servo/components/layout/display_list/items.rs
Martin Robinson 32f00ef821 Use reference frames explicitly for fixed positioning
Now that WebRender gives us reference frame ClipIds, we can use those to
implement fixed positioning in Servo. This will allow us to remove the
feature from WebRender entirely.
2018-06-04 13:52:08 +02:00

1045 lines
34 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Servo heavily uses display lists, which are retained-mode lists of painting commands to
//! perform. Using a list instead of painting elements in immediate mode allows transforms, hit
//! testing, and invalidation to be performed using the same primitives as painting. It also allows
//! Servo to aggressively cull invisible and out-of-bounds painting elements, to reduce overdraw.
//!
//! Display items describe relatively high-level drawing operations (for example, entire borders
//! and shadows instead of lines and blur operations), to reduce the amount of allocation required.
//! They are therefore not exactly analogous to constructs like Skia pictures, which consist of
//! low-level drawing primitives.
use euclid::{SideOffsets2D, TypedRect, Vector2D};
use gfx_traits::{self, StackingContextId};
use gfx_traits::print_tree::PrintTree;
use msg::constellation_msg::PipelineId;
use net_traits::image::base::Image;
use servo_geometry::MaxRect;
use std::cmp::Ordering;
use std::collections::HashMap;
use std::f32;
use std::fmt;
use webrender_api::{BorderRadius, BorderWidths, BoxShadowClipMode, ClipMode, ColorF};
use webrender_api::{ComplexClipRegion, ExtendMode, ExternalScrollId, FilterOp, FontInstanceKey};
use webrender_api::{GlyphInstance, GradientStop, ImageKey, ImageRendering, LayoutPoint};
use webrender_api::{LayoutRect, LayoutSize, LayoutTransform, LayoutVector2D, LineStyle};
use webrender_api::{MixBlendMode, NinePatchBorder, NormalBorder, ScrollPolicy, ScrollSensitivity};
use webrender_api::{Shadow, StickyOffsetBounds, TransformStyle};
pub use style::dom::OpaqueNode;
/// The factor that we multiply the blur radius by in order to inflate the boundaries of display
/// items that involve a blur. This ensures that the display item boundaries include all the ink.
pub static BLUR_INFLATION_FACTOR: i32 = 3;
/// An index into the vector of ClipScrollNodes. During WebRender conversion these nodes
/// are given ClipIds.
#[derive(Clone, Copy, Debug, PartialEq, Serialize)]
pub struct ClipScrollNodeIndex(usize);
impl ClipScrollNodeIndex {
pub fn root_scroll_node() -> ClipScrollNodeIndex {
ClipScrollNodeIndex(1)
}
pub fn root_reference_frame() -> ClipScrollNodeIndex {
ClipScrollNodeIndex(0)
}
pub fn new(index: usize) -> ClipScrollNodeIndex {
assert_ne!(index, 0, "Use the root_reference_frame constructor");
assert_ne!(index, 1, "Use the root_scroll_node constructor");
ClipScrollNodeIndex(index)
}
pub fn is_root_scroll_node(&self) -> bool {
*self == Self::root_scroll_node()
}
pub fn to_define_item(&self) -> DisplayItem {
DisplayItem::DefineClipScrollNode(Box::new(DefineClipScrollNodeItem {
base: BaseDisplayItem::empty(),
node_index: *self,
}))
}
pub fn to_index(self) -> usize {
self.0
}
}
/// A set of indices into the clip scroll node vector for a given item.
