mirror of
https://github.com/servo/servo.git
synced 2025-06-06 16:45:39 +00:00
* script: Avoid direct impl blocks on generated dicts and unions. Signed-off-by: Josh Matthews <josh@joshmatthews.net> * script: Remove references to codegen-specific import module. Signed-off-by: Josh Matthews <josh@joshmatthews.net> * Fix tidy. Signed-off-by: Josh Matthews <josh@joshmatthews.net> --------- Signed-off-by: Josh Matthews <josh@joshmatthews.net>
3191 lines
121 KiB
Rust
3191 lines
121 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
|
|
|
|
use std::num::NonZero;
|
|
use std::ptr;
|
|
use std::rc::Rc;
|
|
|
|
use aes::cipher::block_padding::Pkcs7;
|
|
use aes::cipher::generic_array::GenericArray;
|
|
use aes::cipher::{BlockDecryptMut, BlockEncryptMut, KeyIvInit, StreamCipher};
|
|
use aes::{Aes128, Aes192, Aes256};
|
|
use aes_gcm::{AeadInPlace, AesGcm, KeyInit};
|
|
use aes_kw::{KekAes128, KekAes192, KekAes256};
|
|
use aws_lc_rs::{digest, hkdf, hmac, pbkdf2};
|
|
use base64::prelude::*;
|
|
use cipher::consts::{U12, U16, U32};
|
|
use dom_struct::dom_struct;
|
|
use js::conversions::ConversionResult;
|
|
use js::jsapi::{JS_NewObject, JSObject};
|
|
use js::jsval::ObjectValue;
|
|
use js::rust::MutableHandleObject;
|
|
use js::typedarray::ArrayBufferU8;
|
|
use servo_rand::{RngCore, ServoRng};
|
|
|
|
use crate::dom::bindings::buffer_source::create_buffer_source;
|
|
use crate::dom::bindings::cell::DomRefCell;
|
|
use crate::dom::bindings::codegen::Bindings::CryptoKeyBinding::{
|
|
CryptoKeyMethods, KeyType, KeyUsage,
|
|
};
|
|
use crate::dom::bindings::codegen::Bindings::SubtleCryptoBinding::{
|
|
AesCbcParams, AesCtrParams, AesDerivedKeyParams, AesGcmParams, AesKeyAlgorithm,
|
|
AesKeyGenParams, Algorithm, AlgorithmIdentifier, HkdfParams, HmacImportParams,
|
|
HmacKeyAlgorithm, HmacKeyGenParams, JsonWebKey, KeyAlgorithm, KeyFormat, Pbkdf2Params,
|
|
SubtleCryptoMethods,
|
|
};
|
|
use crate::dom::bindings::codegen::UnionTypes::{
|
|
ArrayBufferViewOrArrayBuffer, ArrayBufferViewOrArrayBufferOrJsonWebKey,
|
|
};
|
|
use crate::dom::bindings::error::{Error, Fallible};
|
|
use crate::dom::bindings::refcounted::{Trusted, TrustedPromise};
|
|
use crate::dom::bindings::reflector::{DomGlobal, Reflector, reflect_dom_object};
|
|
use crate::dom::bindings::root::DomRoot;
|
|
use crate::dom::bindings::str::DOMString;
|
|
use crate::dom::bindings::trace::RootedTraceableBox;
|
|
use crate::dom::cryptokey::{CryptoKey, Handle};
|
|
use crate::dom::globalscope::GlobalScope;
|
|
use crate::dom::promise::Promise;
|
|
use crate::realms::InRealm;
|
|
use crate::script_runtime::{CanGc, JSContext};
|
|
|
|
// String constants for algorithms/curves
|
|
const ALG_AES_CBC: &str = "AES-CBC";
|
|
const ALG_AES_CTR: &str = "AES-CTR";
|
|
const ALG_AES_GCM: &str = "AES-GCM";
|
|
const ALG_AES_KW: &str = "AES-KW";
|
|
const ALG_SHA1: &str = "SHA-1";
|
|
const ALG_SHA256: &str = "SHA-256";
|
|
const ALG_SHA384: &str = "SHA-384";
|
|
const ALG_SHA512: &str = "SHA-512";
|
|
const ALG_HMAC: &str = "HMAC";
|
|
const ALG_HKDF: &str = "HKDF";
|
|
const ALG_PBKDF2: &str = "PBKDF2";
|
|
const ALG_RSASSA_PKCS1: &str = "RSASSA-PKCS1-v1_5";
|
|
const ALG_RSA_OAEP: &str = "RSA-OAEP";
|
|
const ALG_RSA_PSS: &str = "RSA-PSS";
|
|
const ALG_ECDH: &str = "ECDH";
|
|
const ALG_ECDSA: &str = "ECDSA";
|
|
|
|
#[allow(dead_code)]
|
|
static SUPPORTED_ALGORITHMS: &[&str] = &[
|
|
ALG_AES_CBC,
|
|
ALG_AES_CTR,
|
|
ALG_AES_GCM,
|
|
ALG_AES_KW,
|
|
ALG_SHA1,
|
|
ALG_SHA256,
|
|
ALG_SHA384,
|
|
ALG_SHA512,
|
|
ALG_HMAC,
|
|
ALG_HKDF,
|
|
ALG_PBKDF2,
|
|
ALG_RSASSA_PKCS1,
|
|
ALG_RSA_OAEP,
|
|
ALG_RSA_PSS,
|
|
ALG_ECDH,
|
|
ALG_ECDSA,
|
|
];
|
|
|
|
const NAMED_CURVE_P256: &str = "P-256";
|
|
const NAMED_CURVE_P384: &str = "P-384";
|
|
const NAMED_CURVE_P521: &str = "P-521";
|
|
#[allow(dead_code)]
|
|
static SUPPORTED_CURVES: &[&str] = &[NAMED_CURVE_P256, NAMED_CURVE_P384, NAMED_CURVE_P521];
|
|
|
|
type Aes128CbcEnc = cbc::Encryptor<Aes128>;
|
|
type Aes128CbcDec = cbc::Decryptor<Aes128>;
|
|
type Aes192CbcEnc = cbc::Encryptor<Aes192>;
|
|
type Aes192CbcDec = cbc::Decryptor<Aes192>;
|
|
type Aes256CbcEnc = cbc::Encryptor<Aes256>;
|
|
type Aes256CbcDec = cbc::Decryptor<Aes256>;
|
|
type Aes128Ctr = ctr::Ctr64BE<Aes128>;
|
|
type Aes192Ctr = ctr::Ctr64BE<Aes192>;
|
|
type Aes256Ctr = ctr::Ctr64BE<Aes256>;
|
|
|
|
type Aes128Gcm96Iv = AesGcm<Aes128, U12>;
|
|
type Aes128Gcm128Iv = AesGcm<Aes128, U16>;
|
|
type Aes192Gcm96Iv = AesGcm<Aes192, U12>;
|
|
type Aes256Gcm96Iv = AesGcm<Aes256, U12>;
|
|
type Aes128Gcm256Iv = AesGcm<Aes128, U32>;
|
|
type Aes192Gcm256Iv = AesGcm<Aes192, U32>;
|
|
type Aes256Gcm256Iv = AesGcm<Aes256, U32>;
|
|
|
|
#[dom_struct]
|
|
pub(crate) struct SubtleCrypto {
|
|
reflector_: Reflector,
|
|
#[no_trace]
|
|
rng: DomRefCell<ServoRng>,
|
|
}
|
|
|
|
impl SubtleCrypto {
|
|
fn new_inherited() -> SubtleCrypto {
|
|
SubtleCrypto {
|
|
reflector_: Reflector::new(),
|
|
rng: DomRefCell::new(ServoRng::default()),
|
|
}
|
|
}
|
|
|
|
pub(crate) fn new(global: &GlobalScope, can_gc: CanGc) -> DomRoot<SubtleCrypto> {
|
|
reflect_dom_object(Box::new(SubtleCrypto::new_inherited()), global, can_gc)
|
|
}
|
|
}
|
|
|
|
impl SubtleCryptoMethods<crate::DomTypeHolder> for SubtleCrypto {
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-encrypt>
|
|
fn Encrypt(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
key: &CryptoKey,
|
|
data: ArrayBufferViewOrArrayBuffer,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_encrypt_or_decrypt(cx, &algorithm)
|
|
{
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
let data = match data {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
let this = Trusted::new(self);
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
let trusted_key = Trusted::new(key);
|
|
let key_alg = key.algorithm();
|
|
let valid_usage = key.usages().contains(&KeyUsage::Encrypt);
|
|
self.global()
|
|
.task_manager()
|
|
.dom_manipulation_task_source()
|
|
.queue(task!(encrypt: move || {
|
|
let subtle = this.root();
|
|
let promise = trusted_promise.root();
|
|
let key = trusted_key.root();
|
|
|
|
if !valid_usage || normalized_algorithm.name() != key_alg {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
|
|
if let Err(e) = normalized_algorithm.encrypt(
|
|
&subtle,
|
|
&key,
|
|
&data,
|
|
cx,
|
|
array_buffer_ptr.handle_mut(),
|
|
CanGc::note(),
|
|
) {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
promise.resolve_native(&*array_buffer_ptr.handle(), CanGc::note());
|
|
}));
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-decrypt>
|
|
fn Decrypt(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
key: &CryptoKey,
|
|
data: ArrayBufferViewOrArrayBuffer,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_encrypt_or_decrypt(cx, &algorithm)
|
|
{
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
let data = match data {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
let this = Trusted::new(self);
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
let trusted_key = Trusted::new(key);
|
|
let key_alg = key.algorithm();
|
|
let valid_usage = key.usages().contains(&KeyUsage::Decrypt);
|
|
self.global()
|
|
.task_manager()
|
|
.dom_manipulation_task_source()
|
|
.queue(task!(decrypt: move || {
|
|
let subtle = this.root();
|
|
let promise = trusted_promise.root();
|
|
let key = trusted_key.root();
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
|
|
if !valid_usage || normalized_algorithm.name() != key_alg {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
if let Err(e) = normalized_algorithm.decrypt(
|
|
&subtle,
|
|
&key,
|
|
&data,
|
|
cx,
|
|
array_buffer_ptr.handle_mut(),
|
|
CanGc::note(),
|
|
) {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
promise.resolve_native(&*array_buffer_ptr.handle(), CanGc::note());
|
|
}));
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-sign>
|
|
fn Sign(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
key: &CryptoKey,
|
|
data: ArrayBufferViewOrArrayBuffer,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
// Step 1. Let algorithm and key be the algorithm and key parameters passed to the sign() method, respectively.
|
|
|
|
// Step 2. Let data be the result of getting a copy of the bytes held by the data parameter passed to
|
|
// the sign() method.
|
|
let data = match &data {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
// Step 3. Let normalizedAlgorithm be the result of normalizing an algorithm, with alg set to algorithm and
|
|
// op set to "sign".
