servo/components/profile/mem.rs
2015-03-29 13:41:14 -04:00

656 lines
22 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Memory profiling functions.
use self::system_reporter::SystemReporter;
use std::borrow::ToOwned;
use std::cmp::Ordering;
use std::collections::HashMap;
use std::old_io::timer::sleep;
use std::sync::mpsc::{Sender, channel, Receiver};
use std::time::duration::Duration;
use util::task::spawn_named;
#[derive(Clone)]
pub struct ProfilerChan(pub Sender<ProfilerMsg>);
impl ProfilerChan {
pub fn send(&self, msg: ProfilerMsg) {
let ProfilerChan(ref c) = *self;
c.send(msg).unwrap();
}
}
/// An easy way to build a path for a report.
#[macro_export]
macro_rules! path {
($($x:expr),*) => {{
use std::borrow::ToOwned;
vec![$( $x.to_owned() ),*]
}}
}
pub struct Report {
/// The identifying path for this report.
pub path: Vec<String>,
/// The size, in bytes.
pub size: u64,
}
/// A channel through which memory reports can be sent.
#[derive(Clone)]
pub struct ReportsChan(pub Sender<Vec<Report>>);
impl ReportsChan {
pub fn send(&self, report: Vec<Report>) {
let ReportsChan(ref c) = *self;
c.send(report).unwrap();
}
}
/// A memory reporter is capable of measuring some data structure of interest. Because it needs
/// to be passed to and registered with the Profiler, it's typically a "small" (i.e. easily
/// cloneable) value that provides access to a "large" data structure, e.g. a channel that can
/// inject a request for measurements into the event queue associated with the "large" data
/// structure.
pub trait Reporter {
/// Collect one or more memory reports. Returns true on success, and false on failure.
fn collect_reports(&self, reports_chan: ReportsChan) -> bool;
}
/// Messages that can be sent to the memory profiler thread.
pub enum ProfilerMsg {
/// Register a Reporter with the memory profiler. The String is only used to identify the
/// reporter so it can be unregistered later. The String must be distinct from that used by any
/// other registered reporter otherwise a panic will occur.
RegisterReporter(String, Box<Reporter + Send>),
/// Unregister a Reporter with the memory profiler. The String must match the name given when
/// the reporter was registered. If the String does not match the name of a registered reporter
/// a panic will occur.
UnregisterReporter(String),
/// Triggers printing of the memory profiling metrics.
Print,
/// Tells the memory profiler to shut down.
Exit,
}
pub struct Profiler {
/// The port through which messages are received.
pub port: Receiver<ProfilerMsg>,
/// Registered memory reporters.
reporters: HashMap<String, Box<Reporter + Send>>,
}
impl Profiler {
pub fn create(period: Option<f64>) -> ProfilerChan {
let (chan, port) = channel();
// Create the timer thread if a period was provided.
if let Some(period) = period {
let period_ms = Duration::milliseconds((period * 1000f64) as i64);
let chan = chan.clone();
spawn_named("Memory profiler timer".to_owned(), move || {
loop {
sleep(period_ms);
if chan.send(ProfilerMsg::Print).is_err() {
break;
}
}
});
}
// Always spawn the memory profiler. If there is no timer thread it won't receive regular
// `Print` events, but it will still receive the other events.
spawn_named("Memory profiler".to_owned(), move || {
let mut mem_profiler = Profiler::new(port);
mem_profiler.start();
});
let mem_profiler_chan = ProfilerChan(chan);
// Register the system memory reporter, which will run on the memory profiler's own thread.
// It never needs to be unregistered, because as long as the memory profiler is running the
// system memory reporter can make measurements.
let system_reporter = box SystemReporter;
mem_profiler_chan.send(ProfilerMsg::RegisterReporter("system".to_owned(), system_reporter));
mem_profiler_chan
}
pub fn new(port: Receiver<ProfilerMsg>) -> Profiler {
Profiler {
port: port,
reporters: HashMap::new(),
}
}
pub fn start(&mut self) {
loop {
match self.port.recv() {
Ok(msg) => {
if !self.handle_msg(msg) {
break
}
}
_ => break
}
}
}
fn handle_msg(&mut self, msg: ProfilerMsg) -> bool {
match msg {
ProfilerMsg::RegisterReporter(name, reporter) => {
// Panic if it has already been registered.
let name_clone = name.clone();
match self.reporters.insert(name, reporter) {
None => true,
Some(_) => panic!(format!("RegisterReporter: '{}' name is already in use",
name_clone)),
}
},
ProfilerMsg::UnregisterReporter(name) => {
// Panic if it hasn't previously been registered.
match self.reporters.remove(&name) {
Some(_) => true,
None =>
panic!(format!("UnregisterReporter: '{}' name is unknown", &name)),
}
},
ProfilerMsg::Print => {
self.handle_print_msg();
true
},
ProfilerMsg::Exit => false
}
}
fn handle_print_msg(&self) {
println!("Begin memory reports");
println!("|");
// Collect reports from memory reporters.