#[derive(Clone, Copy, Debug, PartialEq, Serialize)]
pub struct ClippingAndScrolling {
pub scrolling: ClipScrollNodeIndex,
pub clipping: Option<ClipScrollNodeIndex>,
}
impl ClippingAndScrolling {
pub fn simple(scrolling: ClipScrollNodeIndex) -> ClippingAndScrolling {
ClippingAndScrolling {
scrolling,
clipping: None,
}
}
pub fn new(scrolling: ClipScrollNodeIndex, clipping: ClipScrollNodeIndex) -> Self {
ClippingAndScrolling {
scrolling,
clipping: Some(clipping),
}
}
}
#[derive(Serialize)]
pub struct DisplayList {
pub list: Vec<DisplayItem>,
pub clip_scroll_nodes: Vec<ClipScrollNode>,
}
impl DisplayList {
/// Return the bounds of this display list based on the dimensions of the root
/// stacking context.
pub fn bounds(&self) -> LayoutRect {
match self.list.get(0) {
Some(&DisplayItem::PushStackingContext(ref item)) => item.stacking_context.bounds,
Some(_) => unreachable!("Root element of display list not stacking context."),
None => LayoutRect::zero(),
}
}
pub fn print(&self) {
let mut print_tree = PrintTree::new("Display List".to_owned());
self.print_with_tree(&mut print_tree);
}
pub fn print_with_tree(&self, print_tree: &mut PrintTree) {
print_tree.new_level("ClipScrollNodes".to_owned());
for node in &self.clip_scroll_nodes {
print_tree.add_item(format!("{:?}", node));
}
print_tree.end_level();
print_tree.new_level("Items".to_owned());
for item in &self.list {
print_tree.add_item(format!(
"{:?} StackingContext: {:?} {:?}",
item,
item.base().stacking_context_id,
item.clipping_and_scrolling()
));
}
print_tree.end_level();
}
}
impl gfx_traits::DisplayList for DisplayList {
/// Analyze the display list to figure out if this may be the first
/// contentful paint (i.e. the display list contains items of type text,
/// image, non-white canvas or SVG). Used by metrics.
fn is_contentful(&self) -> bool {
for item in &self.list {
match item {
&DisplayItem::Text(_) | &DisplayItem::Image(_) => return true,
_ => (),
}
}
false
}
}
/// Display list sections that make up a stacking context. Each section here refers
/// to the steps in CSS 2.1 Appendix E.
///
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Serialize)]
pub enum DisplayListSection {
BackgroundAndBorders,
BlockBackgroundsAndBorders,
Content,
Outlines,
}
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Serialize)]
pub enum StackingContextType {
Real,
PseudoPositioned,
PseudoFloat,
}
#[derive(Clone, Serialize)]
/// Represents one CSS stacking context, which may or may not have a hardware layer.
pub struct StackingContext {
/// The ID of this StackingContext for uniquely identifying it.
pub id: StackingContextId,
/// The type of this StackingContext. Used for collecting and sorting.
pub context_type: StackingContextType,
/// The position and size of this stacking context.
pub bounds: LayoutRect,
/// The overflow rect for this stacking context in its coordinate system.
pub overflow: LayoutRect,
/// The `z-index` for this stacking context.
pub z_index: i32,
/// CSS filters to be applied to this stacking context (including opacity).
pub filters: Vec<FilterOp>,
/// The blend mode with which this stacking context blends with its backdrop.
pub mix_blend_mode: MixBlendMode,
/// A transform to be applied to this stacking context.
pub transform: Option<LayoutTransform>,
/// The transform style of this stacking context.
pub transform_style: TransformStyle,
/// The perspective matrix to be applied to children.
pub perspective: Option<LayoutTransform>,
/// The scroll policy of this layer.
pub scroll_policy: ScrollPolicy,
/// The clip and scroll info for this StackingContext.
pub parent_clipping_and_scrolling: ClippingAndScrolling,
/// The index of the reference frame that this stacking context estalishes.
pub established_reference_frame: Option<ClipScrollNodeIndex>,
}
impl StackingContext {
/// Creates a new stacking context.