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_sign_or_verify(cx, &algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
// Step 4. If an error occurred, return a Promise rejected with normalizedAlgorithm.
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
// Step 5. Let promise be a new Promise.
|
|
// NOTE: We did that in preparation of Step 4.
|
|
|
|
// Step 6. Return promise and perform the remaining steps in parallel.
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
let trusted_key = Trusted::new(key);
|
|
|
|
self.global()
|
|
.task_manager()
|
|
.dom_manipulation_task_source()
|
|
.queue(task!(sign: move || {
|
|
// Step 7. If the following steps or referenced procedures say to throw an error, reject promise
|
|
// with the returned error and then terminate the algorithm.
|
|
let promise = trusted_promise.root();
|
|
let key = trusted_key.root();
|
|
|
|
// Step 8. If the name member of normalizedAlgorithm is not equal to the name attribute of the
|
|
// [[algorithm]] internal slot of key then throw an InvalidAccessError.
|
|
if normalized_algorithm.name() != key.algorithm() {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
// Step 9. If the [[usages]] internal slot of key does not contain an entry that is "sign",
|
|
// then throw an InvalidAccessError.
|
|
if !key.usages().contains(&KeyUsage::Sign) {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
// Step 10. Let result be the result of performing the sign operation specified by normalizedAlgorithm
|
|
// using key and algorithm and with data as message.
|
|
let cx = GlobalScope::get_cx();
|
|
let result = match normalized_algorithm.sign(cx, &key, &data) {
|
|
Ok(signature) => signature,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
};
|
|
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
create_buffer_source::<ArrayBufferU8>(cx, &result, array_buffer_ptr.handle_mut(), CanGc::note())
|
|
.expect("failed to create buffer source for exported key.");
|
|
|
|
// Step 9. Resolve promise with result.
|
|
promise.resolve_native(&*array_buffer_ptr, CanGc::note());
|
|
}));
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-verify>
|
|
fn Verify(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
key: &CryptoKey,
|
|
signature: ArrayBufferViewOrArrayBuffer,
|
|
data: ArrayBufferViewOrArrayBuffer,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
// Step 1. Let algorithm and key be the algorithm and key parameters passed to the verify() method,
|
|
// respectively.
|
|
|
|
// Step 2. Let signature be the result of getting a copy of the bytes held by the signature parameter passed
|
|
// to the verify() method.
|
|
let signature = match &signature {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
// Step 3. Let data be the result of getting a copy of the bytes held by the data parameter passed to the
|
|
// verify() method.
|
|
let data = match &data {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
// Step 4. Let normalizedAlgorithm be the result of normalizing an algorithm, with alg set to
|
|
// algorithm and op set to "verify".
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_sign_or_verify(cx, &algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
// Step 5. If an error occurred, return a Promise rejected with normalizedAlgorithm.
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
// Step 6. Let promise be a new Promise.
|
|
// NOTE: We did that in preparation of Step 6.
|
|
|
|
// Step 7. Return promise and perform the remaining steps in parallel.
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
let trusted_key = Trusted::new(key);
|
|
|
|
self.global()
|
|
.task_manager()
|
|
.dom_manipulation_task_source()
|
|
.queue(task!(sign: move || {
|
|
// Step 8. If the following steps or referenced procedures say to throw an error, reject promise
|
|
// with the returned error and then terminate the algorithm.
|
|
let promise = trusted_promise.root();
|
|
let key = trusted_key.root();
|
|
|
|
// Step 9. If the name member of normalizedAlgorithm is not equal to the name attribute of the
|
|
// [[algorithm]] internal slot of key then throw an InvalidAccessError.
|
|
if normalized_algorithm.name() != key.algorithm() {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
// Step 10. If the [[usages]] internal slot of key does not contain an entry that is "verify",
|
|
// then throw an InvalidAccessError.
|
|
if !key.usages().contains(&KeyUsage::Verify) {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
// Step 1. Let result be the result of performing the verify operation specified by normalizedAlgorithm
|
|
// using key, algorithm and signature and with data as message.
|
|
let cx = GlobalScope::get_cx();
|
|
let result = match normalized_algorithm.verify(cx, &key, &data, &signature) {
|
|
Ok(result) => result,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
};
|
|
|
|
// Step 9. Resolve promise with result.
|
|
promise.resolve_native(&result, CanGc::note());
|
|
}));
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-digest>
|
|
fn Digest(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
data: ArrayBufferViewOrArrayBuffer,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
// Step 1. Let algorithm be the algorithm parameter passed to the digest() method.
|
|
|
|
// Step 2. Let data be the result of getting a copy of the bytes held by the
|
|
// data parameter passed to the digest() method.
|
|
let data = match data {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
// Step 3. Let normalizedAlgorithm be the result of normalizing an algorithm,
|
|
// with alg set to algorithm and op set to "digest".
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_digest(cx, &algorithm) {
|
|
Ok(normalized_algorithm) => normalized_algorithm,
|
|
Err(e) => {
|
|
// Step 4. If an error occurred, return a Promise rejected with normalizedAlgorithm.
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
// Step 5. Let promise be a new Promise.
|
|
// NOTE: We did that in preparation of Step 4.
|
|
|
|
// Step 6. Return promise and perform the remaining steps in parallel.
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
|
|
self.global().task_manager().dom_manipulation_task_source().queue(
|
|
task!(generate_key: move || {
|
|
// Step 7. If the following steps or referenced procedures say to throw an error, reject promise
|
|
// with the returned error and then terminate the algorithm.
|
|
let promise = trusted_promise.root();
|
|
|
|
// Step 8. Let result be the result of performing the digest operation specified by
|
|
// normalizedAlgorithm using algorithm, with data as message.
|
|
let digest = match normalized_algorithm.digest(&data) {
|
|
Ok(digest) => digest,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
};
|
|
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
create_buffer_source::<ArrayBufferU8>(cx, digest.as_ref(), array_buffer_ptr.handle_mut(), CanGc::note())
|
|
.expect("failed to create buffer source for exported key.");
|
|
|
|
|
|
// Step 9. Resolve promise with result.
|
|
promise.resolve_native(&*array_buffer_ptr, CanGc::note());
|
|
})
|
|
);
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-generateKey>
|
|
fn GenerateKey(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
extractable: bool,
|
|
key_usages: Vec<KeyUsage>,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_generate_key(cx, &algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
let this = Trusted::new(self);
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
self.global()
|
|
.task_manager()
|
|
.dom_manipulation_task_source()
|
|
.queue(task!(generate_key: move || {
|
|
let subtle = this.root();
|
|
let promise = trusted_promise.root();
|
|
let key = normalized_algorithm.generate_key(&subtle, key_usages, extractable, CanGc::note());
|
|
|
|
match key {
|
|
Ok(key) => promise.resolve_native(&key, CanGc::note()),
|
|
Err(e) => promise.reject_error(e, CanGc::note()),
|
|
}
|
|
}));
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-deriveKey>
|
|
fn DeriveKey(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
base_key: &CryptoKey,
|
|
derived_key_type: AlgorithmIdentifier,
|
|
extractable: bool,
|
|
key_usages: Vec<KeyUsage>,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
// Step 1. Let algorithm, baseKey, derivedKeyType, extractable and usages be the algorithm, baseKey,
|
|
// derivedKeyType, extractable and keyUsages parameters passed to the deriveKey() method, respectively.
|
|
|
|
// Step 2. Let normalizedAlgorithm be the result of normalizing an algorithm, with alg set to algorithm
|
|
// and op set to "deriveBits".
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_derive_bits(cx, &algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
// Step 3. If an error occurred, return a Promise rejected with normalizedAlgorithm.
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
// Step 4. Let normalizedDerivedKeyAlgorithmImport be the result of normalizing an algorithm,
|
|
// with alg set to derivedKeyType and op set to "importKey".
|
|
let normalized_derived_key_algorithm_import =
|
|
match normalize_algorithm_for_import_key(cx, &derived_key_type) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
// Step 5. If an error occurred, return a Promise rejected with normalizedDerivedKeyAlgorithmImport.
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
// Step 6. Let normalizedDerivedKeyAlgorithmLength be the result of normalizing an algorithm, with alg set
|
|
// to derivedKeyType and op set to "get key length".
|
|
let normalized_derived_key_algorithm_length =
|
|
match normalize_algorithm_for_get_key_length(cx, &derived_key_type) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
// Step 7. If an error occurred, return a Promise rejected with normalizedDerivedKeyAlgorithmLength.
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
// Step 8. Let promise be a new Promise.
|
|
// NOTE: We created the promise earlier, after Step 1.
|
|
|
|
// Step 9. Return promise and perform the remaining steps in parallel.
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
let trusted_base_key = Trusted::new(base_key);
|
|
let this = Trusted::new(self);
|
|
self.global().task_manager().dom_manipulation_task_source().queue(
|
|
task!(derive_key: move || {
|
|
// Step 10. If the following steps or referenced procedures say to throw an error, reject promise
|
|
// with the returned error and then terminate the algorithm.
|
|
|
|
// TODO Step 11. If the name member of normalizedAlgorithm is not equal to the name attribute of the #
|
|
// [[algorithm]] internal slot of baseKey then throw an InvalidAccessError.
|
|
let promise = trusted_promise.root();
|
|
let base_key = trusted_base_key.root();
|
|
let subtle = this.root();
|
|
|
|
// Step 12. If the [[usages]] internal slot of baseKey does not contain an entry that is
|
|
// "deriveKey", then throw an InvalidAccessError.
|
|
if !base_key.usages().contains(&KeyUsage::DeriveKey) {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
// Step 13. Let length be the result of performing the get key length algorithm specified by
|
|
// normalizedDerivedKeyAlgorithmLength using derivedKeyType.
|
|
let length = match normalized_derived_key_algorithm_length.get_key_length() {
|
|
Ok(length) => length,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
};
|
|
|
|
// Step 14. Let secret be the result of performing the derive bits operation specified by
|
|
// normalizedAlgorithm using key, algorithm and length.
|
|
let secret = match normalized_algorithm.derive_bits(&base_key, Some(length)){
|
|
Ok(secret) => secret,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
};
|
|
|
|
// Step 15. Let result be the result of performing the import key operation specified by
|
|
// normalizedDerivedKeyAlgorithmImport using "raw" as format, secret as keyData, derivedKeyType as
|
|
// algorithm and using extractable and usages.
|
|
let result = normalized_derived_key_algorithm_import.import_key(
|
|
&subtle,
|
|
KeyFormat::Raw,
|
|
&secret,
|
|
extractable,
|
|
key_usages,
|
|
CanGc::note()
|
|
);
|
|
let result = match result {
|
|
Ok(key) => key,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
};
|
|
|
|
// Step 17. If the [[type]] internal slot of result is "secret" or "private" and usages
|
|
// is empty, then throw a SyntaxError.
|
|
if matches!(result.Type(), KeyType::Secret | KeyType::Private) && result.usages().is_empty() {
|
|
promise.reject_error(Error::Syntax, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
// Step 17. Resolve promise with result.
|
|
promise.resolve_native(&*result, CanGc::note());
|
|
}),
|
|
);
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-SubtleCrypto-method-deriveBits>
|
|
fn DeriveBits(
|
|
&self,
|
|
cx: JSContext,
|
|
algorithm: AlgorithmIdentifier,
|
|
base_key: &CryptoKey,
|
|
length: Option<u32>,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
// Step 1. Let algorithm, baseKey and length, be the algorithm, baseKey and
|
|
// length parameters passed to the deriveBits() method, respectively.
|
|
|
|
// Step 2. Let normalizedAlgorithm be the result of normalizing an algorithm,
|
|
// with alg set to algorithm and op set to "deriveBits".
