servo/components/style/traversal.rs
2016-11-27 15:55:10 +01:00

463 lines
18 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversing the DOM tree; the bloom filter.
use atomic_refcell::{AtomicRefCell, AtomicRefMut};
use bloom::StyleBloom;
use context::{LocalStyleContext, SharedStyleContext, StyleContext};
use data::{ElementData, RestyleData, StoredRestyleHint};
use dom::{OpaqueNode, StylingMode, TElement, TNode};
use matching::{MatchMethods, StyleSharingResult};
use restyle_hints::{RESTYLE_DESCENDANTS, RESTYLE_LATER_SIBLINGS, RESTYLE_SELF};
use selectors::matching::StyleRelations;
use std::cell::RefCell;
use std::marker::PhantomData;
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
use util::opts;
/// Every time we do another layout, the old bloom filters are invalid. This is
/// detected by ticking a generation number every layout.
pub type Generation = u32;
/// Style sharing candidate cache stats. These are only used when
/// `-Z style-sharing-stats` is given.
pub static STYLE_SHARING_CACHE_HITS: AtomicUsize = ATOMIC_USIZE_INIT;
pub static STYLE_SHARING_CACHE_MISSES: AtomicUsize = ATOMIC_USIZE_INIT;
thread_local!(
static STYLE_BLOOM: RefCell<Option<StyleBloom>> = RefCell::new(None));
/// Returns the thread local bloom filter.
///
/// If one does not exist, a new one will be made for you. If it is out of date,
/// it will be cleared and reused.
pub fn take_thread_local_bloom_filter(context: &SharedStyleContext)
-> StyleBloom
{
debug!("{} taking bf", ::tid::tid());
STYLE_BLOOM.with(|style_bloom| {
style_bloom.borrow_mut().take()
.unwrap_or_else(|| StyleBloom::new(context.generation))
})
}
pub fn put_thread_local_bloom_filter(bf: StyleBloom) {
debug!("[{}] putting bloom filter back", ::tid::tid());
STYLE_BLOOM.with(move |style_bloom| {
debug_assert!(style_bloom.borrow().is_none(),
"Putting into a never-taken thread-local bloom filter");
*style_bloom.borrow_mut() = Some(bf);
})
}
/// Remove `element` from the bloom filter if it's the last element we inserted.
///
/// Restores the bloom filter if this is not the root of the reflow.
///
/// This is mostly useful for sequential traversal, where the element will
/// always be the last one.
pub fn remove_from_bloom_filter<'a, E, C>(context: &C, root: OpaqueNode, element: E)
where E: TElement,
C: StyleContext<'a>
{
debug!("[{}] remove_from_bloom_filter", ::tid::tid());
// We may have arrived to `reconstruct_flows` without entering in style
// recalc at all due to our optimizations, nor that it's up to date, so we
// can't ensure there's a bloom filter at all.
let bf = STYLE_BLOOM.with(|style_bloom| {
style_bloom.borrow_mut().take()
});
if let Some(mut bf) = bf {
if context.shared_context().generation == bf.generation() {
bf.maybe_pop(element);
// If we're the root of the reflow, just get rid of the bloom
// filter.
//
// FIXME: We might want to just leave it in TLS? You don't do 4k
// allocations every day. Also, this just clears one thread's bloom
// filter, which is... not great?
if element.as_node().opaque() != root {
put_thread_local_bloom_filter(bf);
}
}
}
}
// NB: Keep this as small as possible, please!
#[derive(Clone, Debug)]
pub struct PerLevelTraversalData {
pub current_dom_depth: Option<usize>,
}
pub trait DomTraversalContext<N: TNode> {
type SharedContext: Sync + 'static;
fn new<'a>(&'a Self::SharedContext, OpaqueNode) -> Self;
/// Process `node` on the way down, before its children have been processed.
fn process_preorder(&self, node: N, data: &mut PerLevelTraversalData);
/// Process `node` on the way up, after its children have been processed.
///
/// This is only executed if `needs_postorder_traversal` returns true.
fn process_postorder(&self, node: N);
/// Boolean that specifies whether a bottom up traversal should be
/// performed.
///
/// If it's false, then process_postorder has no effect at all.
fn needs_postorder_traversal(&self) -> bool { true }
/// Returns true if traversal should visit the given child.
fn should_traverse_child(child: N) -> bool;
/// Helper for the traversal implementations to select the children that
/// should be enqueued for processing.
fn traverse_children<F: FnMut(N)>(parent: N::ConcreteElement, mut f: F)
{
use dom::StylingMode::Restyle;
if parent.is_display_none() {
return;
}
for kid in parent.as_node().children() {
if Self::should_traverse_child(kid) {
if kid.as_element().map_or(false, |el| el.styling_mode() == Restyle) {
unsafe { parent.set_dirty_descendants(); }
}
f(kid);
}
}
}
/// Ensures the existence of the ElementData, and returns it. This can't live
/// on TNode because of the trait-based separation between Servo's script
/// and layout crates.
///
/// This is only safe to call in top-down traversal before processing the
/// children of |element|.
unsafe fn ensure_element_data(element: &N::ConcreteElement) -> &AtomicRefCell<ElementData>;
/// Clears the ElementData attached to this element, if any.
