly true for HTML style attribute rules, animations and
// transitions, but could not be so for SMIL animations, which we'd need
// to special-case (isn't hard, it's just about removing the `if` and
// special cases, and replacing them for a `while` loop, avoiding the
// optimizations).
if current.get().level == level {
*important_rules_changed |= level.is_important();
if let Some(pdb) = pdb {
// If the only rule at the level we're replacing is exactly the
// same as `pdb`, we're done, and `path` is still valid.
//
// TODO(emilio): Another potential optimization is the one where
// we can just replace the rule at that level for `pdb`, and
// then we don't need to re-create the children, and `path` is
// also equally valid. This is less likely, and would require an
// in-place mutation of the source, which is, at best, fiddly,
// so let's skip it for now.
let is_here_already = match &current.get().source {
&StyleSource::Declarations(ref already_here) => {
pdb.with_arc(|arc| Arc::ptr_eq(arc, already_here))
},
_ => unreachable!("Replacing non-declarations style?"),
};
if is_here_already {
debug!("Picking the fast path in rule replacement");
return None;
}
}
current = current.parent().unwrap().clone();
}
debug_assert!(current.get().level != level,
"Multiple rules should've been replaced?");
// Insert the rule if it's relevant at this level in the cascade.
//
// These optimizations are likely to be important, because the levels
// where replacements apply (style and animations) tend to trigger
// pretty bad styling cases already.
if let Some(pdb) = pdb {
if level.is_important() {
if pdb.read_with(level.guard(guards)).any_important() {
current = current.ensure_child(self.root.downgrade(),
StyleSource::Declarations(pdb.clone_arc()),
level);
}
} else {
if pdb.read_with(level.guard(guards)).any_normal() {
current = current.ensure_child(self.root.downgrade(),
StyleSource::Declarations(pdb.clone_arc()),
level);
}
}
}
// Now the rule is in the relevant place, push the children as
// necessary.
let rule =
self.insert_ordered_rules_from(current, children.drain().rev());
Some(rule)
}
/// Returns new rule nodes without Transitions level rule.
pub fn remove_transition_rule_if_applicable(&self, path: &StrongRuleNode) -> StrongRuleNode {
// Return a clone if there is no transition level.
if path.cascade_level() != CascadeLevel::Transitions {
return path.clone();
}
path.parent().unwrap().clone()
}
/// Returns new rule node without rules from declarative animations.
pub fn remove_animation_rules(&self, path: &StrongRuleNode) -> StrongRuleNode {
// Return a clone if there are no animation rules.
if !path.has_animation_or_transition_rules() {
return path.clone();
}
let iter = path.self_and_ancestors().take_while(
|node| node.cascade_level() >= CascadeLevel::SMILOverride);
let mut last = path;
let mut children = SmallVec::<[_; 10]>::new();
for node in iter {
if !node.cascade_level().is_animation() {
children.push((node.get().source.clone(), node.cascade_level()));
}
last = node;
}
let rule = self.insert_ordered_rules_from(last.parent().unwrap().clone(), children.drain().rev());
rule
}
}
/// The number of RuleNodes added to the free list before we will consider
/// doing a GC when calling maybe_gc(). (The value is copied from Gecko,
/// where it likely did not result from a rigorous performance analysis.)
const RULE_TREE_GC_INTERVAL: usize = 300;
/// The cascade level these rules are relevant at, as per[1].
///
/// The order of variants declared here is significant, and must be in
/// _ascending_ order of precedence.
///
/// [1]: https://drafts.csswg.org/css-cascade/#cascade-origin
#[repr(u8)]
#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum CascadeLevel {
/// Normal User-Agent rules.
UANormal = 0,
/// Presentational hints.
PresHints,
/// User normal rules.
UserNormal,
/// XBL <stylesheet> rules.
XBL,
/// Author normal rules.
AuthorNormal,
/// Style attribute normal rules.
StyleAttributeNormal,
/// SVG SMIL animations.
SMILOverride,
/// CSS animations and script-generated animations.
Animations,
/// Author-supplied important rules.
AuthorImportant,
/// Style attribute important rules.
StyleAttributeImportant,
/// User important rules.
UserImportant,
/// User-agent important rules.
UAImportant,
/// Transitions
///
/// NB: If this changes from being last, change from_byte below.
Transitions,
}
impl CascadeLevel {
/// Converts a raw byte to a CascadeLevel.
pub unsafe fn from_byte(byte: u8) -> Self {
debug_assert!(byte <= CascadeLevel::Transitions as u8);
mem::transmute(byte)
}
/// Select a lock guard for this level
pub fn guard<'a>(&self, guards: &'a StylesheetGuards<'a>) -> &'a SharedRwLockReadGuard<'a> {
match *self {
CascadeLevel::UANormal |
CascadeLevel::UserNormal |
CascadeLevel::UserImportant |
CascadeLevel::UAImportant => guards.ua_or_user,
_ => guards.author,
}
}
/// Returns whether this cascade level is unique per element, in which case
/// we can replace the path in the cascade without fear.
pub fn is_unique_per_element(&self) -> bool {
match *self {
CascadeLevel::Transitions |
CascadeLevel::Animations |
CascadeLevel::SMILOverride |
CascadeLevel::StyleAttributeNormal |
CascadeLevel::StyleAttributeImportant => true,
_ => false,
}
}
/// Returns whether this cascade level represents important rules of some
/// sort.
