mirror of
https://github.com/servo/servo.git
synced 2025-06-14 03:14:29 +00:00
656 lines
22 KiB
Rust
656 lines
22 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
//! Memory profiling functions.
|
|
|
|
use self::system_reporter::SystemReporter;
|
|
use std::borrow::ToOwned;
|
|
use std::cmp::Ordering;
|
|
use std::collections::HashMap;
|
|
use std::old_io::timer::sleep;
|
|
use std::sync::mpsc::{Sender, channel, Receiver};
|
|
use std::time::duration::Duration;
|
|
use util::task::spawn_named;
|
|
|
|
#[derive(Clone)]
|
|
pub struct ProfilerChan(pub Sender<ProfilerMsg>);
|
|
|
|
impl ProfilerChan {
|
|
pub fn send(&self, msg: ProfilerMsg) {
|
|
let ProfilerChan(ref c) = *self;
|
|
c.send(msg).unwrap();
|
|
}
|
|
}
|
|
|
|
/// An easy way to build a path for a report.
|
|
#[macro_export]
|
|
macro_rules! path {
|
|
($($x:expr),*) => {{
|
|
use std::borrow::ToOwned;
|
|
vec![$( $x.to_owned() ),*]
|
|
}}
|
|
}
|
|
|
|
pub struct Report {
|
|
/// The identifying path for this report.
|
|
pub path: Vec<String>,
|
|
|
|
/// The size, in bytes.
|
|
pub size: u64,
|
|
}
|
|
|
|
/// A channel through which memory reports can be sent.
|
|
#[derive(Clone)]
|
|
pub struct ReportsChan(pub Sender<Vec<Report>>);
|
|
|
|
impl ReportsChan {
|
|
pub fn send(&self, report: Vec<Report>) {
|
|
let ReportsChan(ref c) = *self;
|
|
c.send(report).unwrap();
|
|
}
|
|
}
|
|
|
|
/// A memory reporter is capable of measuring some data structure of interest. Because it needs
|
|
/// to be passed to and registered with the Profiler, it's typically a "small" (i.e. easily
|
|
/// cloneable) value that provides access to a "large" data structure, e.g. a channel that can
|
|
/// inject a request for measurements into the event queue associated with the "large" data
|
|
/// structure.
|
|
pub trait Reporter {
|
|
/// Collect one or more memory reports. Returns true on success, and false on failure.
|
|
fn collect_reports(&self, reports_chan: ReportsChan) -> bool;
|
|
}
|
|
|
|
/// Messages that can be sent to the memory profiler thread.
|
|
pub enum ProfilerMsg {
|
|
/// Register a Reporter with the memory profiler. The String is only used to identify the
|
|
/// reporter so it can be unregistered later. The String must be distinct from that used by any
|
|
/// other registered reporter otherwise a panic will occur.
|
|
RegisterReporter(String, Box<Reporter + Send>),
|
|
|
|
/// Unregister a Reporter with the memory profiler. The String must match the name given when
|
|
/// the reporter was registered. If the String does not match the name of a registered reporter
|
|
/// a panic will occur.
|
|
UnregisterReporter(String),
|
|
|
|
/// Triggers printing of the memory profiling metrics.
|
|
Print,
|
|
|
|
/// Tells the memory profiler to shut down.
|
|
Exit,
|
|
}
|
|
|
|
pub struct Profiler {
|
|
/// The port through which messages are received.
|
|
pub port: Receiver<ProfilerMsg>,
|
|
|
|
/// Registered memory reporters.
|
|
reporters: HashMap<String, Box<Reporter + Send>>,
|
|
}
|
|
|
|
impl Profiler {
|
|
pub fn create(period: Option<f64>) -> ProfilerChan {
|
|
let (chan, port) = channel();
|
|
|
|
// Create the timer thread if a period was provided.
|
|
if let Some(period) = period {
|
|
let period_ms = Duration::milliseconds((period * 1000f64) as i64);
|
|
let chan = chan.clone();
|
|
spawn_named("Memory profiler timer".to_owned(), move || {
|
|
loop {
|
|
sleep(period_ms);
|
|
if chan.send(ProfilerMsg::Print).is_err() {
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
// Always spawn the memory profiler. If there is no timer thread it won't receive regular
|
|
// `Print` events, but it will still receive the other events.