#[inline]
pub fn new(
id: StackingContextId,
context_type: StackingContextType,
bounds: LayoutRect,
overflow: LayoutRect,
z_index: i32,
filters: Vec<FilterOp>,
mix_blend_mode: MixBlendMode,
transform: Option<LayoutTransform>,
transform_style: TransformStyle,
perspective: Option<LayoutTransform>,
scroll_policy: ScrollPolicy,
parent_clipping_and_scrolling: ClippingAndScrolling,
established_reference_frame: Option<ClipScrollNodeIndex>,
) -> StackingContext {
StackingContext {
id,
context_type,
bounds,
overflow,
z_index,
filters,
mix_blend_mode,
transform,
transform_style,
perspective,
scroll_policy,
parent_clipping_and_scrolling,
established_reference_frame,
}
}
#[inline]
pub fn root() -> StackingContext {
StackingContext::new(
StackingContextId::root(),
StackingContextType::Real,
LayoutRect::zero(),
LayoutRect::zero(),
0,
vec![],
MixBlendMode::Normal,
None,
TransformStyle::Flat,
None,
ScrollPolicy::Scrollable,
ClippingAndScrolling::simple(ClipScrollNodeIndex::root_scroll_node()),
None,
)
}
pub fn to_display_list_items(self) -> (DisplayItem, DisplayItem) {
let mut base_item = BaseDisplayItem::empty();
base_item.stacking_context_id = self.id;
base_item.clipping_and_scrolling = self.parent_clipping_and_scrolling;
let pop_item = DisplayItem::PopStackingContext(Box::new(PopStackingContextItem {
base: base_item.clone(),
stacking_context_id: self.id,
}));
let push_item = DisplayItem::PushStackingContext(Box::new(PushStackingContextItem {
base: base_item,
stacking_context: self,
}));
(push_item, pop_item)
}
}
impl Ord for StackingContext {
fn cmp(&self, other: &Self) -> Ordering {
if self.z_index != 0 || other.z_index != 0 {
return self.z_index.cmp(&other.z_index);
}
match (self.context_type, other.context_type) {
(StackingContextType::PseudoFloat, StackingContextType::PseudoFloat) => Ordering::Equal,
(StackingContextType::PseudoFloat, _) => Ordering::Less,
(_, StackingContextType::PseudoFloat) => Ordering::Greater,
(_, _) => Ordering::Equal,
}
}
}
impl PartialOrd for StackingContext {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Eq for StackingContext {}
impl PartialEq for StackingContext {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl fmt::Debug for StackingContext {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let type_string = if self.context_type == StackingContextType::Real {
"StackingContext"
} else {
"Pseudo-StackingContext"
};
write!(
f,
"{} at {:?} with overflow {:?}: {:?}",
type_string, self.bounds, self.overflow, self.id
)
}
}
#[derive(Clone, Debug, PartialEq, Serialize)]
pub struct StickyFrameData {
pub margins: SideOffsets2D<Option<f32>>,
pub vertical_offset_bounds: StickyOffsetBounds,
pub horizontal_offset_bounds: StickyOffsetBounds,
}
#[derive(Clone, Debug, PartialEq, Serialize)]
pub enum ClipScrollNodeType {
Placeholder,
ScrollFrame(ScrollSensitivity, ExternalScrollId),
StickyFrame(StickyFrameData),
Clip,
}
/// Defines a clip scroll node.
#[derive(Clone, Debug, Serialize)]
pub struct ClipScrollNode {
/// The index of the parent of this ClipScrollNode.
pub parent_index: ClipScrollNodeIndex,
/// The position of this scroll root's frame in the parent stacking context.
pub clip: ClippingRegion,
/// The rect of the contents that can be scrolled inside of the scroll root.
pub content_rect: LayoutRect,
/// The type of this ClipScrollNode.
pub node_type: ClipScrollNodeType,
}
impl ClipScrollNode {
pub fn placeholder() -> ClipScrollNode {
ClipScrollNode {
parent_index: ClipScrollNodeIndex(0),
clip: ClippingRegion::from_rect(LayoutRect::zero()),
content_rect: LayoutRect::zero(),
node_type: ClipScrollNodeType::Placeholder,
}
}
pub fn is_placeholder(&self) -> bool {
self.node_type == ClipScrollNodeType::Placeholder
}
}
/// One drawing command in the list.