#[inline]
pub fn is_important(&self) -> bool {
match *self {
CascadeLevel::AuthorImportant |
CascadeLevel::StyleAttributeImportant |
CascadeLevel::UserImportant |
CascadeLevel::UAImportant => true,
_ => false,
}
}
/// Returns the importance relevant for this rule. Pretty similar to
/// `is_important`.
#[inline]
pub fn importance(&self) -> Importance {
if self.is_important() {
Importance::Important
} else {
Importance::Normal
}
}
/// Returns whether this cascade level represents an animation rules.
#[inline]
pub fn is_animation(&self) -> bool {
match *self {
CascadeLevel::SMILOverride |
CascadeLevel::Animations |
CascadeLevel::Transitions => true,
_ => false,
}
}
}
// The root node never has siblings, but needs a free count. We use the same
// storage for both to save memory.
struct PrevSiblingOrFreeCount(AtomicPtr<RuleNode>);
impl PrevSiblingOrFreeCount {
fn new() -> Self {
PrevSiblingOrFreeCount(AtomicPtr::new(ptr::null_mut()))
}
unsafe fn as_prev_sibling(&self) -> &AtomicPtr<RuleNode> {
&self.0
}
unsafe fn as_free_count(&self) -> &AtomicUsize {
unsafe {
mem::transmute(&self.0)
}
}
}
/// A node in the rule tree.
pub struct RuleNode {
/// The root node. Only the root has no root pointer, for obvious reasons.
root: Option<WeakRuleNode>,
/// The parent rule node. Only the root has no parent.
parent: Option<StrongRuleNode>,
/// The actual style source, either coming from a selector in a StyleRule,
/// or a raw property declaration block (like the style attribute).
source: StyleSource,
/// The cascade level this rule is positioned at.
level: CascadeLevel,
refcount: AtomicUsize,
first_child: AtomicPtr<RuleNode>,
next_sibling: AtomicPtr<RuleNode>,
/// Previous sibling pointer for all non-root nodes.
///
/// For the root, stores the of RuleNodes we have added to the free list
/// since the last GC. (We don't update this if we rescue a RuleNode from
/// the free list. It's just used as a heuristic to decide when to run GC.)
prev_sibling_or_free_count: PrevSiblingOrFreeCount,
/// The next item in the rule tree free list, that starts on the root node.
///
/// When this is set to null, that means that the rule tree has been torn
/// down, and GCs will no longer occur. When this happens, StrongRuleNodes
/// may only be dropped on the main thread, and teardown happens
/// synchronously.
next_free: AtomicPtr<RuleNode>,
}
unsafe impl Sync for RuleTree {}
unsafe impl Send for RuleTree {}
// On Gecko builds, hook into the leak checking machinery.
#[cfg(feature = "gecko")]
#[cfg(debug_assertions)]
mod gecko_leak_checking {
use std::mem::size_of;
use std::os::raw::{c_char, c_void};
use super::RuleNode;
extern "C" {
pub fn NS_LogCtor(aPtr: *const c_void, aTypeName: *const c_char, aSize: u32);
pub fn NS_LogDtor(aPtr: *const c_void, aTypeName: *const c_char, aSize: u32);
}
static NAME: &'static [u8] = b"RuleNode\0";
/// Logs the creation of a heap-allocated object to Gecko's leak-checking machinery.
pub fn log_ctor(ptr: *const RuleNode) {
let s = NAME as *const [u8] as *const u8 as *const c_char;
unsafe {
NS_LogCtor(ptr as *const c_void, s, size_of::<RuleNode>() as u32);
}
}
/// Logs the destruction of a heap-allocated object to Gecko's leak-checking machinery.