///
/// This is only safe to call in top-down traversal before processing the
/// children of |element|.
unsafe fn clear_element_data(element: &N::ConcreteElement);
fn local_context(&self) -> &LocalStyleContext;
}
/// Determines the amount of relations where we're going to share style.
#[inline]
pub fn relations_are_shareable(relations: &StyleRelations) -> bool {
use selectors::matching::*;
!relations.intersects(AFFECTED_BY_ID_SELECTOR |
AFFECTED_BY_PSEUDO_ELEMENTS | AFFECTED_BY_STATE |
AFFECTED_BY_NON_COMMON_STYLE_AFFECTING_ATTRIBUTE_SELECTOR |
AFFECTED_BY_STYLE_ATTRIBUTE |
AFFECTED_BY_PRESENTATIONAL_HINTS)
}
/// Handles lazy resolution of style in display:none subtrees. See the comment
/// at the callsite in query.rs.
pub fn style_element_in_display_none_subtree<'a, E, C, F>(element: E,
init_data: &F,
context: &'a C) -> E
where E: TElement,
C: StyleContext<'a>,
F: Fn(E),
{
// Check the base case.
if element.get_data().is_some() {
debug_assert!(element.is_display_none());
return element;
}
// Ensure the parent is styled.
let parent = element.parent_element().unwrap();
let display_none_root = style_element_in_display_none_subtree(parent, init_data, context);
// Initialize our data.
init_data(element);
// Resolve our style.
let mut data = element.mutate_data().unwrap();
let match_results = element.match_element(context, None);
unsafe {
let shareable = match_results.primary_is_shareable();
element.cascade_node(context, &mut data, Some(parent),
match_results.primary,
match_results.per_pseudo,
shareable);
}
display_none_root
}
/// Calculates the style for a single node.
#[inline]
#[allow(unsafe_code)]
pub fn recalc_style_at<'a, E, C, D>(context: &'a C,
data: &mut PerLevelTraversalData,
element: E)
where E: TElement,
C: StyleContext<'a>,
D: DomTraversalContext<E::ConcreteNode>
{
let mode = element.styling_mode();
let should_compute = element.borrow_data().map_or(true, |d| d.get_current_styles().is_none());
debug!("recalc_style_at: {:?} (should_compute={:?} mode={:?}, data={:?})",
element, should_compute, mode, element.borrow_data());
let (computed_display_none, propagated_hint) = if should_compute {
compute_style::<_, _, D>(context, data, element)
} else {
(false, StoredRestyleHint::empty())
};
// Preprocess children, computing restyle hints and handling sibling relationships.
//
// We don't need to do this if we're not traversing children, or if we're performing
// initial styling.
let will_traverse_children = !computed_display_none &&
(mode == StylingMode::Restyle ||
mode == StylingMode::Traverse);
if will_traverse_children {
preprocess_children::<_, _, D>(context, element, propagated_hint,
mode == StylingMode::Restyle);
}
}
fn compute_style<'a, E, C, D>(context: &'a C,
data: &mut PerLevelTraversalData,
element: E) -> (bool, StoredRestyleHint)
where E: TElement,
C: StyleContext<'a>,
D: DomTraversalContext<E::ConcreteNode>
{
let shared_context = context.shared_context();
let mut bf = take_thread_local_bloom_filter(shared_context);
// Ensure the bloom filter is up to date.
let dom_depth = bf.insert_parents_recovering(element,
data.current_dom_depth,
shared_context.generation);
// Update the dom depth with the up-to-date dom depth.
//
// Note that this is always the same than the pre-existing depth, but it can
// change from unknown to known at this step.
data.current_dom_depth = Some(dom_depth);
bf.assert_complete(element);
let mut data = unsafe { D::ensure_element_data(&element).borrow_mut() };
debug_assert!(!data.is_persistent());
// Check to see whether we can share a style with someone.
let style_sharing_candidate_cache =
&mut context.local_context().style_sharing_candidate_cache.borrow_mut();
let sharing_result = if element.parent_element().is_none() {
StyleSharingResult::CannotShare
} else {
unsafe { element.share_style_if_possible(style_sharing_candidate_cache,
shared_context, &mut data) }
};
// Otherwise, match and cascade selectors.
match sharing_result {
StyleSharingResult::CannotShare => {
let match_results;
let shareable_element = {
if opts::get().style_sharing_stats {
STYLE_SHARING_CACHE_MISSES.fetch_add(1, Ordering::Relaxed);
}
// Perform the CSS selector matching.
match_results = element.match_element(context, Some(bf.filter()));
if match_results.primary_is_shareable() {
Some(element)
} else {
None
}
};
let relations = match_results.relations;
// Perform the CSS cascade.
unsafe {
let shareable = match_results.primary_is_shareable();
element.cascade_node(context, &mut data,
element.parent_element(),
match_results.primary,
match_results.per_pseudo,
shareable);
}
// Add ourselves to the LRU cache.