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_derive_bits(cx, &algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
// Step 3. If an error occurred, return a Promise rejected with normalizedAlgorithm.
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
// Step 4. Let promise be a new Promise object.
|
|
// NOTE: We did that in preparation of Step 3.
|
|
|
|
// Step 5. Return promise and perform the remaining steps in parallel.
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
let trusted_base_key = Trusted::new(base_key);
|
|
|
|
self.global()
|
|
.task_manager()
|
|
.dom_manipulation_task_source()
|
|
.queue(task!(import_key: move || {
|
|
// Step 6. If the following steps or referenced procedures say to throw an error,
|
|
// reject promise with the returned error and then terminate the algorithm.
|
|
|
|
// TODO Step 7. If the name member of normalizedAlgorithm is not equal to the name attribute
|
|
// of the [[algorithm]] internal slot of baseKey then throw an InvalidAccessError.
|
|
let promise = trusted_promise.root();
|
|
let base_key = trusted_base_key.root();
|
|
|
|
// Step 8. If the [[usages]] internal slot of baseKey does not contain an entry that
|
|
// is "deriveBits", then throw an InvalidAccessError.
|
|
if !base_key.usages().contains(&KeyUsage::DeriveBits) {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
// Step 9. Let result be the result of creating an ArrayBuffer containing the result of performing the
|
|
// derive bits operation specified by normalizedAlgorithm using baseKey, algorithm and length.
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
let result = match normalized_algorithm.derive_bits(&base_key, length) {
|
|
Ok(derived_bits) => derived_bits,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
};
|
|
|
|
create_buffer_source::<ArrayBufferU8>(cx, &result, array_buffer_ptr.handle_mut(), CanGc::note())
|
|
.expect("failed to create buffer source for derived bits.");
|
|
|
|
// Step 10. Resolve promise with result.
|
|
promise.resolve_native(&*array_buffer_ptr, CanGc::note());
|
|
}));
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-importKey>
|
|
fn ImportKey(
|
|
&self,
|
|
cx: JSContext,
|
|
format: KeyFormat,
|
|
key_data: ArrayBufferViewOrArrayBufferOrJsonWebKey,
|
|
algorithm: AlgorithmIdentifier,
|
|
extractable: bool,
|
|
key_usages: Vec<KeyUsage>,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_import_key(cx, &algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
let data = match key_data {
|
|
ArrayBufferViewOrArrayBufferOrJsonWebKey::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBufferOrJsonWebKey::JsonWebKey(json_web_key) => {
|
|
let data_string = match json_web_key.k {
|
|
Some(s) => s.to_string(),
|
|
None => {
|
|
promise.reject_error(Error::Syntax, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
match base64::engine::general_purpose::STANDARD_NO_PAD
|
|
.decode(data_string.as_bytes())
|
|
{
|
|
Ok(data) => data,
|
|
Err(_) => {
|
|
promise.reject_error(Error::Syntax, can_gc);
|
|
return promise;
|
|
},
|
|
}
|
|
},
|
|
ArrayBufferViewOrArrayBufferOrJsonWebKey::ArrayBuffer(array_buffer) => {
|
|
array_buffer.to_vec()
|
|
},
|
|
};
|
|
|
|
let this = Trusted::new(self);
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
self.global()
|
|
.task_manager()
|
|
.dom_manipulation_task_source()
|
|
.queue(task!(import_key: move || {
|
|
let subtle = this.root();
|
|
let promise = trusted_promise.root();
|
|
let imported_key = normalized_algorithm.import_key(&subtle,
|
|
format, &data, extractable, key_usages, CanGc::note());
|
|
match imported_key {
|
|
Ok(k) => promise.resolve_native(&k, CanGc::note()),
|
|
Err(e) => promise.reject_error(e, CanGc::note()),
|
|
};
|
|
}));
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-exportKey>
|
|
fn ExportKey(
|
|
&self,
|
|
format: KeyFormat,
|
|
key: &CryptoKey,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
|
|
let this = Trusted::new(self);
|
|
let trusted_key = Trusted::new(key);
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
self.global().task_manager().dom_manipulation_task_source().queue(
|
|
task!(export_key: move || {
|
|
let subtle = this.root();
|
|
let promise = trusted_promise.root();
|
|
let key = trusted_key.root();
|
|
let alg_name = key.algorithm();
|
|
if matches!(
|
|
alg_name.as_str(), ALG_SHA1 | ALG_SHA256 | ALG_SHA384 | ALG_SHA512 | ALG_HKDF | ALG_PBKDF2
|
|
) {
|
|
promise.reject_error(Error::NotSupported, CanGc::note());
|
|
return;
|
|
}
|
|
if !key.Extractable() {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
let exported_key = match alg_name.as_str() {
|
|
ALG_AES_CBC | ALG_AES_CTR | ALG_AES_KW | ALG_AES_GCM => subtle.export_key_aes(format, &key),
|
|
_ => Err(Error::NotSupported),
|
|
};
|
|
match exported_key {
|
|
Ok(k) => {
|
|
match k {
|
|
AesExportedKey::Raw(k) => {
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
create_buffer_source::<ArrayBufferU8>(cx, &k, array_buffer_ptr.handle_mut(),
|
|
CanGc::note())
|
|
.expect("failed to create buffer source for exported key.");
|
|
promise.resolve_native(&array_buffer_ptr.get(), CanGc::note())
|
|
},
|
|
AesExportedKey::Jwk(k) => {
|
|
promise.resolve_native(&k, CanGc::note())
|
|
},
|
|
}
|
|
},
|
|
Err(e) => promise.reject_error(e, CanGc::note()),
|
|
}
|
|
}),
|
|
);
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-wrapKey>
|
|
fn WrapKey(
|
|
&self,
|
|
cx: JSContext,
|
|
format: KeyFormat,
|
|
key: &CryptoKey,
|
|
wrapping_key: &CryptoKey,
|
|
wrap_algorithm: AlgorithmIdentifier,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let normalized_algorithm = match normalize_algorithm_for_key_wrap(cx, &wrap_algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
let this = Trusted::new(self);
|
|
let trusted_key = Trusted::new(key);
|
|
let trusted_wrapping_key = Trusted::new(wrapping_key);
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
self.global().task_manager().dom_manipulation_task_source().queue(
|
|
task!(wrap_key: move || {
|
|
let subtle = this.root();
|
|
let promise = trusted_promise.root();
|
|
let key = trusted_key.root();
|
|
let wrapping_key = trusted_wrapping_key.root();
|
|
let alg_name = key.algorithm();
|
|
let wrapping_alg_name = wrapping_key.algorithm();
|
|
let valid_wrap_usage = wrapping_key.usages().contains(&KeyUsage::WrapKey);
|
|
let names_match = normalized_algorithm.name() == wrapping_alg_name.as_str();
|
|
|
|
if !valid_wrap_usage || !names_match || !key.Extractable() {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
if matches!(
|
|
alg_name.as_str(), ALG_SHA1 | ALG_SHA256 | ALG_SHA384 | ALG_SHA512 | ALG_HKDF | ALG_PBKDF2
|
|
) {
|
|
promise.reject_error(Error::NotSupported, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
let exported_key = match subtle.export_key_aes(format, &key) {
|
|
Ok(k) => k,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
},
|
|
};
|
|
|
|
let bytes = match exported_key {
|
|
AesExportedKey::Raw(k) => k,
|
|
AesExportedKey::Jwk(key) => {
|
|
// The spec states to convert this to an ECMAscript object and stringify it, but since we know
|
|
// that the output will be a string of JSON we can just construct it manually
|
|
// TODO: Support more than just a subset of the JWK dict, or find a way to
|
|
// stringify via SM internals
|
|
let Some(k) = key.k else {
|
|
promise.reject_error(Error::Syntax, CanGc::note());
|
|
return;
|
|
};
|
|
let Some(alg) = key.alg else {
|
|
promise.reject_error(Error::Syntax, CanGc::note());
|
|
return;
|
|
};
|
|
let Some(ext) = key.ext else {
|
|
promise.reject_error(Error::Syntax, CanGc::note());
|
|
return;
|
|
};
|
|
let Some(key_ops) = key.key_ops else {
|
|
promise.reject_error(Error::Syntax, CanGc::note());
|
|
return;
|
|
};
|
|
let key_ops_str = key_ops.iter().map(|op| op.to_string()).collect::<Vec<String>>();
|
|
format!("{{
|
|
\"kty\": \"oct\",
|
|
\"k\": \"{}\",
|
|
\"alg\": \"{}\",
|
|
\"ext\": {},
|
|
\"key_ops\": {:?}
|
|
}}", k, alg, ext, key_ops_str)
|
|
.into_bytes()
|
|
},
|
|
};
|
|
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
|
|
let result = match normalized_algorithm {
|
|