pub fn log_dtor(ptr: *const RuleNode) {
let s = NAME as *const [u8] as *const u8 as *const c_char;
unsafe {
NS_LogDtor(ptr as *const c_void, s, size_of::<RuleNode>() as u32);
}
}
}
#[inline(always)]
fn log_new(_ptr: *const RuleNode) {
#[cfg(feature = "gecko")]
#[cfg(debug_assertions)]
gecko_leak_checking::log_ctor(_ptr);
}
#[inline(always)]
fn log_drop(_ptr: *const RuleNode) {
#[cfg(feature = "gecko")]
#[cfg(debug_assertions)]
gecko_leak_checking::log_dtor(_ptr);
}
impl RuleNode {
fn new(root: WeakRuleNode,
parent: StrongRuleNode,
source: StyleSource,
level: CascadeLevel) -> Self {
debug_assert!(root.upgrade().parent().is_none());
RuleNode {
root: Some(root),
parent: Some(parent),
source: source,
level: level,
refcount: AtomicUsize::new(1),
first_child: AtomicPtr::new(ptr::null_mut()),
next_sibling: AtomicPtr::new(ptr::null_mut()),
prev_sibling_or_free_count: PrevSiblingOrFreeCount::new(),
next_free: AtomicPtr::new(ptr::null_mut()),
}
}
fn root() -> Self {
RuleNode {
root: None,
parent: None,
source: StyleSource::None,
level: CascadeLevel::UANormal,
refcount: AtomicUsize::new(1),
first_child: AtomicPtr::new(ptr::null_mut()),
next_sibling: AtomicPtr::new(ptr::null_mut()),
prev_sibling_or_free_count: PrevSiblingOrFreeCount::new(),
next_free: AtomicPtr::new(FREE_LIST_SENTINEL),
}
}
fn is_root(&self) -> bool {
self.parent.is_none()
}
fn next_sibling(&self) -> Option<WeakRuleNode> {
// We use acquire semantics here to ensure proper synchronization while
// inserting in the child list.
let ptr = self.next_sibling.load(Ordering::Acquire);
if ptr.is_null() {
None
} else {
Some(WeakRuleNode::from_ptr(ptr))
}
}
fn prev_sibling(&self) -> &AtomicPtr<RuleNode> {
debug_assert!(!self.is_root());
unsafe { self.prev_sibling_or_free_count.as_prev_sibling() }
}
fn free_count(&self) -> &AtomicUsize {
debug_assert!(self.is_root());
unsafe { self.prev_sibling_or_free_count.as_free_count() }
}
/// Remove this rule node from the child list.
///
/// This method doesn't use proper synchronization, and it's expected to be
/// called in a single-threaded fashion, thus the unsafety.
///
/// This is expected to be called before freeing the node from the free
/// list.
unsafe fn remove_from_child_list(&self) {
debug!("Remove from child list: {:?}, parent: {:?}",
self as *const RuleNode, self.parent.as_ref().map(|p| p.ptr()));
// NB: The other siblings we use in this function can also be dead, so
// we can't use `get` here, since it asserts.
let prev_sibling =
self.prev_sibling().swap(ptr::null_mut(), Ordering::Relaxed);
let next_sibling =
self.next_sibling.swap(ptr::null_mut(), Ordering::Relaxed);
// Store the `next` pointer as appropriate, either in the previous
// sibling, or in the parent otherwise.
if prev_sibling.is_null() {
let parent = self.parent.as_ref().unwrap();
parent.get().first_child.store(next_sibling, Ordering::Relaxed);
} else {
let previous = &*prev_sibling;
previous.next_sibling.store(next_sibling, Ordering::Relaxed);
}
// Store the previous sibling pointer in the next sibling if present,
// otherwise we're done.
if !next_sibling.is_null() {
let next = &*next_sibling;
next.prev_sibling().store(prev_sibling, Ordering::Relaxed);
}
}
fn dump<W: Write>(&self, guards: &StylesheetGuards, writer: &mut W, indent: usize) {
const INDENT_INCREMENT: usize = 4;
for _ in 0..indent {
let _ = write!(writer, " ");
}
let _ = writeln!(writer, " - {:?} (ref: {:?}, parent: {:?})",
self as *const _, self.refcount.load(Ordering::Relaxed),
self.parent.as_ref().map(|p| p.ptr()));
for _ in 0..indent {
let _ = write!(writer, " ");
}
if self.source.is_some() {
self.source.dump(self.level.guard(guards), writer);
} else {
if indent != 0 {
warn!("How has this happened?");
}
let _ = write!(writer, "(root)");
}
let _ = write!(writer, "\n");
for child in self.iter_children() {
child.upgrade().get().dump(guards, writer, indent + INDENT_INCREMENT);
}
}
fn iter_children(&self) -> RuleChildrenListIter {
// See next_sibling to see why we need Acquire semantics here.
let first_child = self.first_child.load(Ordering::Acquire);
RuleChildrenListIter {
current: if first_child.is_null() {
None
} else {
Some(WeakRuleNode::from_ptr(first_child))
}
}
}
}
#[cfg(feature = "gecko")]
impl MallocSizeOf for RuleNode {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = 0;
for child in self.iter_children() {
n += ops.malloc_size_of(child.ptr());
n += unsafe { (*child.ptr()).size_of(ops) };
}
n
}
}
#[derive(Clone)]
struct WeakRuleNode {
p: NonZeroPtrMut<RuleNode>,
}
/// A strong reference to a rule node.