#[derive(Clone, Serialize)]
pub enum DisplayItem {
SolidColor(Box<SolidColorDisplayItem>),
Text(Box<TextDisplayItem>),
Image(Box<ImageDisplayItem>),
Border(Box<BorderDisplayItem>),
Gradient(Box<GradientDisplayItem>),
RadialGradient(Box<RadialGradientDisplayItem>),
Line(Box<LineDisplayItem>),
BoxShadow(Box<BoxShadowDisplayItem>),
PushTextShadow(Box<PushTextShadowDisplayItem>),
PopAllTextShadows(Box<PopAllTextShadowsDisplayItem>),
Iframe(Box<IframeDisplayItem>),
PushStackingContext(Box<PushStackingContextItem>),
PopStackingContext(Box<PopStackingContextItem>),
DefineClipScrollNode(Box<DefineClipScrollNodeItem>),
}
/// Information common to all display items.
#[derive(Clone, Serialize)]
pub struct BaseDisplayItem {
/// The boundaries of the display item, in layer coordinates.
pub bounds: LayoutRect,
/// Metadata attached to this display item.
pub metadata: DisplayItemMetadata,
/// The clip rectangle to use for this item.
pub clip_rect: LayoutRect,
/// The section of the display list that this item belongs to.
pub section: DisplayListSection,
/// The id of the stacking context this item belongs to.
pub stacking_context_id: StackingContextId,
/// The clip and scroll info for this item.
pub clipping_and_scrolling: ClippingAndScrolling,
}
impl BaseDisplayItem {
#[inline(always)]
pub fn new(
bounds: LayoutRect,
metadata: DisplayItemMetadata,
clip_rect: LayoutRect,
section: DisplayListSection,
stacking_context_id: StackingContextId,
clipping_and_scrolling: ClippingAndScrolling,
) -> BaseDisplayItem {
BaseDisplayItem {
bounds,
metadata,
clip_rect,
section,
stacking_context_id,
clipping_and_scrolling,
}
}
#[inline(always)]
pub fn empty() -> BaseDisplayItem {
BaseDisplayItem {
bounds: TypedRect::zero(),
metadata: DisplayItemMetadata {
node: OpaqueNode(0),
pointing: None,
},
// Create a rectangle of maximal size.
clip_rect: LayoutRect::max_rect(),
section: DisplayListSection::Content,
stacking_context_id: StackingContextId::root(),
clipping_and_scrolling:
ClippingAndScrolling::simple(ClipScrollNodeIndex::root_scroll_node()),
}
}
}
/// A clipping region for a display item. Currently, this can describe rectangles, rounded
/// rectangles (for `border-radius`), or arbitrary intersections of the two. Arbitrary transforms
/// are not supported because those are handled by the higher-level `StackingContext` abstraction.
#[derive(Clone, PartialEq, Serialize)]
pub struct ClippingRegion {
/// The main rectangular region. This does not include any corners.
pub main: LayoutRect,
/// Any complex regions.
///
/// TODO(pcwalton): Atomically reference count these? Not sure if it's worth the trouble.
/// Measure and follow up.
pub complex: Vec<ComplexClipRegion>,
}
impl ClippingRegion {
/// Returns an empty clipping region that, if set, will result in no pixels being visible.
#[inline]
pub fn empty() -> ClippingRegion {
ClippingRegion {
main: LayoutRect::zero(),
complex: Vec::new(),
}
}
/// Returns an all-encompassing clipping region that clips no pixels out.
#[inline]
pub fn max() -> ClippingRegion {
ClippingRegion {
main: LayoutRect::max_rect(),
complex: Vec::new(),
}
}
/// Returns a clipping region that represents the given rectangle.
#[inline]
pub fn from_rect(rect: LayoutRect) -> ClippingRegion {
ClippingRegion {
main: rect,
complex: Vec::new(),
}
}
/// Mutates this clipping region to intersect with the given rectangle.
///
/// TODO(pcwalton): This could more eagerly eliminate complex clipping regions, at the cost of
/// complexity.