KeyWrapAlgorithm::AesKw => {
|
|
subtle.wrap_key_aes_kw(&wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(), CanGc::note())
|
|
},
|
|
KeyWrapAlgorithm::AesCbc(params) => {
|
|
subtle.encrypt_aes_cbc(¶ms, &wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(),
|
|
CanGc::note())
|
|
},
|
|
KeyWrapAlgorithm::AesCtr(params) => {
|
|
subtle.encrypt_decrypt_aes_ctr(
|
|
¶ms, &wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(), CanGc::note()
|
|
)
|
|
},
|
|
KeyWrapAlgorithm::AesGcm(params) => {
|
|
subtle.encrypt_aes_gcm(
|
|
¶ms, &wrapping_key, &bytes, cx, array_buffer_ptr.handle_mut(), CanGc::note()
|
|
)
|
|
},
|
|
};
|
|
|
|
match result {
|
|
Ok(_) => promise.resolve_native(&*array_buffer_ptr, CanGc::note()),
|
|
Err(e) => promise.reject_error(e, CanGc::note()),
|
|
}
|
|
}),
|
|
);
|
|
|
|
promise
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#SubtleCrypto-method-unwrapKey>
|
|
fn UnwrapKey(
|
|
&self,
|
|
cx: JSContext,
|
|
format: KeyFormat,
|
|
wrapped_key: ArrayBufferViewOrArrayBuffer,
|
|
unwrapping_key: &CryptoKey,
|
|
unwrap_algorithm: AlgorithmIdentifier,
|
|
unwrapped_key_algorithm: AlgorithmIdentifier,
|
|
extractable: bool,
|
|
key_usages: Vec<KeyUsage>,
|
|
comp: InRealm,
|
|
can_gc: CanGc,
|
|
) -> Rc<Promise> {
|
|
let promise = Promise::new_in_current_realm(comp, can_gc);
|
|
let wrapped_key_bytes = match wrapped_key {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
let normalized_algorithm = match normalize_algorithm_for_key_wrap(cx, &unwrap_algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
let normalized_key_algorithm =
|
|
match normalize_algorithm_for_import_key(cx, &unwrapped_key_algorithm) {
|
|
Ok(algorithm) => algorithm,
|
|
Err(e) => {
|
|
promise.reject_error(e, can_gc);
|
|
return promise;
|
|
},
|
|
};
|
|
|
|
let this = Trusted::new(self);
|
|
let trusted_key = Trusted::new(unwrapping_key);
|
|
let trusted_promise = TrustedPromise::new(promise.clone());
|
|
self.global().task_manager().dom_manipulation_task_source().queue(
|
|
task!(unwrap_key: move || {
|
|
let subtle = this.root();
|
|
let promise = trusted_promise.root();
|
|
let unwrapping_key = trusted_key.root();
|
|
let alg_name = unwrapping_key.algorithm();
|
|
let valid_usage = unwrapping_key.usages().contains(&KeyUsage::UnwrapKey);
|
|
|
|
if !valid_usage || normalized_algorithm.name() != alg_name.as_str() {
|
|
promise.reject_error(Error::InvalidAccess, CanGc::note());
|
|
return;
|
|
}
|
|
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut array_buffer_ptr = ptr::null_mut::<JSObject>());
|
|
|
|
let result = match normalized_algorithm {
|
|
KeyWrapAlgorithm::AesKw => {
|
|
subtle.unwrap_key_aes_kw(&unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
|
|
CanGc::note())
|
|
},
|
|
KeyWrapAlgorithm::AesCbc(params) => {
|
|
subtle.decrypt_aes_cbc(
|
|
¶ms, &unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
|
|
CanGc::note()
|
|
)
|
|
},
|
|
KeyWrapAlgorithm::AesCtr(params) => {
|
|
subtle.encrypt_decrypt_aes_ctr(
|
|
¶ms, &unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
|
|
CanGc::note()
|
|
)
|
|
},
|
|
KeyWrapAlgorithm::AesGcm(params) => {
|
|
subtle.decrypt_aes_gcm(
|
|
¶ms, &unwrapping_key, &wrapped_key_bytes, cx, array_buffer_ptr.handle_mut(),
|
|
CanGc::note()
|
|
)
|
|
},
|
|
};
|
|
|
|
let bytes = match result {
|
|
Ok(bytes) => bytes,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
},
|
|
};
|
|
|
|
let import_key_bytes = match format {
|
|
KeyFormat::Raw | KeyFormat::Spki | KeyFormat::Pkcs8 => bytes,
|
|
KeyFormat::Jwk => {
|
|
match parse_jwk(&bytes, normalized_key_algorithm.clone(), extractable, &key_usages) {
|
|
Ok(bytes) => bytes,
|
|
Err(e) => {
|
|
promise.reject_error(e, CanGc::note());
|
|
return;
|
|
}
|
|
}
|
|
},
|
|
};
|
|
match normalized_key_algorithm.import_key(&subtle, format, &import_key_bytes,
|
|
extractable, key_usages, CanGc::note()) {
|
|
Ok(imported_key) => promise.resolve_native(&imported_key, CanGc::note()),
|
|
Err(e) => promise.reject_error(e, CanGc::note()),
|
|
}
|
|
}),
|
|
);
|
|
|
|
promise
|
|
}
|
|
}
|
|
|
|
// These "subtle" structs are proxies for the codegen'd dicts which don't hold a DOMString
|
|
// so they can be sent safely when running steps in parallel.
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct SubtleAlgorithm {
|
|
#[allow(dead_code)]
|
|
pub(crate) name: String,
|
|
}
|
|
|
|
impl From<DOMString> for SubtleAlgorithm {
|
|
fn from(name: DOMString) -> Self {
|
|
SubtleAlgorithm {
|
|
name: name.to_string(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct SubtleAesCbcParams {
|
|
#[allow(dead_code)]
|
|
pub(crate) name: String,
|
|
pub(crate) iv: Vec<u8>,
|
|
}
|
|
|
|
impl From<RootedTraceableBox<AesCbcParams>> for SubtleAesCbcParams {
|
|
fn from(params: RootedTraceableBox<AesCbcParams>) -> Self {
|
|
let iv = match ¶ms.iv {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
SubtleAesCbcParams {
|
|
name: params.parent.name.to_string(),
|
|
iv,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct SubtleAesCtrParams {
|
|
pub(crate) name: String,
|
|
pub(crate) counter: Vec<u8>,
|
|
pub(crate) length: u8,
|
|
}
|
|
|
|
impl From<RootedTraceableBox<AesCtrParams>> for SubtleAesCtrParams {
|
|
fn from(params: RootedTraceableBox<AesCtrParams>) -> Self {
|
|
let counter = match ¶ms.counter {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
SubtleAesCtrParams {
|
|
name: params.parent.name.to_string(),
|
|
counter,
|
|
length: params.length,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct SubtleAesGcmParams {
|
|
pub(crate) name: String,
|
|
pub(crate) iv: Vec<u8>,
|
|
pub(crate) additional_data: Option<Vec<u8>>,
|
|
pub(crate) tag_length: Option<u8>,
|
|
}
|
|
|
|
impl From<RootedTraceableBox<AesGcmParams>> for SubtleAesGcmParams {
|
|
fn from(params: RootedTraceableBox<AesGcmParams>) -> Self {
|
|
let iv = match ¶ms.iv {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
let additional_data = params.additionalData.as_ref().map(|data| match data {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
});
|
|
|
|
SubtleAesGcmParams {
|
|
name: params.parent.name.to_string(),
|
|
iv,
|
|
additional_data,
|
|
tag_length: params.tagLength,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct SubtleAesKeyGenParams {
|
|
pub(crate) name: String,
|
|
pub(crate) length: u16,
|
|
}
|
|
|
|
impl From<AesKeyGenParams> for SubtleAesKeyGenParams {
|
|
fn from(params: AesKeyGenParams) -> Self {
|
|
SubtleAesKeyGenParams {
|
|
name: params.parent.name.to_string().to_uppercase(),
|
|
length: params.length,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HmacImportParams>
|
|
#[derive(Clone)]
|
|
struct SubtleHmacImportParams {
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyAlgorithm-hash>
|
|
hash: DigestAlgorithm,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyGenParams-length>
|
|
length: Option<u32>,
|
|
}
|
|
|
|
impl SubtleHmacImportParams {
|
|
fn new(cx: JSContext, params: RootedTraceableBox<HmacImportParams>) -> Fallible<Self> {
|
|
let hash = normalize_algorithm_for_digest(cx, ¶ms.hash)?;
|
|
let params = Self {
|
|
hash,
|
|
length: params.length,
|
|
};
|
|
Ok(params)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#hmac-operations>
|
|
fn get_key_length(&self) -> Result<u32, Error> {
|
|
// Step 1.
|
|
let length = match self.length {
|
|
// If the length member of normalizedDerivedKeyAlgorithm is not present:
|
|
None => {
|
|
// Let length be the block size in bits of the hash function identified by the hash member of
|
|
// normalizedDerivedKeyAlgorithm.
|
|
match self.hash {
|
|
DigestAlgorithm::Sha1 => 160,
|
|
DigestAlgorithm::Sha256 => 256,
|
|
DigestAlgorithm::Sha384 => 384,
|
|
DigestAlgorithm::Sha512 => 512,
|
|
}
|
|
},
|
|
// Otherwise, if the length member of normalizedDerivedKeyAlgorithm is non-zero:
|
|
Some(length) if length != 0 => {
|
|
// Let length be equal to the length member of normalizedDerivedKeyAlgorithm.
|
|
length
|
|
},
|
|
// Otherwise:
|
|
_ => {
|
|
// throw a TypeError.
|
|
return Err(Error::Type("[[length]] must not be zero".to_string()));
|
|
},
|
|
};
|
|
|
|
// Step 2. Return length.