|
|
spawn_named("Memory profiler".to_owned(), move || {
|
|
let mut mem_profiler = Profiler::new(port);
|
|
mem_profiler.start();
|
|
});
|
|
|
|
let mem_profiler_chan = ProfilerChan(chan);
|
|
|
|
// Register the system memory reporter, which will run on the memory profiler's own thread.
|
|
// It never needs to be unregistered, because as long as the memory profiler is running the
|
|
// system memory reporter can make measurements.
|
|
let system_reporter = box SystemReporter;
|
|
mem_profiler_chan.send(ProfilerMsg::RegisterReporter("system".to_owned(), system_reporter));
|
|
|
|
mem_profiler_chan
|
|
}
|
|
|
|
pub fn new(port: Receiver<ProfilerMsg>) -> Profiler {
|
|
Profiler {
|
|
port: port,
|
|
reporters: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
pub fn start(&mut self) {
|
|
loop {
|
|
match self.port.recv() {
|
|
Ok(msg) => {
|
|
if !self.handle_msg(msg) {
|
|
break
|
|
}
|
|
}
|
|
_ => break
|
|
}
|
|
}
|
|
}
|
|
|
|
fn handle_msg(&mut self, msg: ProfilerMsg) -> bool {
|
|
match msg {
|
|
ProfilerMsg::RegisterReporter(name, reporter) => {
|
|
// Panic if it has already been registered.
|
|
let name_clone = name.clone();
|
|
match self.reporters.insert(name, reporter) {
|
|
None => true,
|
|
Some(_) => panic!(format!("RegisterReporter: '{}' name is already in use",
|
|
name_clone)),
|
|
}
|
|
},
|
|
|
|
ProfilerMsg::UnregisterReporter(name) => {
|
|
// Panic if it hasn't previously been registered.
|
|
match self.reporters.remove(&name) {
|
|
Some(_) => true,
|
|
None =>
|
|
panic!(format!("UnregisterReporter: '{}' name is unknown", &name)),
|
|
}
|
|
},
|
|
|
|
ProfilerMsg::Print => {
|
|
self.handle_print_msg();
|
|
true
|
|
},
|
|
|
|
ProfilerMsg::Exit => false
|
|
}
|
|
}
|
|
|
|
fn handle_print_msg(&self) {
|
|
println!("Begin memory reports");
|
|
println!("|");
|
|
|
|
// Collect reports from memory reporters.
|
|
//
|
|
// This serializes the report-gathering. It might be worth creating a new scoped thread for
|
|
// each reporter once we have enough of them.
|
|
//
|
|
// If anything goes wrong with a reporter, we just skip it.
|
|
let mut forest = ReportsForest::new();
|
|
for reporter in self.reporters.values() {
|
|
let (chan, port) = channel();
|
|
if reporter.collect_reports(ReportsChan(chan)) {
|
|
if let Ok(reports) = port.recv() {
|
|
for report in reports.iter() {
|
|
forest.insert(&report.path, report.size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
forest.print();
|
|
|
|
println!("|");
|
|
println!("End memory reports");
|
|
println!("");
|
|
}
|
|
}
|
|
|
|
/// A collection of one or more reports with the same initial path segment. A ReportsTree
|
|
/// containing a single node is described as "degenerate".
|
|
struct ReportsTree {
|
|
/// For leaf nodes, this is the sum of the sizes of all reports that mapped to this location.
|
|
/// For interior nodes, this is the sum of the sizes of all its child nodes.
|
|
size: u64,
|
|
|
|
/// For leaf nodes, this is the count of all reports that mapped to this location.
|
|
/// For interor nodes, this is always zero.
|
|
count: u32,
|
|
|
|
/// The segment from the report path that maps to this node.
|
|
path_seg: String,
|
|
|
|
/// Child nodes.