//
// This serializes the report-gathering. It might be worth creating a new scoped thread for
// each reporter once we have enough of them.
//
// If anything goes wrong with a reporter, we just skip it.
let mut forest = ReportsForest::new();
for reporter in self.reporters.values() {
let (chan, port) = channel();
if reporter.collect_reports(ReportsChan(chan)) {
if let Ok(reports) = port.recv() {
for report in reports.iter() {
forest.insert(&report.path, report.size);
}
}
}
}
forest.print();
println!("|");
println!("End memory reports");
println!("");
}
}
/// A collection of one or more reports with the same initial path segment. A ReportsTree
/// containing a single node is described as "degenerate".
struct ReportsTree {
/// For leaf nodes, this is the sum of the sizes of all reports that mapped to this location.
/// For interior nodes, this is the sum of the sizes of all its child nodes.
size: u64,
/// For leaf nodes, this is the count of all reports that mapped to this location.
/// For interor nodes, this is always zero.
count: u32,
/// The segment from the report path that maps to this node.
path_seg: String,
/// Child nodes.
children: Vec<ReportsTree>,
}
impl ReportsTree {
fn new(path_seg: String) -> ReportsTree {
ReportsTree {
size: 0,
count: 0,
path_seg: path_seg,
children: vec![]
}
}
// Searches the tree's children for a path_seg match, and returns the index if there is a
// match.
fn find_child(&self, path_seg: &String) -> Option<usize> {
for (i, child) in self.children.iter().enumerate() {
if child.path_seg == *path_seg {
return Some(i);
}
}
None
}
// Insert the path and size into the tree, adding any nodes as necessary.
fn insert(&mut self, path: &[String], size: u64) {
let mut t: &mut ReportsTree = self;
for path_seg in path.iter() {
let i = match t.find_child(&path_seg) {
Some(i) => i,
None => {
let new_t = ReportsTree::new(path_seg.clone());
t.children.push(new_t);
t.children.len() - 1
},
};
let tmp = t; // this temporary is needed to satisfy the borrow checker
t = &mut tmp.children[i];
}
t.size += size;
t.count += 1;
}
// Fill in sizes for interior nodes. Should only be done once all the reports have been
// inserted.
fn compute_interior_node_sizes(&mut self) -> u64 {
if !self.children.is_empty() {
// Interior node. Derive its size from its children.
if self.size != 0 {
// This will occur if e.g. we have paths ["a", "b"] and ["a", "b", "c"].
panic!("one report's path is a sub-path of another report's path");
}
for child in self.children.iter_mut() {
self.size += child.compute_interior_node_sizes();
}
}
self.size
}
fn print(&self, depth: i32) {
if !self.children.is_empty() {
assert_eq!(self.count, 0);
}
let mut indent_str = String::new();
for _ in range(0, depth) {
indent_str.push_str(" ");
}
let mebi = 1024f64 * 1024f64;
let count_str = if self.count > 1 { format!(" {}", self.count) } else { "".to_owned() };
println!("|{}{:8.2} MiB -- {}{}",
indent_str, (self.size as f64) / mebi, self.path_seg, count_str);
for child in self.children.iter() {
child.print(depth + 1);
}
}
}
/// A collection of ReportsTrees. It represents the data from multiple memory reports in a form
/// that's good to print.
struct ReportsForest {
trees: HashMap<String, ReportsTree>,
}
impl ReportsForest {
fn new() -> ReportsForest {
ReportsForest {
trees: HashMap::new(),
}
}
// Insert the path and size into the forest, adding any trees and nodes as necessary.
fn insert(&mut self, path: &[String], size: u64) {
// Get the right tree, creating it if necessary.
if !self.trees.contains_key(&path[0]) {
self.trees.insert(path[0].clone(), ReportsTree::new(path[0].clone()));
}
let t = self.trees.get_mut(&path[0]).unwrap();
// Use tail() because the 0th path segment was used to find the right tree in the forest.
t.insert(path.tail(), size);
}
fn print(&mut self) {
// Fill in sizes of interior nodes.
for (_, tree) in self.trees.iter_mut() {
tree.compute_interior_node_sizes();
}
// Put the trees into a sorted vector. Primary sort: degenerate trees (those containing a
// single node) come after non-degenerate trees. Secondary sort: alphabetical order of the
// root node's path_seg.