|
|
Ok(length)
|
|
}
|
|
}
|
|
|
|
struct SubtleHmacKeyGenParams {
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyGenParams-hash>
|
|
hash: DigestAlgorithm,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HmacKeyGenParams-length>
|
|
length: Option<u32>,
|
|
}
|
|
|
|
impl SubtleHmacKeyGenParams {
|
|
fn new(cx: JSContext, params: RootedTraceableBox<HmacKeyGenParams>) -> Fallible<Self> {
|
|
let hash = normalize_algorithm_for_digest(cx, ¶ms.hash)?;
|
|
let params = Self {
|
|
hash,
|
|
length: params.length,
|
|
};
|
|
Ok(params)
|
|
}
|
|
}
|
|
/// <https://w3c.github.io/webcrypto/#hkdf-params>
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct SubtleHkdfParams {
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HkdfParams-hash>
|
|
hash: DigestAlgorithm,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HkdfParams-salt>
|
|
salt: Vec<u8>,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-HkdfParams-info>
|
|
info: Vec<u8>,
|
|
}
|
|
|
|
impl SubtleHkdfParams {
|
|
fn new(cx: JSContext, params: RootedTraceableBox<HkdfParams>) -> Fallible<Self> {
|
|
let hash = normalize_algorithm_for_digest(cx, ¶ms.hash)?;
|
|
let salt = match ¶ms.salt {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
let info = match ¶ms.info {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
let params = Self { hash, salt, info };
|
|
|
|
Ok(params)
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params>
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct SubtlePbkdf2Params {
|
|
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-salt>
|
|
salt: Vec<u8>,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-iterations>
|
|
iterations: u32,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#dfn-Pbkdf2Params-hash>
|
|
hash: DigestAlgorithm,
|
|
}
|
|
|
|
impl SubtlePbkdf2Params {
|
|
fn new(cx: JSContext, params: RootedTraceableBox<Pbkdf2Params>) -> Fallible<Self> {
|
|
let salt = match ¶ms.salt {
|
|
ArrayBufferViewOrArrayBuffer::ArrayBufferView(view) => view.to_vec(),
|
|
ArrayBufferViewOrArrayBuffer::ArrayBuffer(buffer) => buffer.to_vec(),
|
|
};
|
|
|
|
let params = Self {
|
|
salt,
|
|
iterations: params.iterations,
|
|
hash: normalize_algorithm_for_digest(cx, ¶ms.hash)?,
|
|
};
|
|
|
|
Ok(params)
|
|
}
|
|
}
|
|
|
|
enum GetKeyLengthAlgorithm {
|
|
Aes(u16),
|
|
Hmac(SubtleHmacImportParams),
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
enum DigestAlgorithm {
|
|
/// <https://w3c.github.io/webcrypto/#sha>
|
|
Sha1,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#sha>
|
|
Sha256,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#sha>
|
|
Sha384,
|
|
|
|
/// <https://w3c.github.io/webcrypto/#sha>
|
|
Sha512,
|
|
}
|
|
|
|
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"importKey"`
|
|
///
|
|
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
|
|
#[derive(Clone)]
|
|
enum ImportKeyAlgorithm {
|
|
AesCbc,
|
|
AesCtr,
|
|
AesKw,
|
|
AesGcm,
|
|
Hmac(SubtleHmacImportParams),
|
|
Pbkdf2,
|
|
Hkdf,
|
|
}
|
|
|
|
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"deriveBits"`
|
|
///
|
|
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
|
|
enum DeriveBitsAlgorithm {
|
|
Pbkdf2(SubtlePbkdf2Params),
|
|
Hkdf(SubtleHkdfParams),
|
|
}
|
|
|
|
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"encrypt"` or `"decrypt"`
|
|
///
|
|
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
|
|
#[allow(clippy::enum_variant_names)]
|
|
enum EncryptionAlgorithm {
|
|
AesCbc(SubtleAesCbcParams),
|
|
AesCtr(SubtleAesCtrParams),
|
|
AesGcm(SubtleAesGcmParams),
|
|
}
|
|
|
|
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"sign"` or `"verify"`
|
|
///
|
|
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
|
|
enum SignatureAlgorithm {
|
|
Hmac,
|
|
}
|
|
|
|
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"generateKey"`
|
|
///
|
|
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
|
|
enum KeyGenerationAlgorithm {
|
|
Aes(SubtleAesKeyGenParams),
|
|
Hmac(SubtleHmacKeyGenParams),
|
|
}
|
|
|
|
/// A normalized algorithm returned by [`normalize_algorithm`] with operation `"wrapKey"` or `"unwrapKey"`
|
|
///
|
|
/// [`normalize_algorithm`]: https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm
|
|
#[allow(clippy::enum_variant_names)]
|
|
enum KeyWrapAlgorithm {
|
|
AesKw,
|
|
AesCbc(SubtleAesCbcParams),
|
|
AesCtr(SubtleAesCtrParams),
|
|
AesGcm(SubtleAesGcmParams),
|
|
}
|
|
|
|
macro_rules! value_from_js_object {
|
|
($t: ty, $cx: ident, $value: ident) => {{
|
|
let params_result = <$t>::new($cx, $value.handle()).map_err(|_| Error::JSFailed)?;
|
|
let ConversionResult::Success(params) = params_result else {
|
|
return Err(Error::Syntax);
|
|
};
|
|
params
|
|
}};
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"get key length"`
|
|
fn normalize_algorithm_for_get_key_length(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<GetKeyLengthAlgorithm, Error> {
|
|
match algorithm {
|
|
AlgorithmIdentifier::Object(obj) => {
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
let name = algorithm.name.str();
|
|
let normalized_algorithm = if name.eq_ignore_ascii_case(ALG_AES_CBC) ||
|
|
name.eq_ignore_ascii_case(ALG_AES_CTR) ||
|
|
name.eq_ignore_ascii_case(ALG_AES_GCM)
|
|
{
|
|
let params = value_from_js_object!(AesDerivedKeyParams, cx, value);
|
|
GetKeyLengthAlgorithm::Aes(params.length)
|
|
} else if name.eq_ignore_ascii_case(ALG_HMAC) {
|
|
let params = value_from_js_object!(HmacImportParams, cx, value);
|
|
let subtle_params = SubtleHmacImportParams::new(cx, params)?;
|
|
return Ok(GetKeyLengthAlgorithm::Hmac(subtle_params));
|
|
} else {
|
|
return Err(Error::NotSupported);
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
},
|
|
AlgorithmIdentifier::String(_) => {
|
|
// All algorithms that support "get key length" require additional parameters
|
|
Err(Error::NotSupported)
|
|
},
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"digest"`
|
|
fn normalize_algorithm_for_digest(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<DigestAlgorithm, Error> {
|
|
let name = match algorithm {
|
|
AlgorithmIdentifier::Object(obj) => {
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
algorithm.name.str().to_uppercase()
|
|
},
|
|
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
|
|
};
|
|
|
|
let normalized_algorithm = match name.as_str() {
|
|
ALG_SHA1 => DigestAlgorithm::Sha1,
|
|
ALG_SHA256 => DigestAlgorithm::Sha256,
|
|
ALG_SHA384 => DigestAlgorithm::Sha384,
|
|
ALG_SHA512 => DigestAlgorithm::Sha512,
|
|
_ => return Err(Error::NotSupported),
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"importKey"`
|
|
fn normalize_algorithm_for_import_key(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<ImportKeyAlgorithm, Error> {
|
|
let name = match algorithm {
|
|
AlgorithmIdentifier::Object(obj) => {
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
let name = algorithm.name.str().to_uppercase();
|
|
if name == ALG_HMAC {
|
|
let params = value_from_js_object!(HmacImportParams, cx, value);
|
|
let subtle_params = SubtleHmacImportParams::new(cx, params)?;
|
|
return Ok(ImportKeyAlgorithm::Hmac(subtle_params));
|
|
}
|
|
|
|
name
|
|
},
|
|
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
|
|
};
|
|
|
|
let normalized_algorithm = match name.as_str() {
|
|
ALG_AES_CBC => ImportKeyAlgorithm::AesCbc,
|
|
ALG_AES_CTR => ImportKeyAlgorithm::AesCtr,
|
|
ALG_AES_KW => ImportKeyAlgorithm::AesKw,
|
|
ALG_AES_GCM => ImportKeyAlgorithm::AesGcm,
|
|
ALG_PBKDF2 => ImportKeyAlgorithm::Pbkdf2,
|
|
ALG_HKDF => ImportKeyAlgorithm::Hkdf,
|
|
_ => return Err(Error::NotSupported),
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"deriveBits"`
|
|
fn normalize_algorithm_for_derive_bits(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<DeriveBitsAlgorithm, Error> {
|
|
let AlgorithmIdentifier::Object(obj) = algorithm else {
|
|
// All algorithms that support "deriveBits" require additional parameters
|
|
return Err(Error::NotSupported);
|
|
};
|
|
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
let normalized_algorithm = if algorithm.name.str().eq_ignore_ascii_case(ALG_PBKDF2) {
|
|
let params = value_from_js_object!(Pbkdf2Params, cx, value);
|
|
let subtle_params = SubtlePbkdf2Params::new(cx, params)?;
|
|
DeriveBitsAlgorithm::Pbkdf2(subtle_params)
|
|
} else if algorithm.name.str().eq_ignore_ascii_case(ALG_HKDF) {
|
|
let params = value_from_js_object!(HkdfParams, cx, value);
|
|
let subtle_params = SubtleHkdfParams::new(cx, params)?;
|
|
DeriveBitsAlgorithm::Hkdf(subtle_params)
|
|
} else {
|
|
return Err(Error::NotSupported);
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"deriveBits"`
|
|
fn normalize_algorithm_for_encrypt_or_decrypt(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<EncryptionAlgorithm, Error> {
|
|
let AlgorithmIdentifier::Object(obj) = algorithm else {
|
|
// All algorithms that support "encrypt" or "decrypt" require additional parameters
|
|
return Err(Error::NotSupported);
|
|
};
|
|
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
let name = algorithm.name.str();
|
|
let normalized_algorithm = if name.eq_ignore_ascii_case(ALG_AES_CBC) {
|
|
let params = value_from_js_object!(AesCbcParams, cx, value);
|
|
EncryptionAlgorithm::AesCbc(params.into())
|
|
} else if name.eq_ignore_ascii_case(ALG_AES_CTR) {
|
|
let params = value_from_js_object!(AesCtrParams, cx, value);
|
|
EncryptionAlgorithm::AesCtr(params.into())
|
|
} else if name.eq_ignore_ascii_case(ALG_AES_GCM) {
|
|
let params = value_from_js_object!(AesGcmParams, cx, value);
|
|
EncryptionAlgorithm::AesGcm(params.into())
|
|
} else {
|
|
return Err(Error::NotSupported);
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"sign"`
|
|
/// or `"verify"`
|
|
fn normalize_algorithm_for_sign_or_verify(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<SignatureAlgorithm, Error> {
|
|
let name = match algorithm {
|
|
AlgorithmIdentifier::Object(obj) => {
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
algorithm.name.str().to_uppercase()
|
|
},
|
|
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
|
|
};
|
|
|
|
let normalized_algorithm = match name.as_str() {
|
|
ALG_HMAC => SignatureAlgorithm::Hmac,
|
|
_ => return Err(Error::NotSupported),
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"generateKey"`
|
|
fn normalize_algorithm_for_generate_key(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<KeyGenerationAlgorithm, Error> {
|
|
let AlgorithmIdentifier::Object(obj) = algorithm else {
|
|
// All algorithms that support "generateKey" require additional parameters
|
|
return Err(Error::NotSupported);
|
|
};
|
|
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
let name = algorithm.name.str();
|
|
let normalized_algorithm = if name.eq_ignore_ascii_case(ALG_AES_CBC) ||
|
|
name.eq_ignore_ascii_case(ALG_AES_CTR) ||
|
|
name.eq_ignore_ascii_case(ALG_AES_KW) ||
|
|
name.eq_ignore_ascii_case(ALG_AES_GCM)
|
|
{
|
|
let params = value_from_js_object!(AesKeyGenParams, cx, value);
|
|
KeyGenerationAlgorithm::Aes(params.into())
|
|
} else if name.eq_ignore_ascii_case(ALG_HMAC) {
|
|
let params = value_from_js_object!(HmacKeyGenParams, cx, value);
|
|
let subtle_params = SubtleHmacKeyGenParams::new(cx, params)?;
|
|
KeyGenerationAlgorithm::Hmac(subtle_params)
|
|
} else {
|
|
return Err(Error::NotSupported);
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#algorithm-normalization-normalize-an-algorithm> with operation `"wrapKey"` or `"unwrapKey"`
|
|
fn normalize_algorithm_for_key_wrap(
|
|
cx: JSContext,
|
|
algorithm: &AlgorithmIdentifier,
|
|
) -> Result<KeyWrapAlgorithm, Error> {
|
|
let name = match algorithm {
|
|
AlgorithmIdentifier::Object(obj) => {
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
let algorithm = value_from_js_object!(Algorithm, cx, value);
|
|
|
|
algorithm.name.str().to_uppercase()
|
|
},
|
|
AlgorithmIdentifier::String(name) => name.str().to_uppercase(),
|
|
};
|
|
|
|
let normalized_algorithm = match name.as_str() {
|
|
ALG_AES_KW => KeyWrapAlgorithm::AesKw,
|
|
ALG_AES_CBC => {
|
|
let AlgorithmIdentifier::Object(obj) = algorithm else {
|
|
return Err(Error::Syntax);
|
|
};
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
KeyWrapAlgorithm::AesCbc(value_from_js_object!(AesCbcParams, cx, value).into())
|
|
},
|
|
ALG_AES_CTR => {
|
|
let AlgorithmIdentifier::Object(obj) = algorithm else {
|
|
return Err(Error::Syntax);
|
|
};
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
KeyWrapAlgorithm::AesCtr(value_from_js_object!(AesCtrParams, cx, value).into())
|
|
},
|
|
ALG_AES_GCM => {
|
|
let AlgorithmIdentifier::Object(obj) = algorithm else {
|
|
return Err(Error::Syntax);
|
|
};
|
|
rooted!(in(*cx) let value = ObjectValue(obj.get()));
|
|
KeyWrapAlgorithm::AesGcm(value_from_js_object!(AesGcmParams, cx, value).into())
|
|
},
|
|
_ => return Err(Error::NotSupported),
|
|
};
|
|
|
|
Ok(normalized_algorithm)
|
|
}
|
|
|
|
impl SubtleCrypto {
|
|
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
|
|
fn encrypt_aes_cbc(
|
|
&self,
|
|
params: &SubtleAesCbcParams,
|
|
key: &CryptoKey,
|
|
data: &[u8],
|
|
cx: JSContext,
|
|
handle: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
if params.iv.len() != 16 {
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
let plaintext = Vec::from(data);
|
|
let iv = GenericArray::from_slice(¶ms.iv);
|
|
|
|
let ct = match key.handle() {
|
|
Handle::Aes128(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes128CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
|
|
},
|
|
Handle::Aes192(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes192CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
|
|
},
|
|
Handle::Aes256(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes256CbcEnc::new(key_data, iv).encrypt_padded_vec_mut::<Pkcs7>(&plaintext)
|
|
},
|
|
_ => return Err(Error::Data),
|
|
};
|
|
|
|
create_buffer_source::<ArrayBufferU8>(cx, &ct, handle, can_gc)
|
|
.expect("failed to create buffer source for exported key.");
|
|
|
|
Ok(ct)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
|
|
fn decrypt_aes_cbc(
|
|
&self,
|
|
params: &SubtleAesCbcParams,
|
|
key: &CryptoKey,
|
|
data: &[u8],
|
|
cx: JSContext,
|
|
handle: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
if params.iv.len() != 16 {
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
let mut ciphertext = Vec::from(data);
|
|
let iv = GenericArray::from_slice(¶ms.iv);
|
|
|
|
let plaintext = match key.handle() {
|
|
Handle::Aes128(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes128CbcDec::new(key_data, iv)
|
|
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
|
|
.map_err(|_| Error::Operation)?