|
|
children: Vec<ReportsTree>,
|
|
}
|
|
|
|
impl ReportsTree {
|
|
fn new(path_seg: String) -> ReportsTree {
|
|
ReportsTree {
|
|
size: 0,
|
|
count: 0,
|
|
path_seg: path_seg,
|
|
children: vec![]
|
|
}
|
|
}
|
|
|
|
// Searches the tree's children for a path_seg match, and returns the index if there is a
|
|
// match.
|
|
fn find_child(&self, path_seg: &String) -> Option<usize> {
|
|
for (i, child) in self.children.iter().enumerate() {
|
|
if child.path_seg == *path_seg {
|
|
return Some(i);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
// Insert the path and size into the tree, adding any nodes as necessary.
|
|
fn insert(&mut self, path: &[String], size: u64) {
|
|
let mut t: &mut ReportsTree = self;
|
|
for path_seg in path.iter() {
|
|
let i = match t.find_child(&path_seg) {
|
|
Some(i) => i,
|
|
None => {
|
|
let new_t = ReportsTree::new(path_seg.clone());
|
|
t.children.push(new_t);
|
|
t.children.len() - 1
|
|
},
|
|
};
|
|
let tmp = t; // this temporary is needed to satisfy the borrow checker
|
|
t = &mut tmp.children[i];
|
|
}
|
|
|
|
t.size += size;
|
|
t.count += 1;
|
|
}
|
|
|
|
// Fill in sizes for interior nodes. Should only be done once all the reports have been
|
|
// inserted.
|
|
fn compute_interior_node_sizes(&mut self) -> u64 {
|
|
if !self.children.is_empty() {
|
|
// Interior node. Derive its size from its children.
|
|
if self.size != 0 {
|
|
// This will occur if e.g. we have paths ["a", "b"] and ["a", "b", "c"].
|
|
panic!("one report's path is a sub-path of another report's path");
|
|
}
|
|
for child in self.children.iter_mut() {
|
|
self.size += child.compute_interior_node_sizes();
|
|
}
|
|
}
|
|
self.size
|
|
}
|
|
|
|
fn print(&self, depth: i32) {
|
|
if !self.children.is_empty() {
|
|
assert_eq!(self.count, 0);
|
|
}
|
|
|
|
let mut indent_str = String::new();
|
|
for _ in range(0, depth) {
|
|
indent_str.push_str(" ");
|
|
}
|
|
|
|
let mebi = 1024f64 * 1024f64;
|
|
let count_str = if self.count > 1 { format!(" {}", self.count) } else { "".to_owned() };
|
|
println!("|{}{:8.2} MiB -- {}{}",
|
|
indent_str, (self.size as f64) / mebi, self.path_seg, count_str);
|
|
|
|
for child in self.children.iter() {
|
|
child.print(depth + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A collection of ReportsTrees. It represents the data from multiple memory reports in a form
|
|
/// that's good to print.
|
|
struct ReportsForest {
|
|
trees: HashMap<String, ReportsTree>,
|
|
}
|
|
|
|
impl ReportsForest {
|
|
fn new() -> ReportsForest {
|
|
ReportsForest {
|
|
trees: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
// Insert the path and size into the forest, adding any trees and nodes as necessary.
|
|
fn insert(&mut self, path: &[String], size: u64) {
|
|
// Get the right tree, creating it if necessary.
|
|
if !self.trees.contains_key(&path[0]) {
|
|
self.trees.insert(path[0].clone(), ReportsTree::new(path[0].clone()));
|
|
}
|
|
let t = self.trees.get_mut(&path[0]).unwrap();
|
|
|
|
// Use tail() because the 0th path segment was used to find the right tree in the forest.
|
|
t.insert(path.tail(), size);
|
|
}
|
|
|
|
fn print(&mut self) {
|
|
// Fill in sizes of interior nodes.
|
|
for (_, tree) in self.trees.iter_mut() {
|
|
tree.compute_interior_node_sizes();
|
|
}
|
|
|
|
// Put the trees into a sorted vector. Primary sort: degenerate trees (those containing a
|
|
// single node) come after non-degenerate trees. Secondary sort: alphabetical order of the
|
|
// root node's path_seg.