let mut v = vec![];
for (_, tree) in self.trees.iter() {
v.push(tree);
}
v.sort_by(|a, b| {
if a.children.is_empty() && !b.children.is_empty() {
Ordering::Greater
} else if !a.children.is_empty() && b.children.is_empty() {
Ordering::Less
} else {
a.path_seg.cmp(&b.path_seg)
}
});
// Print the forest.
for tree in v.iter() {
tree.print(0);
// Print a blank line after non-degenerate trees.
if !tree.children.is_empty() {
println!("|");
}
}
}
}
//---------------------------------------------------------------------------
mod system_reporter {
use libc::{c_char, c_int, c_void, size_t};
use std::borrow::ToOwned;
use std::ffi::CString;
use std::mem::size_of;
use std::ptr::null_mut;
use super::{Report, Reporter, ReportsChan};
#[cfg(target_os="macos")]
use task_info::task_basic_info::{virtual_size, resident_size};
/// Collects global measurements from the OS and heap allocators.
pub struct SystemReporter;
impl Reporter for SystemReporter {
fn collect_reports(&self, reports_chan: ReportsChan) -> bool {
let mut reports = vec![];
{
let mut report = |path, size| {
if let Some(size) = size {
reports.push(Report { path: path, size: size });
}
};
// Virtual and physical memory usage, as reported by the OS.
report(path!["vsize"], get_vsize());
report(path!["resident"], get_resident());
// Memory segments, as reported by the OS.
for seg in get_resident_segments().iter() {
report(path!["resident-according-to-smaps", seg.0], Some(seg.1));
}
// Total number of bytes allocated by the application on the system
// heap.
report(path!["system-heap-allocated"], get_system_heap_allocated());
// The descriptions of the following jemalloc measurements are taken
// directly from the jemalloc documentation.
// "Total number of bytes allocated by the application."
report(path!["jemalloc-heap-allocated"], get_jemalloc_stat("stats.allocated"));
// "Total number of bytes in active pages allocated by the application.
// This is a multiple of the page size, and greater than or equal to
// |stats.allocated|."
report(path!["jemalloc-heap-active"], get_jemalloc_stat("stats.active"));
// "Total number of bytes in chunks mapped on behalf of the application.
// This is a multiple of the chunk size, and is at least as large as
// |stats.active|. This does not include inactive chunks."
report(path!["jemalloc-heap-mapped"], get_jemalloc_stat("stats.mapped"));
}
reports_chan.send(reports);
true
}
}
#[cfg(target_os="linux")]
extern {
fn mallinfo() -> struct_mallinfo;
}
#[cfg(target_os="linux")]
#[repr(C)]
pub struct struct_mallinfo {
arena: c_int,
ordblks: c_int,
smblks: c_int,
hblks: c_int,
hblkhd: c_int,
usmblks: c_int,
fsmblks: c_int,
uordblks: c_int,
fordblks: c_int,
keepcost: c_int,
}
#[cfg(target_os="linux")]
fn get_system_heap_allocated() -> Option<u64> {
let mut info: struct_mallinfo;
unsafe {
info = mallinfo();
}
// The documentation in the glibc man page makes it sound like |uordblks|
// would suffice, but that only gets the small allocations that are put in
// the brk heap. We need |hblkhd| as well to get the larger allocations
// that are mmapped.
Some((info.hblkhd + info.uordblks) as u64)
}
#[cfg(not(target_os="linux"))]
fn get_system_heap_allocated() -> Option<u64> {
None
}
extern {
fn je_mallctl(name: *const c_char, oldp: *mut c_void, oldlenp: *mut size_t,
newp: *mut c_void, newlen: size_t) -> c_int;
}
fn get_jemalloc_stat(value_name: &str) -> Option<u64> {
// Before we request the measurement of interest, we first send an "epoch"
// request. Without that jemalloc gives cached statistics(!) which can be
// highly inaccurate.
let epoch_name = "epoch";
let epoch_c_name = CString::new(epoch_name).unwrap();
let mut epoch: u64 = 0;
let epoch_ptr = &mut epoch as *mut _ as *mut c_void;
let mut epoch_len = size_of::<u64>() as size_t;
let value_c_name = CString::new(value_name).unwrap();
let mut value: size_t = 0;
let value_ptr = &mut value as *mut _ as *mut c_void;
let mut value_len = size_of::<size_t>() as size_t;
// Using the same values for the `old` and `new` parameters is enough
// to get the statistics updated.
let rv = unsafe {
je_mallctl(epoch_c_name.as_ptr(), epoch_ptr, &mut epoch_len, epoch_ptr,
epoch_len)
};
if rv != 0 {
return None;
}
let rv = unsafe {
je_mallctl(value_c_name.as_ptr(), value_ptr, &mut value_len, null_mut(), 0)
};
if rv != 0 {
return None;
}
Some(value as u64)
}
// Like std::macros::try!, but for Option<>.