#[inline]
pub fn intersect_rect(&mut self, rect: &LayoutRect) {
self.main = self.main.intersection(rect).unwrap_or(LayoutRect::zero())
}
/// Returns true if this clipping region might be nonempty. This can return false positives,
/// but never false negatives.
#[inline]
pub fn might_be_nonempty(&self) -> bool {
!self.main.is_empty()
}
/// Returns true if this clipping region might contain the given point and false otherwise.
/// This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_point(&self, point: &LayoutPoint) -> bool {
self.main.contains(point) &&
self.complex
.iter()
.all(|complex| complex.rect.contains(point))
}
/// Returns true if this clipping region might intersect the given rectangle and false
/// otherwise. This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_rect(&self, rect: &LayoutRect) -> bool {
self.main.intersects(rect) &&
self.complex
.iter()
.all(|complex| complex.rect.intersects(rect))
}
/// Returns true if this clipping region completely surrounds the given rect.
#[inline]
pub fn does_not_clip_rect(&self, rect: &LayoutRect) -> bool {
self.main.contains(&rect.origin) && self.main.contains(&rect.bottom_right()) &&
self.complex.iter().all(|complex| {
complex.rect.contains(&rect.origin) && complex.rect.contains(&rect.bottom_right())
})
}
/// Returns a bounding rect that surrounds this entire clipping region.
#[inline]
pub fn bounding_rect(&self) -> LayoutRect {
let mut rect = self.main;
for complex in &*self.complex {
rect = rect.union(&complex.rect)
}
rect
}
/// Intersects this clipping region with the given rounded rectangle.
#[inline]
pub fn intersect_with_rounded_rect(&mut self, rect: LayoutRect, radii: BorderRadius) {
let new_complex_region = ComplexClipRegion {
rect,
radii,
mode: ClipMode::Clip,
};
// FIXME(pcwalton): This is O(n²) worst case for disjoint clipping regions. Is that OK?
// They're slow anyway…
//
// Possibly relevant if we want to do better:
//
// http://www.inrg.csie.ntu.edu.tw/algorithm2014/presentation/D&C%20Lee-84.pdf
for existing_complex_region in &mut self.complex {
if existing_complex_region.completely_encloses(&new_complex_region) {
*existing_complex_region = new_complex_region;
return;
}
if new_complex_region.completely_encloses(existing_complex_region) {
return;
}
}
self.complex.push(new_complex_region);
}
/// Translates this clipping region by the given vector.
#[inline]
pub fn translate(&self, delta: &LayoutVector2D) -> ClippingRegion {
ClippingRegion {
main: self.main.translate(delta),
complex: self.complex
.iter()
.map(|complex| ComplexClipRegion {
rect: complex.rect.translate(delta),
radii: complex.radii,
mode: complex.mode,
})
.collect(),
}
}
#[inline]
pub fn is_max(&self) -> bool {
self.main == LayoutRect::max_rect() && self.complex.is_empty()
}
}
impl fmt::Debug for ClippingRegion {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if *self == ClippingRegion::max() {
write!(f, "ClippingRegion::Max")
} else if *self == ClippingRegion::empty() {
write!(f, "ClippingRegion::Empty")
} else if self.main == LayoutRect::max_rect() {
write!(f, "ClippingRegion(Complex={:?})", self.complex)
} else {
write!(
f,
"ClippingRegion(Rect={:?}, Complex={:?})",
self.main, self.complex
)
}
}
}
pub trait CompletelyEncloses {
fn completely_encloses(&self, other: &Self) -> bool;
}
impl CompletelyEncloses for ComplexClipRegion {
// TODO(pcwalton): This could be more aggressive by considering points that touch the inside of
// the border radius ellipse.