#[derive(Debug, PartialEq)]
pub struct StrongRuleNode {
p: NonZeroPtrMut<RuleNode>,
}
#[cfg(feature = "servo")]
impl HeapSizeOf for StrongRuleNode {
fn heap_size_of_children(&self) -> usize { 0 }
}
impl StrongRuleNode {
fn new(n: Box<RuleNode>) -> Self {
debug_assert!(n.parent.is_none() == !n.source.is_some());
let ptr = Box::into_raw(n);
log_new(ptr);
debug!("Creating rule node: {:p}", ptr);
StrongRuleNode::from_ptr(ptr)
}
fn from_ptr(ptr: *mut RuleNode) -> Self {
StrongRuleNode {
p: NonZeroPtrMut::new(ptr)
}
}
fn downgrade(&self) -> WeakRuleNode {
WeakRuleNode::from_ptr(self.ptr())
}
fn parent(&self) -> Option<&StrongRuleNode> {
self.get().parent.as_ref()
}
fn ensure_child(
&self,
root: WeakRuleNode,
source: StyleSource,
level: CascadeLevel
) -> StrongRuleNode {
let mut last = None;
// NB: This is an iterator over _weak_ nodes.
//
// It's fine though, because nothing can make us GC while this happens,
// and this happens to be hot.
//
// TODO(emilio): We could actually make this even less hot returning a
// WeakRuleNode, and implementing this on WeakRuleNode itself...
for child in self.get().iter_children() {
let child_node = unsafe { &*child.ptr() };
if child_node.level == level &&
child_node.source.ptr_equals(&source) {
return child.upgrade();
}
last = Some(child);
}
let mut node = Box::new(RuleNode::new(root,
self.clone(),
source.clone(),
level));
let new_ptr: *mut RuleNode = &mut *node;
loop {
let next;
{
let last_node = last.as_ref().map(|l| unsafe { &*l.ptr() });
let next_sibling_ptr = match last_node {
Some(ref l) => &l.next_sibling,
None => &self.get().first_child,
};
// We use `AqcRel` semantics to ensure the initializing writes
// in `node` are visible after the swap succeeds.
let existing =
next_sibling_ptr.compare_and_swap(ptr::null_mut(),
new_ptr,
Ordering::AcqRel);
if existing.is_null() {
// Now we know we're in the correct position in the child
// list, we can set the back pointer, knowing that this will
// only be accessed again in a single-threaded manner when
// we're sweeping possibly dead nodes.
if let Some(ref l) = last {
node.prev_sibling().store(l.ptr(), Ordering::Relaxed);
}
return StrongRuleNode::new(node);
}
// Existing is not null: some thread inserted a child node since
// we accessed `last`.
next = WeakRuleNode::from_ptr(existing);
if unsafe { &*next.ptr() }.source.ptr_equals(&source) {
// That node happens to be for the same style source, use
// that, and let node fall out of scope.
return next.upgrade();
}
}
// Try again inserting after the new last child.
last = Some(next);
}
}
/// Raw pointer to the RuleNode
pub fn ptr(&self) -> *mut RuleNode {
self.p.ptr()
}
fn get(&self) -> &RuleNode {
if cfg!(debug_assertions) {
let node = unsafe { &*self.ptr() };
assert!(node.refcount.load(Ordering::Relaxed) > 0);
}
unsafe { &*self.ptr() }
}
/// Get the style source corresponding to this rule node. May return `None`
/// if it's the root node, which means that the node hasn't matched any
/// rules.
pub fn style_source(&self) -> &StyleSource {
&self.get().source
}
/// The cascade level for this node
pub fn cascade_level(&self) -> CascadeLevel {
self.get().level
}
/// Get the importance that this rule node represents.
pub fn importance(&self) -> Importance {
self.get().level.importance()
}
/// Get an iterator for this rule node and its ancestors.
pub fn self_and_ancestors(&self) -> SelfAndAncestors {
SelfAndAncestors {
current: Some(self)
}
}
/// Returns whether this node has any child, only intended for testing
/// purposes, and called on a single-threaded fashion only.
pub unsafe fn has_children_for_testing(&self) -> bool {
!self.get().first_child.load(Ordering::Relaxed).is_null()
}
unsafe fn pop_from_free_list(&self) -> Option<WeakRuleNode> {
// NB: This can run from the root node destructor, so we can't use
// `get()`, since it asserts the refcount is bigger than zero.
let me = &*self.ptr();
debug_assert!(me.is_root());
// FIXME(#14213): Apparently the layout data can be gone from script.