|
|
let mut v = vec![];
|
|
for (_, tree) in self.trees.iter() {
|
|
v.push(tree);
|
|
}
|
|
v.sort_by(|a, b| {
|
|
if a.children.is_empty() && !b.children.is_empty() {
|
|
Ordering::Greater
|
|
} else if !a.children.is_empty() && b.children.is_empty() {
|
|
Ordering::Less
|
|
} else {
|
|
a.path_seg.cmp(&b.path_seg)
|
|
}
|
|
});
|
|
|
|
// Print the forest.
|
|
for tree in v.iter() {
|
|
tree.print(0);
|
|
// Print a blank line after non-degenerate trees.
|
|
if !tree.children.is_empty() {
|
|
println!("|");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
mod system_reporter {
|
|
use libc::{c_char, c_int, c_void, size_t};
|
|
use std::borrow::ToOwned;
|
|
use std::ffi::CString;
|
|
use std::mem::size_of;
|
|
use std::ptr::null_mut;
|
|
use super::{Report, Reporter, ReportsChan};
|
|
#[cfg(target_os="macos")]
|
|
use task_info::task_basic_info::{virtual_size, resident_size};
|
|
|
|
/// Collects global measurements from the OS and heap allocators.
|
|
pub struct SystemReporter;
|
|
|
|
impl Reporter for SystemReporter {
|
|
fn collect_reports(&self, reports_chan: ReportsChan) -> bool {
|
|
let mut reports = vec![];
|
|
{
|
|
let mut report = |path, size| {
|
|
if let Some(size) = size {
|
|
reports.push(Report { path: path, size: size });
|
|
}
|
|
};
|
|
|
|
// Virtual and physical memory usage, as reported by the OS.
|
|
report(path!["vsize"], get_vsize());
|
|
report(path!["resident"], get_resident());
|
|
|
|
// Memory segments, as reported by the OS.
|
|
for seg in get_resident_segments().iter() {
|
|
report(path!["resident-according-to-smaps", seg.0], Some(seg.1));
|
|
}
|
|
|
|
// Total number of bytes allocated by the application on the system
|
|
// heap.
|
|
report(path!["system-heap-allocated"], get_system_heap_allocated());
|
|
|
|
// The descriptions of the following jemalloc measurements are taken
|
|
// directly from the jemalloc documentation.
|
|
|
|
// "Total number of bytes allocated by the application."
|
|
report(path!["jemalloc-heap-allocated"], get_jemalloc_stat("stats.allocated"));
|
|
|
|
// "Total number of bytes in active pages allocated by the application.
|
|
// This is a multiple of the page size, and greater than or equal to
|
|
// |stats.allocated|."
|
|
report(path!["jemalloc-heap-active"], get_jemalloc_stat("stats.active"));
|
|
|
|
// "Total number of bytes in chunks mapped on behalf of the application.
|
|
// This is a multiple of the chunk size, and is at least as large as
|
|
// |stats.active|. This does not include inactive chunks."
|
|
report(path!["jemalloc-heap-mapped"], get_jemalloc_stat("stats.mapped"));
|
|
}
|
|
reports_chan.send(reports);
|
|
|
|
true
|
|
}
|
|
}
|
|
|
|
|
|
#[cfg(target_os="linux")]
|
|
extern {
|
|
fn mallinfo() -> struct_mallinfo;
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
#[repr(C)]
|
|
pub struct struct_mallinfo {
|
|
arena: c_int,
|
|
ordblks: c_int,
|
|
smblks: c_int,
|
|
hblks: c_int,
|
|
hblkhd: c_int,
|
|
usmblks: c_int,
|
|
fsmblks: c_int,
|
|
uordblks: c_int,
|
|
fordblks: c_int,
|
|
keepcost: c_int,
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_system_heap_allocated() -> Option<u64> {
|
|
let mut info: struct_mallinfo;
|
|
unsafe {
|
|
info = mallinfo();
|
|
}
|
|
// The documentation in the glibc man page makes it sound like |uordblks|
|
|
// would suffice, but that only gets the small allocations that are put in
|
|
// the brk heap. We need |hblkhd| as well to get the larger allocations
|
|
// that are mmapped.