fn completely_encloses(&self, other: &Self) -> bool {
let left = self.radii.top_left.width.max(self.radii.bottom_left.width);
let top = self.radii.top_left.height.max(self.radii.top_right.height);
let right = self.radii
.top_right
.width
.max(self.radii.bottom_right.width);
let bottom = self.radii
.bottom_left
.height
.max(self.radii.bottom_right.height);
let interior = LayoutRect::new(
LayoutPoint::new(self.rect.origin.x + left, self.rect.origin.y + top),
LayoutSize::new(
self.rect.size.width - left - right,
self.rect.size.height - top - bottom,
),
);
interior.origin.x <= other.rect.origin.x && interior.origin.y <= other.rect.origin.y &&
interior.max_x() >= other.rect.max_x() && interior.max_y() >= other.rect.max_y()
}
}
/// Metadata attached to each display item. This is useful for performing auxiliary threads with
/// the display list involving hit testing: finding the originating DOM node and determining the
/// cursor to use when the element is hovered over.
#[derive(Clone, Copy, Serialize)]
pub struct DisplayItemMetadata {
/// The DOM node from which this display item originated.
pub node: OpaqueNode,
/// The value of the `cursor` property when the mouse hovers over this display item. If `None`,
/// this display item is ineligible for pointer events (`pointer-events: none`).
pub pointing: Option<u16>,
}
/// Paints a solid color.
#[derive(Clone, Serialize)]
pub struct SolidColorDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The color.
pub color: ColorF,
}
/// Paints text.
#[derive(Clone, Serialize)]
pub struct TextDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// A collection of (non-whitespace) glyphs to be displayed.
pub glyphs: Vec<GlyphInstance>,
/// Reference to the font to be used.
pub font_key: FontInstanceKey,
/// The color of the text.
pub text_color: ColorF,
}
#[derive(Clone, Eq, PartialEq, Serialize)]
pub enum TextOrientation {
Upright,
SidewaysLeft,
SidewaysRight,
}
/// Paints an image.
#[derive(Clone, Serialize)]
pub struct ImageDisplayItem {
pub base: BaseDisplayItem,
pub id: ImageKey,
/// The dimensions to which the image display item should be stretched. If this is smaller than
/// the bounds of this display item, then the image will be repeated in the appropriate
/// direction to tile the entire bounds.
pub stretch_size: LayoutSize,
/// The amount of space to add to the right and bottom part of each tile, when the image
/// is tiled.
pub tile_spacing: LayoutSize,
/// The algorithm we should use to stretch the image. See `image_rendering` in CSS-IMAGES-3 §
/// 5.3.
pub image_rendering: ImageRendering,
}
/// Paints an iframe.
#[derive(Clone, Serialize)]
pub struct IframeDisplayItem {
pub base: BaseDisplayItem,
pub iframe: PipelineId,
}
/// Paints a gradient.
#[derive(Clone, Serialize)]
pub struct Gradient {
/// The start point of the gradient (computed during display list construction).
pub start_point: LayoutPoint,
/// The end point of the gradient (computed during display list construction).
pub end_point: LayoutPoint,
/// A list of color stops.
pub stops: Vec<GradientStop>,
/// Whether the gradient is repeated or clamped.
pub extend_mode: ExtendMode,
}
#[derive(Clone, Serialize)]
pub struct GradientDisplayItem {
/// Fields common to all display item.
pub base: BaseDisplayItem,
/// Contains all gradient data. Included start, end point and color stops.
pub gradient: Gradient,
/// The size of a single gradient tile.
///
/// The gradient may fill an entire element background
/// but it can be composed from many smaller copys of
/// the same gradient.
///
/// Without tiles, the tile will be the same size as the background.
pub tile: LayoutSize,
pub tile_spacing: LayoutSize,
}
/// Paints a radial gradient.
#[derive(Clone, Serialize)]
pub struct RadialGradient {
/// The center point of the gradient.
pub center: LayoutPoint,
/// The radius of the gradient with an x and an y component.
pub radius: LayoutSize,
/// A list of color stops.
pub stops: Vec<GradientStop>,
/// Whether the gradient is repeated or clamped.
pub extend_mode: ExtendMode,
}
#[derive(Clone, Serialize)]
pub struct RadialGradientDisplayItem {
/// Fields common to all display item.
pub base: BaseDisplayItem,
/// Contains all gradient data.
pub gradient: RadialGradient,
/// The size of a single gradient tile.