//
// That's... suspicious, but it's fine if it happens for the rule tree
// case, so just don't crash in the case we're doing the final GC in
// script.
debug_assert!(!thread_state::get().is_worker() &&
(thread_state::get().is_layout() ||
thread_state::get().is_script()));
let current = me.next_free.load(Ordering::Relaxed);
if current == FREE_LIST_SENTINEL {
return None;
}
debug_assert!(!current.is_null(),
"Multiple threads are operating on the free list at the \
same time?");
debug_assert!(current != self.ptr(),
"How did the root end up in the free list?");
let next = (*current).next_free.swap(ptr::null_mut(), Ordering::Relaxed);
debug_assert!(!next.is_null(),
"How did a null pointer end up in the free list?");
me.next_free.store(next, Ordering::Relaxed);
debug!("Popping from free list: cur: {:?}, next: {:?}", current, next);
Some(WeakRuleNode::from_ptr(current))
}
unsafe fn assert_free_list_has_no_duplicates_or_null(&self) {
assert!(cfg!(debug_assertions), "This is an expensive check!");
use hash::HashSet;
let me = &*self.ptr();
assert!(me.is_root());
let mut current = self.ptr();
let mut seen = HashSet::new();
while current != FREE_LIST_SENTINEL {
let next = (*current).next_free.load(Ordering::Relaxed);
assert!(!next.is_null());
assert!(!seen.contains(&next));
seen.insert(next);
current = next;
}
}
unsafe fn gc(&self) {
if cfg!(debug_assertions) {
self.assert_free_list_has_no_duplicates_or_null();
}
// NB: This can run from the root node destructor, so we can't use
// `get()`, since it asserts the refcount is bigger than zero.
let me = &*self.ptr();
debug_assert!(me.is_root(), "Can't call GC on a non-root node!");
while let Some(weak) = self.pop_from_free_list() {
let node = &*weak.ptr();
if node.refcount.load(Ordering::Relaxed) != 0 {
// Nothing to do, the node is still alive.
continue;
}
debug!("GC'ing {:?}", weak.ptr());
node.remove_from_child_list();
log_drop(weak.ptr());
let _ = Box::from_raw(weak.ptr());
}
me.free_count().store(0, Ordering::Relaxed);
debug_assert!(me.next_free.load(Ordering::Relaxed) == FREE_LIST_SENTINEL);
}
unsafe fn maybe_gc(&self) {
debug_assert!(self.get().is_root(), "Can't call GC on a non-root node!");
if self.get().free_count().load(Ordering::Relaxed) > RULE_TREE_GC_INTERVAL {
self.gc();
}
}
/// Implementation of `nsRuleNode::HasAuthorSpecifiedRules` for Servo rule
/// nodes.
///
/// Returns true if any properties specified by `rule_type_mask` was set by
/// an author rule.
#[cfg(feature = "gecko")]
pub fn has_author_specified_rules<E>(&self,
mut element: E,
guards: &StylesheetGuards,
rule_type_mask: u32,
author_colors_allowed: bool)
-> bool
where E: ::dom::TElement
{
use gecko_bindings::structs::{NS_AUTHOR_SPECIFIED_BACKGROUND, NS_AUTHOR_SPECIFIED_BORDER};
use gecko_bindings::structs::{NS_AUTHOR_SPECIFIED_PADDING, NS_AUTHOR_SPECIFIED_TEXT_SHADOW};
use properties::{CSSWideKeyword, LonghandId, LonghandIdSet};
use properties::{PropertyDeclaration, PropertyDeclarationId};
use std::borrow::Cow;
use values::specified::Color;
// Reset properties:
const BACKGROUND_PROPS: &'static [LonghandId] = &[
LonghandId::BackgroundColor,
LonghandId::BackgroundImage,
];
const BORDER_PROPS: &'static [LonghandId] = &[
LonghandId::BorderTopColor,
LonghandId::BorderTopStyle,
LonghandId::BorderTopWidth,
LonghandId::BorderRightColor,
LonghandId::BorderRightStyle,
LonghandId::BorderRightWidth,
LonghandId::BorderBottomColor,
LonghandId::BorderBottomStyle,
LonghandId::BorderBottomWidth,
LonghandId::BorderLeftColor,
LonghandId::BorderLeftStyle,
LonghandId::BorderLeftWidth,
LonghandId::BorderTopLeftRadius,
LonghandId::BorderTopRightRadius,
LonghandId::BorderBottomRightRadius,
LonghandId::BorderBottomLeftRadius,
LonghandId::BorderInlineStartColor,
LonghandId::BorderInlineStartStyle,
LonghandId::BorderInlineStartWidth,
LonghandId::BorderInlineEndColor,
LonghandId::BorderInlineEndStyle,
LonghandId::BorderInlineEndWidth,
LonghandId::BorderBlockStartColor,
LonghandId::BorderBlockStartStyle,
LonghandId::BorderBlockStartWidth,
LonghandId::BorderBlockEndColor,
LonghandId::BorderBlockEndStyle,
LonghandId::BorderBlockEndWidth,
];
const PADDING_PROPS: &'static [LonghandId] = &[
LonghandId::PaddingTop,
LonghandId::PaddingRight,
LonghandId::PaddingBottom,
LonghandId::PaddingLeft,
LonghandId::PaddingInlineStart,
LonghandId::PaddingInlineEnd,
LonghandId::PaddingBlockStart,
LonghandId::PaddingBlockEnd,
];
// Inherited properties:
const TEXT_SHADOW_PROPS: &'static [LonghandId] = &[
LonghandId::TextShadow,
];
fn inherited(id: LonghandId) -> bool {
id == LonghandId::TextShadow
}
// Set of properties that we are currently interested in.