|
|
Some((info.hblkhd + info.uordblks) as u64)
|
|
}
|
|
|
|
#[cfg(not(target_os="linux"))]
|
|
fn get_system_heap_allocated() -> Option<u64> {
|
|
None
|
|
}
|
|
|
|
extern {
|
|
fn je_mallctl(name: *const c_char, oldp: *mut c_void, oldlenp: *mut size_t,
|
|
newp: *mut c_void, newlen: size_t) -> c_int;
|
|
}
|
|
|
|
fn get_jemalloc_stat(value_name: &str) -> Option<u64> {
|
|
// Before we request the measurement of interest, we first send an "epoch"
|
|
// request. Without that jemalloc gives cached statistics(!) which can be
|
|
// highly inaccurate.
|
|
let epoch_name = "epoch";
|
|
let epoch_c_name = CString::new(epoch_name).unwrap();
|
|
let mut epoch: u64 = 0;
|
|
let epoch_ptr = &mut epoch as *mut _ as *mut c_void;
|
|
let mut epoch_len = size_of::<u64>() as size_t;
|
|
|
|
let value_c_name = CString::new(value_name).unwrap();
|
|
let mut value: size_t = 0;
|
|
let value_ptr = &mut value as *mut _ as *mut c_void;
|
|
let mut value_len = size_of::<size_t>() as size_t;
|
|
|
|
// Using the same values for the `old` and `new` parameters is enough
|
|
// to get the statistics updated.
|
|
let rv = unsafe {
|
|
je_mallctl(epoch_c_name.as_ptr(), epoch_ptr, &mut epoch_len, epoch_ptr,
|
|
epoch_len)
|
|
};
|
|
if rv != 0 {
|
|
return None;
|
|
}
|
|
|
|
let rv = unsafe {
|
|
je_mallctl(value_c_name.as_ptr(), value_ptr, &mut value_len, null_mut(), 0)
|
|
};
|
|
if rv != 0 {
|
|
return None;
|
|
}
|
|
|
|
Some(value as u64)
|
|
}
|
|
|
|
// Like std::macros::try!, but for Option<>.
|
|
macro_rules! option_try(
|
|
($e:expr) => (match $e { Some(e) => e, None => return None })
|
|
);
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_proc_self_statm_field(field: usize) -> Option<u64> {
|
|
use std::fs::File;
|
|
use std::io::Read;
|
|
|
|
let mut f = option_try!(File::open("/proc/self/statm").ok());
|
|
let mut contents = String::new();
|
|
option_try!(f.read_to_string(&mut contents).ok());
|
|
let s = option_try!(contents.words().nth(field));
|
|
let npages = option_try!(s.parse::<u64>().ok());
|
|
Some(npages * (::std::env::page_size() as u64))
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_vsize() -> Option<u64> {
|
|
get_proc_self_statm_field(0)
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_resident() -> Option<u64> {
|
|
get_proc_self_statm_field(1)
|
|
}
|
|
|
|
#[cfg(target_os="macos")]
|
|
fn get_vsize() -> Option<u64> {
|
|
virtual_size()
|
|
}
|
|
|
|
#[cfg(target_os="macos")]
|
|
fn get_resident() -> Option<u64> {
|
|
resident_size()
|
|
}
|
|
|
|
#[cfg(not(any(target_os="linux", target_os = "macos")))]
|
|
fn get_vsize() -> Option<u64> {
|
|
None
|
|
}
|
|
|
|
#[cfg(not(any(target_os="linux", target_os = "macos")))]
|
|
fn get_resident() -> Option<u64> {
|
|
None
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_resident_segments() -> Vec<(String, u64)> {
|
|
use regex::Regex;
|
|
use std::collections::HashMap;
|
|
use std::collections::hash_map::Entry;
|
|
use std::fs::File;
|
|
use std::io::{BufReader, BufReadExt};
|
|
|
|
// The first line of an entry in /proc/<pid>/smaps looks just like an entry
|
|
// in /proc/<pid>/maps:
|
|
//
|
|
// address perms offset dev inode pathname
|
|
// 02366000-025d8000 rw-p 00000000 00:00 0 [heap]
|
|
//
|
|
// Each of the following lines contains a key and a value, separated
|
|
// by ": ", where the key does not contain either of those characters.