///
/// The gradient may fill an entire element background
/// but it can be composed from many smaller copys of
/// the same gradient.
///
/// Without tiles, the tile will be the same size as the background.
pub tile: LayoutSize,
pub tile_spacing: LayoutSize,
}
/// A border that is made of linear gradient
#[derive(Clone, Serialize)]
pub struct GradientBorder {
/// The gradient info that this border uses, border-image-source.
pub gradient: Gradient,
/// Outsets for the border, as per border-image-outset.
pub outset: SideOffsets2D<f32>,
}
/// A border that is made of radial gradient
#[derive(Clone, Serialize)]
pub struct RadialGradientBorder {
/// The gradient info that this border uses, border-image-source.
pub gradient: RadialGradient,
/// Outsets for the border, as per border-image-outset.
pub outset: SideOffsets2D<f32>,
}
/// Specifies the type of border
#[derive(Clone, Serialize)]
pub enum BorderDetails {
Normal(NormalBorder),
Image(NinePatchBorder),
Gradient(GradientBorder),
RadialGradient(RadialGradientBorder),
}
/// Paints a border.
#[derive(Clone, Serialize)]
pub struct BorderDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// Border widths.
pub border_widths: BorderWidths,
/// Details for specific border type
pub details: BorderDetails,
}
/// Paints a line segment.
#[derive(Clone, Serialize)]
pub struct LineDisplayItem {
pub base: BaseDisplayItem,
/// The line segment color.
pub color: ColorF,
/// The line segment style.
pub style: LineStyle,
}
/// Paints a box shadow per CSS-BACKGROUNDS.
#[derive(Clone, Serialize)]
pub struct BoxShadowDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The dimensions of the box that we're placing a shadow around.
pub box_bounds: LayoutRect,
/// The offset of this shadow from the box.
pub offset: LayoutVector2D,
/// The color of this shadow.
pub color: ColorF,
/// The blur radius for this shadow.
pub blur_radius: f32,
/// The spread radius of this shadow.
pub spread_radius: f32,
/// The border radius of this shadow.
pub border_radius: BorderRadius,
/// How we should clip the result.
pub clip_mode: BoxShadowClipMode,
}
/// Defines a text shadow that affects all items until the paired PopTextShadow.
#[derive(Clone, Serialize)]
pub struct PushTextShadowDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub shadow: Shadow,
}
/// Defines a text shadow that affects all items until the next PopTextShadow.
#[derive(Clone, Serialize)]
pub struct PopAllTextShadowsDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
}
/// Defines a stacking context.
#[derive(Clone, Serialize)]
pub struct PushStackingContextItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub stacking_context: StackingContext,
}
/// Defines a stacking context.
#[derive(Clone, Serialize)]
pub struct PopStackingContextItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub stacking_context_id: StackingContextId,
}
/// Starts a group of items inside a particular scroll root.
#[derive(Clone, Serialize)]
pub struct DefineClipScrollNodeItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The scroll root that this item starts.