let mut properties = LonghandIdSet::new();
if rule_type_mask & NS_AUTHOR_SPECIFIED_BACKGROUND != 0 {
for id in BACKGROUND_PROPS {
properties.insert(*id);
}
}
if rule_type_mask & NS_AUTHOR_SPECIFIED_BORDER != 0 {
for id in BORDER_PROPS {
properties.insert(*id);
}
}
if rule_type_mask & NS_AUTHOR_SPECIFIED_PADDING != 0 {
for id in PADDING_PROPS {
properties.insert(*id);
}
}
if rule_type_mask & NS_AUTHOR_SPECIFIED_TEXT_SHADOW != 0 {
for id in TEXT_SHADOW_PROPS {
properties.insert(*id);
}
}
// If author colors are not allowed, only claim to have author-specified
// rules if we're looking at a non-color property or if we're looking at
// the background color and it's set to transparent.
const IGNORED_WHEN_COLORS_DISABLED: &'static [LonghandId] = &[
LonghandId::BackgroundImage,
LonghandId::BorderTopColor,
LonghandId::BorderRightColor,
LonghandId::BorderBottomColor,
LonghandId::BorderLeftColor,
LonghandId::BorderInlineStartColor,
LonghandId::BorderInlineEndColor,
LonghandId::BorderBlockStartColor,
LonghandId::BorderBlockEndColor,
LonghandId::TextShadow,
];
if !author_colors_allowed {
for id in IGNORED_WHEN_COLORS_DISABLED {
properties.remove(*id);
}
}
let mut element_rule_node = Cow::Borrowed(self);
loop {
// We need to be careful not to count styles covered up by
// user-important or UA-important declarations. But we do want to
// catch explicit inherit styling in those and check our parent
// element to see whether we have user styling for those properties.
// Note that we don't care here about inheritance due to lack of a
// specified value, since all the properties we care about are reset
// properties.
//
// FIXME: The above comment is copied from Gecko, but the last
// sentence is no longer correct since 'text-shadow' support was
// added.
//
// This is a bug in Gecko, replicated in Stylo for now:
//
// https://bugzilla.mozilla.org/show_bug.cgi?id=1363088
let mut inherited_properties = LonghandIdSet::new();
let mut have_explicit_ua_inherit = false;
for node in element_rule_node.self_and_ancestors() {
let source = node.style_source();
let declarations = if source.is_some() {
source.read(node.cascade_level().guard(guards)).declaration_importance_iter()
} else {
continue
};
// Iterate over declarations of the longhands we care about.
let node_importance = node.importance();
let longhands = declarations.rev()
.filter_map(|(declaration, importance)| {
if importance != node_importance { return None }
match declaration.id() {
PropertyDeclarationId::Longhand(id) => {
Some((id, declaration))
}
_ => None
}
});
match node.cascade_level() {
// Non-author rules:
CascadeLevel::UANormal |
CascadeLevel::UAImportant |
CascadeLevel::UserNormal |
CascadeLevel::UserImportant => {
for (id, declaration) in longhands {
if properties.contains(id) {
// This property was set by a non-author rule.
// Stop looking for it in this element's rule
// nodes.
properties.remove(id);
// However, if it is inherited, then it might be
// inherited from an author rule from an
// ancestor element's rule nodes.
if declaration.get_css_wide_keyword() == Some(CSSWideKeyword::Inherit) ||
(declaration.get_css_wide_keyword() == Some(CSSWideKeyword::Unset) &&
inherited(id))
{
have_explicit_ua_inherit = true;
inherited_properties.insert(id);
}
}
}
}
// Author rules:
CascadeLevel::PresHints |
CascadeLevel::XBL |
CascadeLevel::AuthorNormal |
CascadeLevel::StyleAttributeNormal |
CascadeLevel::SMILOverride |
CascadeLevel::Animations |
CascadeLevel::AuthorImportant |
CascadeLevel::StyleAttributeImportant |
CascadeLevel::Transitions => {
for (id, declaration) in longhands {
if properties.contains(id) {
if !author_colors_allowed {
if let PropertyDeclaration::BackgroundColor(ref color) = *declaration {
return *color == Color::transparent()
}
}
return true
}
}
}
}
}
if !have_explicit_ua_inherit { break }
// Continue to the parent element and search for the inherited properties.
element = match element.inheritance_parent() {
Some(parent) => parent,
None => break
};
let parent_data = element.mutate_data().unwrap();
let parent_rule_node = parent_data.styles.primary().rules().clone();
element_rule_node = Cow::Owned(parent_rule_node);
properties = inherited_properties;
}
false
}
/// Returns true if there is either animation or transition level rule.
pub fn has_animation_or_transition_rules(&self) -> bool {
self.self_and_ancestors()
.take_while(|node| node.cascade_level() >= CascadeLevel::SMILOverride)
.any(|node| node.cascade_level().is_animation())
}
/// Get a set of properties whose CascadeLevel are higher than Animations
/// but not equal to Transitions.