|
|
// For example:
|
|
//
|
|
// Rss: 132 kB
|
|
|
|
let f = match File::open("/proc/self/smaps") {
|
|
Ok(f) => BufReader::new(f),
|
|
Err(_) => return vec![],
|
|
};
|
|
|
|
let seg_re = Regex::new(
|
|
r"^[:xdigit:]+-[:xdigit:]+ (....) [:xdigit:]+ [:xdigit:]+:[:xdigit:]+ \d+ +(.*)").unwrap();
|
|
let rss_re = Regex::new(r"^Rss: +(\d+) kB").unwrap();
|
|
|
|
// We record each segment's resident size.
|
|
let mut seg_map: HashMap<String, u64> = HashMap::new();
|
|
|
|
#[derive(PartialEq)]
|
|
enum LookingFor { Segment, Rss }
|
|
let mut looking_for = LookingFor::Segment;
|
|
|
|
let mut curr_seg_name = String::new();
|
|
|
|
// Parse the file.
|
|
for line in f.lines() {
|
|
let line = match line {
|
|
Ok(line) => line,
|
|
Err(_) => continue,
|
|
};
|
|
if looking_for == LookingFor::Segment {
|
|
// Look for a segment info line.
|
|
let cap = match seg_re.captures(line.as_slice()) {
|
|
Some(cap) => cap,
|
|
None => continue,
|
|
};
|
|
let perms = cap.at(1).unwrap();
|
|
let pathname = cap.at(2).unwrap();
|
|
|
|
// Construct the segment name from its pathname and permissions.
|
|
curr_seg_name.clear();
|
|
if pathname == "" || pathname.starts_with("[stack:") {
|
|
// Anonymous memory. Entries marked with "[stack:nnn]"
|
|
// look like thread stacks but they may include other
|
|
// anonymous mappings, so we can't trust them and just
|
|
// treat them as entirely anonymous.
|
|
curr_seg_name.push_str("anonymous");
|
|
} else {
|
|
curr_seg_name.push_str(pathname);
|
|
}
|
|
curr_seg_name.push_str(" (");
|
|
curr_seg_name.push_str(perms);
|
|
curr_seg_name.push_str(")");
|
|
|
|
looking_for = LookingFor::Rss;
|
|
} else {
|
|
// Look for an "Rss:" line.
|
|
let cap = match rss_re.captures(line.as_slice()) {
|
|
Some(cap) => cap,
|
|
None => continue,
|
|
};
|
|
let rss = cap.at(1).unwrap().parse::<u64>().unwrap() * 1024;
|
|
|
|
if rss > 0 {
|
|
// Aggregate small segments into "other".
|
|
let seg_name = if rss < 512 * 1024 {
|
|
"other".to_owned()
|
|
} else {
|
|
curr_seg_name.clone()
|
|
};
|
|
match seg_map.entry(seg_name) {
|
|
Entry::Vacant(entry) => { entry.insert(rss); },
|
|
Entry::Occupied(mut entry) => *entry.get_mut() += rss,
|
|
}
|
|
}
|
|
|
|
looking_for = LookingFor::Segment;
|
|
}
|
|
}
|
|
|
|
let mut segs: Vec<(String, u64)> = seg_map.into_iter().collect();
|
|
|
|
// Note that the sum of all these segments' RSS values differs from the "resident" measurement
|
|
// obtained via /proc/<pid>/statm in get_resident(). It's unclear why this difference occurs;
|
|
// for some processes the measurements match, but for Servo they do not.
|
|
segs.sort_by(|&(_, rss1), &(_, rss2)| rss2.cmp(&rss1));
|
|
|
|
segs
|
|
}
|
|
|
|
#[cfg(not(target_os="linux"))]
|
|
fn get_resident_segments() -> Vec<(String, u64)> {
|
|
vec![]
|
|
}
|
|
}
|