pub node_index: ClipScrollNodeIndex,
}
impl DisplayItem {
pub fn base(&self) -> &BaseDisplayItem {
match *self {
DisplayItem::SolidColor(ref solid_color) => &solid_color.base,
DisplayItem::Text(ref text) => &text.base,
DisplayItem::Image(ref image_item) => &image_item.base,
DisplayItem::Border(ref border) => &border.base,
DisplayItem::Gradient(ref gradient) => &gradient.base,
DisplayItem::RadialGradient(ref gradient) => &gradient.base,
DisplayItem::Line(ref line) => &line.base,
DisplayItem::BoxShadow(ref box_shadow) => &box_shadow.base,
DisplayItem::PushTextShadow(ref push_text_shadow) => &push_text_shadow.base,
DisplayItem::PopAllTextShadows(ref pop_text_shadow) => &pop_text_shadow.base,
DisplayItem::Iframe(ref iframe) => &iframe.base,
DisplayItem::PushStackingContext(ref stacking_context) => &stacking_context.base,
DisplayItem::PopStackingContext(ref item) => &item.base,
DisplayItem::DefineClipScrollNode(ref item) => &item.base,
}
}
pub fn scroll_node_index(&self) -> ClipScrollNodeIndex {
self.base().clipping_and_scrolling.scrolling
}
pub fn clipping_and_scrolling(&self) -> ClippingAndScrolling {
self.base().clipping_and_scrolling
}
pub fn stacking_context_id(&self) -> StackingContextId {
self.base().stacking_context_id
}
pub fn section(&self) -> DisplayListSection {
self.base().section
}
pub fn bounds(&self) -> LayoutRect {
self.base().bounds
}
pub fn debug_with_level(&self, level: u32) {
let mut indent = String::new();
for _ in 0..level {
indent.push_str("| ")
}
println!("{}+ {:?}", indent, self);
}
}
impl fmt::Debug for DisplayItem {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let DisplayItem::PushStackingContext(ref item) = *self {
return write!(f, "PushStackingContext({:?})", item.stacking_context);
}
if let DisplayItem::PopStackingContext(ref item) = *self {
return write!(f, "PopStackingContext({:?}", item.stacking_context_id);
}
if let DisplayItem::DefineClipScrollNode(ref item) = *self {
return write!(f, "DefineClipScrollNode({:?}", item.node_index);
}
write!(
f,
"{} @ {:?} {:?}",
match *self {
DisplayItem::SolidColor(ref solid_color) => format!(
"SolidColor rgba({}, {}, {}, {})",
solid_color.color.r,
solid_color.color.g,
solid_color.color.b,
solid_color.color.a
),
DisplayItem::Text(_) => "Text".to_owned(),
DisplayItem::Image(_) => "Image".to_owned(),
DisplayItem::Border(_) => "Border".to_owned(),
DisplayItem::Gradient(_) => "Gradient".to_owned(),
DisplayItem::RadialGradient(_) => "RadialGradient".to_owned(),
DisplayItem::Line(_) => "Line".to_owned(),
DisplayItem::BoxShadow(_) => "BoxShadow".to_owned(),
DisplayItem::PushTextShadow(_) => "PushTextShadow".to_owned(),
DisplayItem::PopAllTextShadows(_) => "PopTextShadow".to_owned(),
DisplayItem::Iframe(_) => "Iframe".to_owned(),
DisplayItem::PushStackingContext(_) |
DisplayItem::PopStackingContext(_) |
DisplayItem::DefineClipScrollNode(_) => "".to_owned(),
},
self.bounds(),
self.base().clip_rect
)
}
}
#[derive(Clone, Copy, Serialize)]
pub struct WebRenderImageInfo {
pub width: u32,
pub height: u32,
pub key: Option<ImageKey>,
}
impl WebRenderImageInfo {
#[inline]
pub fn from_image(image: &Image) -> WebRenderImageInfo {
WebRenderImageInfo {
width: image.width,
height: image.height,
key: image.id,
}
}
}
/// The type of the scroll offset list. This is only populated if WebRender is in use.
pub type ScrollOffsetMap = HashMap<ExternalScrollId, Vector2D<f32>>;
pub trait SimpleMatrixDetection {
fn is_identity_or_simple_translation(&self) -> bool;
}
impl SimpleMatrixDetection for LayoutTransform {
#[inline]
fn is_identity_or_simple_translation(&self) -> bool {
let (_0, _1) = (0.0, 1.0);
self.m11 == _1 && self.m12 == _0 && self.m13 == _0 && self.m14 == _0 && self.m21 == _0 &&
self.m22 == _1 && self.m23 == _0 && self.m24 == _0 && self.m31 == _0 &&
self.m32 == _0 && self.m33 == _1 && self.m34 == _0 && self.m44 == _1
}
}