///
/// If there are any custom properties, we set the boolean value of the
/// returned tuple to true.
pub fn get_properties_overriding_animations(&self,
guards: &StylesheetGuards)
-> (LonghandIdSet, bool) {
use properties::PropertyDeclarationId;
// We want to iterate over cascade levels that override the animations
// level, i.e. !important levels and the transitions level.
//
// However, we actually want to skip the transitions level because
// although it is higher in the cascade than animations, when both
// transitions and animations are present for a given element and
// property, transitions are suppressed so that they don't actually
// override animations.
let iter =
self.self_and_ancestors()
.skip_while(|node| node.cascade_level() == CascadeLevel::Transitions)
.take_while(|node| node.cascade_level() > CascadeLevel::Animations);
let mut result = (LonghandIdSet::new(), false);
for node in iter {
let style = node.style_source();
for (decl, important) in style.read(node.cascade_level().guard(guards))
.declaration_importance_iter() {
// Although we are only iterating over cascade levels that
// override animations, in a given property declaration block we
// can have a mixture of !important and non-!important
// declarations but only the !important declarations actually
// override animations.
if important.important() {
match decl.id() {
PropertyDeclarationId::Longhand(id) => result.0.insert(id),
PropertyDeclarationId::Custom(_) => result.1 = true
}
}
}
}
result
}
/// Returns PropertyDeclarationBlock for this node.
/// This function must be called only for animation level node.
fn get_animation_style(&self) -> &Arc<Locked<PropertyDeclarationBlock>> {
debug_assert!(self.cascade_level().is_animation(),
"The cascade level should be an animation level");
match *self.style_source() {
StyleSource::Declarations(ref block) => block,
StyleSource::Style(_) => unreachable!("animating style should not be a style rule"),
StyleSource::None => unreachable!("animating style should not be none"),
}
}
/// Returns SMIL override declaration block if exists.
pub fn get_smil_animation_rule(&self) -> Option<&Arc<Locked<PropertyDeclarationBlock>>> {
if cfg!(feature = "servo") {
// Servo has no knowledge of a SMIL rule, so just avoid looking for it.
return None;
}
self.self_and_ancestors()
.take_while(|node| node.cascade_level() >= CascadeLevel::SMILOverride)
.find(|node| node.cascade_level() == CascadeLevel::SMILOverride)
.map(|node| node.get_animation_style())
}
}
/// An iterator over a rule node and its ancestors.
#[derive(Clone)]
pub struct SelfAndAncestors<'a> {
current: Option<&'a StrongRuleNode>,
}
impl<'a> Iterator for SelfAndAncestors<'a> {
type Item = &'a StrongRuleNode;
fn next(&mut self) -> Option<Self::Item> {
self.current.map(|node| {
self.current = node.parent();
node
})
}
}
impl Clone for StrongRuleNode {
fn clone(&self) -> Self {
debug!("{:?}: {:?}+", self.ptr(), self.get().refcount.load(Ordering::Relaxed));
debug_assert!(self.get().refcount.load(Ordering::Relaxed) > 0);
self.get().refcount.fetch_add(1, Ordering::Relaxed);
StrongRuleNode::from_ptr(self.ptr())
}
}
impl Drop for StrongRuleNode {
fn drop(&mut self) {
let node = unsafe { &*self.ptr() };
debug!("{:?}: {:?}-", self.ptr(), node.refcount.load(Ordering::Relaxed));
debug!("Dropping node: {:?}, root: {:?}, parent: {:?}",
self.ptr(),
node.root.as_ref().map(|r| r.ptr()),
node.parent.as_ref().map(|p| p.ptr()));
let should_drop = {
debug_assert!(node.refcount.load(Ordering::Relaxed) > 0);
node.refcount.fetch_sub(1, Ordering::Relaxed) == 1
};
if !should_drop {
return
}
debug_assert_eq!(node.first_child.load(Ordering::Acquire),
ptr::null_mut());
if node.parent.is_none() {
debug!("Dropping root node!");
// The free list should be null by this point
debug_assert!(node.next_free.load(Ordering::Relaxed).is_null());
log_drop(self.ptr());
let _ = unsafe { Box::from_raw(self.ptr()) };
return;
}
let root = unsafe { &*node.root.as_ref().unwrap().ptr() };
let free_list = &root.next_free;
let mut old_head = free_list.load(Ordering::Relaxed);
// If the free list is null, that means that the rule tree has been
// formally torn down, and the last standard GC has already occurred.