if let Some(element) = shareable_element {
style_sharing_candidate_cache.insert_if_possible(&element,
&data.current_styles().primary.values,
relations);
}
}
StyleSharingResult::StyleWasShared(index) => {
if opts::get().style_sharing_stats {
STYLE_SHARING_CACHE_HITS.fetch_add(1, Ordering::Relaxed);
}
style_sharing_candidate_cache.touch(index);
}
}
// If we're restyling this element to display:none, throw away all style data
// in the subtree, notify the caller to early-return.
let display_none = data.current_styles().is_display_none();
if display_none {
debug!("New element style is display:none - clearing data from descendants.");
clear_descendant_data(element, &|e| unsafe { D::clear_element_data(&e) });
}
// TODO(emilio): It's pointless to insert the element in the parallel
// traversal, but it may be worth todo it for sequential restyling. What we
// do now is trying to recover it which in that case is really cheap, so
// we'd save a few instructions, but probably not worth given the added
// complexity.
put_thread_local_bloom_filter(bf);
(display_none, data.as_restyle().map_or(StoredRestyleHint::empty(), |r| r.hint.propagate()))
}
fn preprocess_children<'a, E, C, D>(context: &'a C,
element: E,
mut propagated_hint: StoredRestyleHint,
restyled_parent: bool)
where E: TElement,
C: StyleContext<'a>,
D: DomTraversalContext<E::ConcreteNode>
{
// Loop over all the children.
for child in element.as_node().children() {
// FIXME(bholley): Add TElement::element_children instead of this.
let child = match child.as_element() {
Some(el) => el,
None => continue,
};
// Set up our lazy child restyle data.
let mut child_data = unsafe { LazyRestyleData::<E, D>::new(&child) };
// Propagate the parent and sibling restyle hint.
if !propagated_hint.is_empty() {
child_data.ensure().map(|d| d.hint.insert(&propagated_hint));
}
// Handle element snashots.
if child_data.has_snapshot() {
// Compute the restyle hint.
let mut restyle_data = child_data.ensure().unwrap();
let mut hint = context.shared_context().stylist
.compute_restyle_hint(&child,
restyle_data.snapshot.as_ref().unwrap(),
child.get_state());
// If the hint includes a directive for later siblings, strip
// it out and modify the base hint for future siblings.
if hint.contains(RESTYLE_LATER_SIBLINGS) {
hint.remove(RESTYLE_LATER_SIBLINGS);
propagated_hint.insert(&(RESTYLE_SELF | RESTYLE_DESCENDANTS).into());
}
// Insert the hint.
if !hint.is_empty() {
restyle_data.hint.insert(&hint.into());
}
}
// If we restyled this node, conservatively mark all our children as
// needing a re-cascade. Once we have the rule tree, we will be able
// to distinguish between re-matching and re-cascading.
if restyled_parent {
child_data.ensure();
}
}
}
pub fn clear_descendant_data<E: TElement, F: Fn(E)>(el: E, clear_data: &F) {
for kid in el.as_node().children() {
if let Some(kid) = kid.as_element() {
// We maintain an invariant that, if an element has data, all its ancestors
// have data as well. By consequence, any element without data has no
// descendants with data.
if kid.get_data().is_some() {
clear_data(kid);
clear_descendant_data(kid, clear_data);
}
}
}
unsafe { el.unset_dirty_descendants(); }
}
/// Various steps in the child preparation algorithm above may cause us to lazily
/// instantiate the ElementData on the child. Encapsulate that logic into a
/// convenient abstraction.
struct LazyRestyleData<'b, E: TElement + 'b, D: DomTraversalContext<E::ConcreteNode>> {
data: Option<AtomicRefMut<'b, ElementData>>,
element: &'b E,
phantom: PhantomData<D>,
}
impl<'b, E: TElement, D: DomTraversalContext<E::ConcreteNode>> LazyRestyleData<'b, E, D> {
/// This may lazily instantiate ElementData, and is therefore only safe to
/// call on an element for which we have exclusive access.
unsafe fn new(element: &'b E) -> Self {
LazyRestyleData {
data: None,
element: element,
phantom: PhantomData,
}
}
fn ensure(&mut self) -> Option<&mut RestyleData> {
if self.data.is_none() {
let mut d = unsafe { D::ensure_element_data(self.element).borrow_mut() };
d.restyle();
self.data = Some(d);
}
self.data.as_mut().unwrap().as_restyle_mut()
}
/// Checks for the existence of an element snapshot without lazily instantiating
/// anything. This allows the traversal to cheaply pass through already-styled
/// nodes when they don't need a restyle.
fn has_snapshot(&self) -> bool {
// If there's no element data, we're done.
let raw_data = self.element.get_data();
if raw_data.is_none() {
debug_assert!(self.data.is_none());
return false;
}
// If there is element data, we still may not have committed to processing
// the node. Carefully get a reference to the data.
let maybe_tmp_borrow;
let borrow_ref = match self.data {
Some(ref d) => d,
None => {
maybe_tmp_borrow = raw_data.unwrap().borrow_mut();
&maybe_tmp_borrow
}
};
// Check for a snapshot.
borrow_ref.as_restyle().map_or(false, |d| d.snapshot.is_some())
}
}