|
|
},
|
|
Handle::Aes192(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes192CbcDec::new(key_data, iv)
|
|
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
|
|
.map_err(|_| Error::Operation)?
|
|
},
|
|
Handle::Aes256(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes256CbcDec::new(key_data, iv)
|
|
.decrypt_padded_mut::<Pkcs7>(ciphertext.as_mut_slice())
|
|
.map_err(|_| Error::Operation)?
|
|
},
|
|
_ => return Err(Error::Data),
|
|
};
|
|
|
|
create_buffer_source::<ArrayBufferU8>(cx, plaintext, handle, can_gc)
|
|
.expect("failed to create buffer source for exported key.");
|
|
|
|
Ok(plaintext.to_vec())
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
|
|
fn encrypt_decrypt_aes_ctr(
|
|
&self,
|
|
params: &SubtleAesCtrParams,
|
|
key: &CryptoKey,
|
|
data: &[u8],
|
|
cx: JSContext,
|
|
handle: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
if params.counter.len() != 16 || params.length == 0 || params.length > 128 {
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
let mut ciphertext = Vec::from(data);
|
|
let counter = GenericArray::from_slice(¶ms.counter);
|
|
|
|
match key.handle() {
|
|
Handle::Aes128(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes128Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
|
|
},
|
|
Handle::Aes192(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes192Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
|
|
},
|
|
Handle::Aes256(data) => {
|
|
let key_data = GenericArray::from_slice(data);
|
|
Aes256Ctr::new(key_data, counter).apply_keystream(&mut ciphertext)
|
|
},
|
|
_ => return Err(Error::Data),
|
|
};
|
|
|
|
create_buffer_source::<ArrayBufferU8>(cx, &ciphertext, handle, can_gc)
|
|
.expect("failed to create buffer source for exported key.");
|
|
|
|
Ok(ciphertext)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-gcm-operations>
|
|
fn encrypt_aes_gcm(
|
|
&self,
|
|
params: &SubtleAesGcmParams,
|
|
key: &CryptoKey,
|
|
plaintext: &[u8],
|
|
cx: JSContext,
|
|
handle: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
// Step 1. If plaintext has a length greater than 2^39 - 256 bytes, then throw an OperationError.
|
|
if plaintext.len() as u64 > (2 << 39) - 256 {
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
// Step 2. If the iv member of normalizedAlgorithm has a length greater than 2^64 - 1 bytes,
|
|
// then throw an OperationError.
|
|
// NOTE: servo does not currently support 128-bit platforms, so this can never happen
|
|
|
|
// Step 3. If the additionalData member of normalizedAlgorithm is present and has a length greater than 2^64 - 1
|
|
// bytes, then throw an OperationError.
|
|
if params
|
|
.additional_data
|
|
.as_ref()
|
|
.is_some_and(|data| data.len() > u64::MAX as usize)
|
|
{
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
// Step 4.
|
|
let tag_length = match params.tag_length {
|
|
// If the tagLength member of normalizedAlgorithm is not present:
|
|
None => {
|
|
// Let tagLength be 128.
|
|
128
|
|
},
|
|
// If the tagLength member of normalizedAlgorithm is one of 32, 64, 96, 104, 112, 120 or 128:
|
|
Some(length) if matches!(length, 32 | 64 | 96 | 104 | 112 | 120 | 128) => {
|
|
// Let tagLength be equal to the tagLength member of normalizedAlgorithm
|
|
length
|
|
},
|
|
// Otherwise:
|
|
_ => {
|
|
// throw an OperationError.
|
|
return Err(Error::Operation);
|
|
},
|
|
};
|
|
|
|
// Step 5. Let additionalData be the contents of the additionalData member of normalizedAlgorithm if present
|
|
// or the empty octet string otherwise.
|
|
let additional_data = params.additional_data.as_deref().unwrap_or_default();
|
|
|
|
// Step 6. Let C and T be the outputs that result from performing the Authenticated Encryption Function
|
|
// described in Section 7.1 of [NIST-SP800-38D] using AES as the block cipher, the contents of the iv member
|
|
// of normalizedAlgorithm as the IV input parameter, the contents of additionalData as the A input parameter,
|
|
// tagLength as the t pre-requisite and the contents of plaintext as the input plaintext.
|
|
let key_length = key.handle().as_bytes().len();
|
|
let iv_length = params.iv.len();
|
|
let mut ciphertext = plaintext.to_vec();
|
|
let key_bytes = key.handle().as_bytes();
|
|
let tag = match (key_length, iv_length) {
|
|
(16, 12) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes128Gcm96Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
|
|
},
|
|
(16, 16) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes128Gcm128Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
|
|
},
|
|
(24, 12) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes192Gcm96Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
|
|
},
|
|
(32, 12) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes256Gcm96Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
|
|
},
|
|
(16, 32) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes128Gcm256Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
|
|
},
|
|
(24, 32) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes192Gcm256Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
|
|
},
|
|
(32, 32) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes256Gcm256Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.encrypt_in_place_detached(nonce, additional_data, &mut ciphertext)
|
|
},
|
|
_ => {
|
|
log::warn!(
|
|
"Missing AES-GCM encryption implementation with {key_length}-byte key and {iv_length}-byte IV"
|
|
);
|
|
return Err(Error::NotSupported);
|
|
},
|
|
};
|
|
|
|
// Step 7. Let ciphertext be equal to C | T, where '|' denotes concatenation.
|
|
ciphertext.extend_from_slice(&tag.unwrap()[..tag_length as usize / 8]);
|
|
|
|
// Step 8. Return the result of creating an ArrayBuffer containing ciphertext.
|
|
create_buffer_source::<ArrayBufferU8>(cx, &ciphertext, handle, can_gc)
|
|
.expect("failed to create buffer source for encrypted ciphertext");
|
|
|
|
Ok(ciphertext)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-gcm-operations>
|
|
fn decrypt_aes_gcm(
|
|
&self,
|
|
params: &SubtleAesGcmParams,
|
|
key: &CryptoKey,
|
|
ciphertext: &[u8],
|
|
cx: JSContext,
|
|
handle: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
// Step 1.
|
|
// FIXME: aes_gcm uses a fixed tag length
|
|
let tag_length = match params.tag_length {
|
|
// If the tagLength member of normalizedAlgorithm is not present:
|
|
None => {
|
|
// Let tagLength be 128.
|
|
128
|
|
},
|
|
// If the tagLength member of normalizedAlgorithm is one of 32, 64, 96, 104, 112, 120 or 128:
|
|
Some(length) if matches!(length, 32 | 64 | 96 | 104 | 112 | 120 | 128) => {
|
|
// Let tagLength be equal to the tagLength member of normalizedAlgorithm
|
|
length as usize
|
|
},
|
|
// Otherwise:
|
|
_ => {
|
|
// throw an OperationError.
|
|
return Err(Error::Operation);
|
|
},
|
|
};
|
|
|
|
// Step 2. If ciphertext has a length less than tagLength bits, then throw an OperationError.
|
|
if ciphertext.len() < tag_length / 8 {
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
// Step 3. If the iv member of normalizedAlgorithm has a length greater than 2^64 - 1 bytes,
|
|
// then throw an OperationError.
|
|
// NOTE: servo does not currently support 128-bit platforms, so this can never happen
|
|
|
|
// Step 4. If the additionalData member of normalizedAlgorithm is present and has a length greater than 2^64 - 1
|
|
// bytes, then throw an OperationError.
|
|
// NOTE: servo does not currently support 128-bit platforms, so this can never happen
|
|
|
|
// Step 5. Let tag be the last tagLength bits of ciphertext.
|
|
// Step 6. Let actualCiphertext be the result of removing the last tagLength bits from ciphertext.
|
|
// NOTE: aes_gcm splits the ciphertext for us
|
|
|
|
// Step 7. Let additionalData be the contents of the additionalData member of normalizedAlgorithm if present or
|
|
// the empty octet string otherwise.