// We require that any callers using the rule tree at this point are
// on the main thread only, which lets us trigger a synchronous GC
// here to avoid leaking anything. We use the GC machinery, rather
// than just dropping directly, so that we benefit from the iterative
// destruction and don't trigger unbounded recursion during drop. See
// [1] and the associated crashtest.
//
// [1] https://bugzilla.mozilla.org/show_bug.cgi?id=439184
if old_head.is_null() {
debug_assert!(!thread_state::get().is_worker() &&
(thread_state::get().is_layout() ||
thread_state::get().is_script()));
// Add the node as the sole entry in the free list.
debug_assert!(node.next_free.load(Ordering::Relaxed).is_null());
node.next_free.store(FREE_LIST_SENTINEL, Ordering::Relaxed);
free_list.store(node as *const _ as *mut _, Ordering::Relaxed);
// Invoke the GC.
//
// Note that we need hold a strong reference to the root so that it
// doesn't go away during the GC (which would happen if we're freeing
// the last external reference into the rule tree). This is nicely
// enforced by having the gc() method live on StrongRuleNode rather than
// RuleNode.
let strong_root: StrongRuleNode = node.root.as_ref().unwrap().upgrade();
unsafe { strong_root.gc(); }
// Leave the free list null, like we found it, such that additional
// drops for straggling rule nodes will take this same codepath.
debug_assert_eq!(root.next_free.load(Ordering::Relaxed),
FREE_LIST_SENTINEL);
root.next_free.store(ptr::null_mut(), Ordering::Relaxed);
// Return. If strong_root is the last strong reference to the root,
// this re-enter StrongRuleNode::drop, and take the root-dropping
// path earlier in this function.
return;
}
// We're sure we're already in the free list, don't spinloop if we're.
// Note that this is just a fast path, so it doesn't need to have an
// strong memory ordering.
if node.next_free.load(Ordering::Relaxed) != ptr::null_mut() {
return;
}
// Ensure we "lock" the free list head swapping it with FREE_LIST_LOCKED.
//
// Note that we use Acquire/Release semantics for the free list
// synchronization, in order to guarantee that the next_free
// reads/writes we do below are properly visible from multiple threads
// racing.
loop {
match free_list.compare_exchange_weak(old_head,
FREE_LIST_LOCKED,
Ordering::Acquire,
Ordering::Relaxed) {
Ok(..) => {
if old_head != FREE_LIST_LOCKED {
break;
}
},
Err(new) => old_head = new,
}
}
// If other thread has raced with use while using the same rule node,
// just store the old head again, we're done.
//
// Note that we can use relaxed operations for loading since we're
// effectively locking the free list with Acquire/Release semantics, and
// the memory ordering is already guaranteed by that locking/unlocking.
if node.next_free.load(Ordering::Relaxed) != ptr::null_mut() {
free_list.store(old_head, Ordering::Release);
return;
}
// Else store the old head as the next pointer, and store ourselves as
// the new head of the free list.
//
// This can be relaxed since this pointer won't be read until GC.
node.next_free.store(old_head, Ordering::Relaxed);
// Increment the free count. This doesn't need to be an RMU atomic
// operation, because the free list is "locked".
let old_free_count = root.free_count().load(Ordering::Relaxed);
root.free_count().store(old_free_count + 1, Ordering::Relaxed);
// This can be release because of the locking of the free list, that
// ensures that all the other nodes racing with this one are using
// `Acquire`.
free_list.store(self.ptr(), Ordering::Release);
}
}
impl<'a> From<&'a StrongRuleNode> for WeakRuleNode {
fn from(node: &'a StrongRuleNode) -> Self {
WeakRuleNode::from_ptr(node.ptr())
}
}
impl WeakRuleNode {
fn upgrade(&self) -> StrongRuleNode {
debug!("Upgrading weak node: {:p}", self.ptr());
let node = unsafe { &*self.ptr() };
node.refcount.fetch_add(1, Ordering::Relaxed);
StrongRuleNode::from_ptr(self.ptr())
}
fn from_ptr(ptr: *mut RuleNode) -> Self {
WeakRuleNode {
p: NonZeroPtrMut::new(ptr)
}
}
fn ptr(&self) -> *mut RuleNode {
self.p.ptr()
}
}
struct RuleChildrenListIter {
current: Option<WeakRuleNode>,
}
impl Iterator for RuleChildrenListIter {
type Item = WeakRuleNode;
fn next(&mut self) -> Option<Self::Item> {
self.current.take().map(|current| {
self.current = unsafe { &*current.ptr() }.next_sibling();
current
})
}
}