macro_rules! option_try(
($e:expr) => (match $e { Some(e) => e, None => return None })
);
#[cfg(target_os="linux")]
fn get_proc_self_statm_field(field: usize) -> Option<u64> {
use std::fs::File;
use std::io::Read;
let mut f = option_try!(File::open("/proc/self/statm").ok());
let mut contents = String::new();
option_try!(f.read_to_string(&mut contents).ok());
let s = option_try!(contents.words().nth(field));
let npages = option_try!(s.parse::<u64>().ok());
Some(npages * (::std::env::page_size() as u64))
}
#[cfg(target_os="linux")]
fn get_vsize() -> Option<u64> {
get_proc_self_statm_field(0)
}
#[cfg(target_os="linux")]
fn get_resident() -> Option<u64> {
get_proc_self_statm_field(1)
}
#[cfg(target_os="macos")]
fn get_vsize() -> Option<u64> {
virtual_size()
}
#[cfg(target_os="macos")]
fn get_resident() -> Option<u64> {
resident_size()
}
#[cfg(not(any(target_os="linux", target_os = "macos")))]
fn get_vsize() -> Option<u64> {
None
}
#[cfg(not(any(target_os="linux", target_os = "macos")))]
fn get_resident() -> Option<u64> {
None
}
#[cfg(target_os="linux")]
fn get_resident_segments() -> Vec<(String, u64)> {
use regex::Regex;
use std::collections::HashMap;
use std::collections::hash_map::Entry;
use std::fs::File;
use std::io::{BufReader, BufReadExt};
// The first line of an entry in /proc/<pid>/smaps looks just like an entry
// in /proc/<pid>/maps:
//
// address perms offset dev inode pathname
// 02366000-025d8000 rw-p 00000000 00:00 0 [heap]
//
// Each of the following lines contains a key and a value, separated
// by ": ", where the key does not contain either of those characters.
// For example:
//
// Rss: 132 kB
let f = match File::open("/proc/self/smaps") {
Ok(f) => BufReader::new(f),
Err(_) => return vec![],
};
let seg_re = Regex::new(
r"^[:xdigit:]+-[:xdigit:]+ (....) [:xdigit:]+ [:xdigit:]+:[:xdigit:]+ \d+ +(.*)").unwrap();
let rss_re = Regex::new(r"^Rss: +(\d+) kB").unwrap();
// We record each segment's resident size.
let mut seg_map: HashMap<String, u64> = HashMap::new();
#[derive(PartialEq)]
enum LookingFor { Segment, Rss }
let mut looking_for = LookingFor::Segment;
let mut curr_seg_name = String::new();
// Parse the file.
for line in f.lines() {
let line = match line {
Ok(line) => line,
Err(_) => continue,
};
if looking_for == LookingFor::Segment {
// Look for a segment info line.
let cap = match seg_re.captures(line.as_slice()) {
Some(cap) => cap,
None => continue,
};
let perms = cap.at(1).unwrap();
let pathname = cap.at(2).unwrap();
// Construct the segment name from its pathname and permissions.
curr_seg_name.clear();
if pathname == "" || pathname.starts_with("[stack:") {
// Anonymous memory. Entries marked with "[stack:nnn]"
// look like thread stacks but they may include other
// anonymous mappings, so we can't trust them and just
// treat them as entirely anonymous.
curr_seg_name.push_str("anonymous");
} else {
curr_seg_name.push_str(pathname);
}
curr_seg_name.push_str(" (");
curr_seg_name.push_str(perms);
curr_seg_name.push_str(")");
looking_for = LookingFor::Rss;
} else {
// Look for an "Rss:" line.
let cap = match rss_re.captures(line.as_slice()) {
Some(cap) => cap,
None => continue,
};
let rss = cap.at(1).unwrap().parse::<u64>().unwrap() * 1024;
if rss > 0 {
// Aggregate small segments into "other".
let seg_name = if rss < 512 * 1024 {
"other".to_owned()
} else {
curr_seg_name.clone()
};
match seg_map.entry(seg_name) {
Entry::Vacant(entry) => { entry.insert(rss); },
Entry::Occupied(mut entry) => *entry.get_mut() += rss,
}
}
looking_for = LookingFor::Segment;
}
}
let mut segs: Vec<(String, u64)> = seg_map.into_iter().collect();
// Note that the sum of all these segments' RSS values differs from the "resident" measurement
// obtained via /proc/<pid>/statm in get_resident(). It's unclear why this difference occurs;
// for some processes the measurements match, but for Servo they do not.
segs.sort_by(|&(_, rss1), &(_, rss2)| rss2.cmp(&rss1));
segs
}
#[cfg(not(target_os="linux"))]
fn get_resident_segments() -> Vec<(String, u64)> {
vec![]
}
}