|
|
let additional_data = params.additional_data.as_deref().unwrap_or_default();
|
|
|
|
// Step 8. Perform the Authenticated Decryption Function described in Section 7.2 of [NIST-SP800-38D] using AES
|
|
// as the block cipher, the contents of the iv member of normalizedAlgorithm as the IV input parameter, the
|
|
// contents of additionalData as the A input parameter, tagLength as the t pre-requisite, the contents of
|
|
// actualCiphertext as the input ciphertext, C and the contents of tag as the authentication tag, T.
|
|
let mut plaintext = ciphertext.to_vec();
|
|
let key_length = key.handle().as_bytes().len();
|
|
let iv_length = params.iv.len();
|
|
let key_bytes = key.handle().as_bytes();
|
|
let result = match (key_length, iv_length) {
|
|
(16, 12) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes128Gcm96Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.decrypt_in_place(nonce, additional_data, &mut plaintext)
|
|
},
|
|
(16, 16) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes128Gcm128Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.decrypt_in_place(nonce, additional_data, &mut plaintext)
|
|
},
|
|
(24, 12) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes192Gcm96Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.decrypt_in_place(nonce, additional_data, &mut plaintext)
|
|
},
|
|
(32, 12) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes256Gcm96Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.decrypt_in_place(nonce, additional_data, &mut plaintext)
|
|
},
|
|
(16, 32) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes128Gcm256Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.decrypt_in_place(nonce, additional_data, &mut plaintext)
|
|
},
|
|
(24, 32) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes192Gcm256Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.decrypt_in_place(nonce, additional_data, &mut plaintext)
|
|
},
|
|
(32, 32) => {
|
|
let nonce = GenericArray::from_slice(¶ms.iv);
|
|
<Aes256Gcm256Iv>::new_from_slice(key_bytes)
|
|
.expect("key length did not match")
|
|
.decrypt_in_place(nonce, additional_data, &mut plaintext)
|
|
},
|
|
_ => {
|
|
log::warn!(
|
|
"Missing AES-GCM decryption implementation with {key_length}-byte key and {iv_length}-byte IV"
|
|
);
|
|
return Err(Error::NotSupported);
|
|
},
|
|
};
|
|
|
|
// If the result of the algorithm is the indication of inauthenticity, "FAIL":
|
|
if result.is_err() {
|
|
// throw an OperationError
|
|
return Err(Error::Operation);
|
|
}
|
|
// Otherwise:
|
|
// Let plaintext be the output P of the Authenticated Decryption Function.
|
|
|
|
// Step 9. Return the result of creating an ArrayBuffer containing plaintext.
|
|
create_buffer_source::<ArrayBufferU8>(cx, &plaintext, handle, can_gc)
|
|
.expect("failed to create buffer source for decrypted plaintext");
|
|
|
|
Ok(plaintext)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
|
|
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
|
|
/// <https://w3c.github.io/webcrypto/#aes-kw-operations>
|
|
#[allow(unsafe_code)]
|
|
fn generate_key_aes(
|
|
&self,
|
|
usages: Vec<KeyUsage>,
|
|
key_gen_params: &SubtleAesKeyGenParams,
|
|
extractable: bool,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
let mut rand = vec![0; key_gen_params.length as usize / 8];
|
|
self.rng.borrow_mut().fill_bytes(&mut rand);
|
|
let handle = match key_gen_params.length {
|
|
128 => Handle::Aes128(rand),
|
|
192 => Handle::Aes192(rand),
|
|
256 => Handle::Aes256(rand),
|
|
_ => return Err(Error::Operation),
|
|
};
|
|
|
|
match key_gen_params.name.as_str() {
|
|
ALG_AES_CBC | ALG_AES_CTR | ALG_AES_GCM => {
|
|
if usages.iter().any(|usage| {
|
|
!matches!(
|
|
usage,
|
|
KeyUsage::Encrypt |
|
|
KeyUsage::Decrypt |
|
|
KeyUsage::WrapKey |
|
|
KeyUsage::UnwrapKey
|
|
)
|
|
}) || usages.is_empty()
|
|
{
|
|
return Err(Error::Syntax);
|
|
}
|
|
},
|
|
ALG_AES_KW => {
|
|
if usages
|
|
.iter()
|
|
.any(|usage| !matches!(usage, KeyUsage::WrapKey | KeyUsage::UnwrapKey)) ||
|
|
usages.is_empty()
|
|
{
|
|
return Err(Error::Syntax);
|
|
}
|
|
},
|
|
_ => return Err(Error::NotSupported),
|
|
}
|
|
|
|
let name = match key_gen_params.name.as_str() {
|
|
ALG_AES_CBC => DOMString::from(ALG_AES_CBC),
|
|
ALG_AES_CTR => DOMString::from(ALG_AES_CTR),
|
|
ALG_AES_KW => DOMString::from(ALG_AES_KW),
|
|
ALG_AES_GCM => DOMString::from(ALG_AES_GCM),
|
|
_ => return Err(Error::NotSupported),
|
|
};
|
|
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
|
|
assert!(!algorithm_object.is_null());
|
|
|
|
AesKeyAlgorithm::from_name_and_size(
|
|
name.clone(),
|
|
key_gen_params.length,
|
|
algorithm_object.handle_mut(),
|
|
cx,
|
|
);
|
|
|
|
let crypto_key = CryptoKey::new(
|
|
&self.global(),
|
|
KeyType::Secret,
|
|
extractable,
|
|
name,
|
|
algorithm_object.handle(),
|
|
usages,
|
|
handle,
|
|
can_gc,
|
|
);
|
|
|
|
Ok(crypto_key)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#hmac-operations>
|
|
#[allow(unsafe_code)]
|
|
fn generate_key_hmac(
|
|
&self,
|
|
usages: Vec<KeyUsage>,
|
|
params: &SubtleHmacKeyGenParams,
|
|
extractable: bool,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
// Step 1. If usages contains any entry which is not "sign" or "verify", then throw a SyntaxError.
|
|
if usages
|
|
.iter()
|
|
.any(|usage| !matches!(usage, KeyUsage::Sign | KeyUsage::Verify))
|
|
{
|
|
return Err(Error::Syntax);
|
|
}
|
|
|
|
// Step 2.
|
|
let length = match params.length {
|
|
// If the length member of normalizedAlgorithm is not present:
|
|
None => {
|
|
// Let length be the block size in bits of the hash function identified by the
|
|
// hash member of normalizedAlgorithm.
|
|
params.hash.block_size_in_bits() as u32
|
|
},
|
|
// Otherwise, if the length member of normalizedAlgorithm is non-zero:
|
|
Some(length) if length != 0 => {
|
|
// Let length be equal to the length member of normalizedAlgorithm.
|
|
length
|
|
},
|
|
// Otherwise:
|
|
_ => {
|
|
// throw an OperationError.
|
|
return Err(Error::Operation);
|
|
},
|
|
};
|
|
|
|
// Step 3. Generate a key of length length bits.
|
|
let mut key_data = vec![0; length as usize];
|
|
self.rng.borrow_mut().fill_bytes(&mut key_data);
|
|
|
|
// Step 4. If the key generation step fails, then throw an OperationError.
|
|
// NOTE: Our key generation is infallible.
|
|
|
|
// Step 5. Let key be a new CryptoKey object representing the generated key.
|
|
// Step 6. Let algorithm be a new HmacKeyAlgorithm.
|
|
// Step 7. Set the name attribute of algorithm to "HMAC".
|
|
// Step 8. Let hash be a new KeyAlgorithm.
|
|
// Step 9. Set the name attribute of hash to equal the name member of the hash member of normalizedAlgorithm.
|
|
// Step 10. Set the hash attribute of algorithm to hash.
|
|
// Step 11. Set the [[type]] internal slot of key to "secret".
|
|
// Step 12. Set the [[algorithm]] internal slot of key to algorithm.
|
|
// Step 13. Set the [[extractable]] internal slot of key to be extractable.
|
|
// Step 14. Set the [[usages]] internal slot of key to be usages.
|
|
let name = DOMString::from(ALG_HMAC);
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
|
|
assert!(!algorithm_object.is_null());
|
|
HmacKeyAlgorithm::from_length_and_hash(
|
|
length,
|
|
params.hash,
|
|
algorithm_object.handle_mut(),
|
|
cx,
|
|
);
|
|
|
|
let key = CryptoKey::new(
|
|
&self.global(),
|
|
KeyType::Secret,
|
|
extractable,
|
|
name,
|
|
algorithm_object.handle(),
|
|
usages,
|
|
Handle::Hmac(key_data),
|
|
can_gc,
|
|
);
|
|
|
|
// Step 15. Return key.
|
|
Ok(key)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
|
|
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
|
|
#[allow(unsafe_code)]
|
|
fn import_key_aes(
|
|
&self,
|
|
format: KeyFormat,
|
|
data: &[u8],
|
|
extractable: bool,
|
|
usages: Vec<KeyUsage>,
|
|
alg_name: &str,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
if usages.iter().any(|usage| {
|
|
!matches!(
|
|
usage,
|
|
KeyUsage::Encrypt | KeyUsage::Decrypt | KeyUsage::WrapKey | KeyUsage::UnwrapKey
|
|
)
|
|
}) || usages.is_empty()
|
|
{
|
|
return Err(Error::Syntax);
|
|
}
|
|
if !matches!(format, KeyFormat::Raw | KeyFormat::Jwk) {
|
|
return Err(Error::NotSupported);
|
|
}
|
|
let handle = match data.len() * 8 {
|
|
128 => Handle::Aes128(data.to_vec()),
|
|
192 => Handle::Aes192(data.to_vec()),
|
|
256 => Handle::Aes256(data.to_vec()),
|
|
_ => {
|
|
return Err(Error::Data);
|
|
},
|
|
};
|
|
|
|
let name = DOMString::from(alg_name.to_string());
|
|
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut algorithm_object = unsafe { JS_NewObject(*cx, ptr::null()) });
|
|
assert!(!algorithm_object.is_null());
|
|
|
|
AesKeyAlgorithm::from_name_and_size(
|
|
name.clone(),
|
|
(data.len() * 8) as u16,
|
|
algorithm_object.handle_mut(),
|
|
cx,
|
|
);
|
|
let crypto_key = CryptoKey::new(
|
|
&self.global(),
|
|
KeyType::Secret,
|
|
extractable,
|
|
name,
|
|
algorithm_object.handle(),
|
|
usages,
|
|
handle,
|
|
can_gc,
|
|
);
|
|
|
|
Ok(crypto_key)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-cbc-operations>
|
|
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
|
|
fn export_key_aes(&self, format: KeyFormat, key: &CryptoKey) -> Result<AesExportedKey, Error> {
|
|
match format {
|
|
KeyFormat::Raw => match key.handle() {
|
|
Handle::Aes128(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
|
|
Handle::Aes192(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
|
|
Handle::Aes256(key_data) => Ok(AesExportedKey::Raw(key_data.as_slice().to_vec())),
|
|
_ => Err(Error::Data),
|
|
},
|
|
KeyFormat::Jwk => {
|
|
let (alg, k) = match key.handle() {
|
|
Handle::Aes128(key_data) => {
|
|
data_to_jwk_params(key.algorithm().as_str(), "128", key_data.as_slice())
|
|
},
|
|
Handle::Aes192(key_data) => {
|
|
data_to_jwk_params(key.algorithm().as_str(), "192", key_data.as_slice())
|
|
},
|
|
Handle::Aes256(key_data) => {
|
|
data_to_jwk_params(key.algorithm().as_str(), "256", key_data.as_slice())
|
|
},
|
|
_ => return Err(Error::Data),
|
|
};
|
|
let key_ops = key
|
|
.usages()
|
|
.iter()
|
|
.map(|usage| DOMString::from(usage.as_str()))
|
|
.collect::<Vec<DOMString>>();
|
|
let jwk = JsonWebKey {
|
|
alg: Some(alg),
|
|
crv: None,
|
|
d: None,
|
|
dp: None,
|
|
dq: None,
|
|
e: None,
|
|
ext: Some(key.Extractable()),
|
|
k: Some(k),
|
|
key_ops: Some(key_ops),
|
|
kty: Some(DOMString::from("oct")),
|
|
n: None,
|
|
oth: None,
|
|
p: None,
|
|
q: None,
|
|
qi: None,
|
|
use_: None,
|
|
x: None,
|
|
y: None,
|
|
};
|
|
Ok(AesExportedKey::Jwk(Box::new(jwk)))
|
|
},
|
|
_ => Err(Error::NotSupported),
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#hkdf-operations>
|
|
#[allow(unsafe_code)]
|
|
fn import_key_hkdf(
|
|
&self,
|
|
format: KeyFormat,
|
|
data: &[u8],
|
|
extractable: bool,
|
|
usages: Vec<KeyUsage>,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
// Step 1. Let keyData be the key data to be imported.
|
|
// Step 2. If format is "raw":
|
|
if format == KeyFormat::Raw {
|
|
// Step 1. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
|
|
if usages
|
|
.iter()
|
|
.any(|usage| !matches!(usage, KeyUsage::DeriveKey | KeyUsage::DeriveBits)) ||
|
|
usages.is_empty()
|
|
{
|
|
return Err(Error::Syntax);
|
|
}
|
|
|
|
// Step 2. If extractable is not false, then throw a SyntaxError.
|
|
if extractable {
|
|
return Err(Error::Syntax);
|
|
}
|
|
|
|
// Step 3. Let key be a new CryptoKey representing the key data provided in keyData.
|
|
// Step 4. Set the [[type]] internal slot of key to "secret".
|
|
// Step 5. Let algorithm be a new KeyAlgorithm object.
|
|
// Step 6. Set the name attribute of algorithm to "HKDF".
|
|
// Step 7. Set the [[algorithm]] internal slot of key to algorithm.
|
|
let name = DOMString::from(ALG_HKDF);
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
|
|
assert!(!algorithm_object.is_null());
|
|
KeyAlgorithm::from_name(name.clone(), algorithm_object.handle_mut(), cx);
|
|
|
|
let key = CryptoKey::new(
|
|
&self.global(),
|
|
KeyType::Secret,
|
|
extractable,
|
|
name,
|
|
algorithm_object.handle(),
|
|
usages,
|
|
Handle::Hkdf(data.to_vec()),
|
|
can_gc,
|
|
);
|
|
|
|
// Step 8. Return key.
|
|
Ok(key)
|
|
} else {
|
|
// throw a NotSupportedError.
|
|
Err(Error::NotSupported)
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#hmac-operations>
|
|
#[allow(unsafe_code)]
|
|
fn import_key_hmac(
|
|
&self,
|
|
normalized_algorithm: &SubtleHmacImportParams,
|
|
format: KeyFormat,
|
|
key_data: &[u8],
|
|
extractable: bool,
|
|
usages: Vec<KeyUsage>,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
// Step 1. Let keyData be the key data to be imported.
|
|
// Step 2. If usages contains an entry which is not "sign" or "verify", then throw a SyntaxError.
|
|
// Note: This is not explicitly spec'ed, but also throw a SyntaxError if usages is empty
|
|
if usages
|
|
.iter()
|
|
.any(|usage| !matches!(usage, KeyUsage::Sign | KeyUsage::Verify)) ||
|
|
usages.is_empty()
|
|
{
|
|
return Err(Error::Syntax);
|
|
}
|
|
|
|
// Step 3. Let hash be a new KeyAlgorithm.
|
|
let hash;
|
|
|
|
// Step 4.
|
|
let data;
|
|
match format {
|
|
// Key data has already been extracted in the case of JWK,
|
|
// so both raw and jwk can be treated the same here.
|
|
KeyFormat::Raw | KeyFormat::Jwk => {
|
|
// Step 4.1 Let data be the octet string contained in keyData.
|
|
data = key_data.to_vec();
|
|
|
|
// Step 4.2 Set hash to equal the hash member of normalizedAlgorithm.
|
|
hash = normalized_algorithm.hash;
|
|
},
|
|
// Otherwise:
|
|
_ => {
|
|
// throw a NotSupportedError.
|
|
return Err(Error::NotSupported);
|
|
},
|
|
}
|
|
|
|
// Step 5. Let length be equivalent to the length, in octets, of data, multiplied by 8.
|
|
let mut length = data.len() as u32 * 8;
|
|
|
|
// Step 6. If length is zero then throw a DataError.
|
|
if length == 0 {
|
|
return Err(Error::Data);
|
|
}
|
|
|
|
// Step 7. If the length member of normalizedAlgorithm is present:
|
|
if let Some(given_length) = normalized_algorithm.length {
|
|
// If the length member of normalizedAlgorithm is greater than length:
|
|
if given_length > length {
|
|
// throw a DataError.
|
|
return Err(Error::Data);
|
|
}
|
|
// Otherwise:
|
|
else {
|
|
// Set length equal to the length member of normalizedAlgorithm.
|
|
length = given_length;
|
|
}
|
|
}
|
|
|
|
// Step 8. Let key be a new CryptoKey object representing an HMAC key with the first length bits of data.
|
|
// Step 9. Set the [[type]] internal slot of key to "secret".
|
|
// Step 10. Let algorithm be a new HmacKeyAlgorithm.
|
|
// Step 11. Set the name attribute of algorithm to "HMAC".
|
|
// Step 12. Set the length attribute of algorithm to length.
|
|
// Step 13. Set the hash attribute of algorithm to hash.
|
|
// Step 14. Set the [[algorithm]] internal slot of key to algorithm.
|
|
let truncated_data = data[..length as usize / 8].to_vec();
|
|
let name = DOMString::from(ALG_HMAC);
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut algorithm_object = unsafe { JS_NewObject(*cx, ptr::null()) });
|
|
assert!(!algorithm_object.is_null());
|
|
HmacKeyAlgorithm::from_length_and_hash(length, hash, algorithm_object.handle_mut(), cx);
|
|
|
|
let key = CryptoKey::new(
|
|
&self.global(),
|
|
KeyType::Secret,
|
|
extractable,
|
|
name,
|
|
algorithm_object.handle(),
|
|
usages,
|
|
Handle::Hmac(truncated_data),
|
|
can_gc,
|
|
);
|
|
|
|
// Step 15. Return key.
|
|
Ok(key)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-kw-operations>
|
|
fn wrap_key_aes_kw(
|
|
&self,
|
|
wrapping_key: &CryptoKey,
|
|
bytes: &[u8],
|
|
cx: JSContext,
|
|
handle: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
// Step 1. If plaintext is not a multiple of 64 bits in length, then throw an OperationError.
|
|
if bytes.len() % 8 != 0 {
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
// Step 2. Let ciphertext be the result of performing the Key Wrap operation described in Section 2.2.1
|
|
// of [RFC3394] with plaintext as the plaintext to be wrapped and using the default Initial Value
|
|
// defined in Section 2.2.3.1 of the same document.
|
|
let wrapped_key = match wrapping_key.handle() {
|
|
Handle::Aes128(key_data) => {
|
|
let key_array = GenericArray::from_slice(key_data.as_slice());
|
|
let kek = KekAes128::new(key_array);
|
|
match kek.wrap_vec(bytes) {
|
|
Ok(key) => key,
|
|
Err(_) => return Err(Error::Operation),
|
|
}
|
|
},
|
|
Handle::Aes192(key_data) => {
|
|
let key_array = GenericArray::from_slice(key_data.as_slice());
|
|
let kek = KekAes192::new(key_array);
|
|
match kek.wrap_vec(bytes) {
|
|
Ok(key) => key,
|
|
Err(_) => return Err(Error::Operation),
|
|
}
|
|
},
|
|
Handle::Aes256(key_data) => {
|
|
let key_array = GenericArray::from_slice(key_data.as_slice());
|
|
let kek = KekAes256::new(key_array);
|
|
match kek.wrap_vec(bytes) {
|
|
Ok(key) => key,
|
|
Err(_) => return Err(Error::Operation),
|
|
}
|
|
},
|
|
_ => return Err(Error::Operation),
|
|
};
|
|
|
|
create_buffer_source::<ArrayBufferU8>(cx, &wrapped_key, handle, can_gc)
|
|
.expect("failed to create buffer source for wrapped key.");
|
|
|
|
// 3. Return ciphertext.
|
|
Ok(wrapped_key)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-kw-operations>
|
|
fn unwrap_key_aes_kw(
|
|
&self,
|
|
wrapping_key: &CryptoKey,
|
|
bytes: &[u8],
|
|
cx: JSContext,
|
|
handle: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
// Step 1. Let plaintext be the result of performing the Key Unwrap operation described in Section 2.2.2
|
|
// of [RFC3394] with ciphertext as the input ciphertext and using the default Initial Value defined
|
|
// in Section 2.2.3.1 of the same document.
|
|
// Step 2. If the Key Unwrap operation returns an error, then throw an OperationError.
|
|
let unwrapped_key = match wrapping_key.handle() {
|
|
Handle::Aes128(key_data) => {
|
|
let key_array = GenericArray::from_slice(key_data.as_slice());
|
|
let kek = KekAes128::new(key_array);
|
|
match kek.unwrap_vec(bytes) {
|
|
Ok(key) => key,
|
|
Err(_) => return Err(Error::Operation),
|
|
}
|
|
},
|
|
Handle::Aes192(key_data) => {
|
|
let key_array = GenericArray::from_slice(key_data.as_slice());
|
|
let kek = KekAes192::new(key_array);
|
|
match kek.unwrap_vec(bytes) {
|
|
Ok(key) => key,
|
|
Err(_) => return Err(Error::Operation),
|
|
}
|
|
},
|
|
Handle::Aes256(key_data) => {
|
|
let key_array = GenericArray::from_slice(key_data.as_slice());
|
|
let kek = KekAes256::new(key_array);
|
|
match kek.unwrap_vec(bytes) {
|
|
Ok(key) => key,
|
|
Err(_) => return Err(Error::Operation),
|
|
}
|
|
},
|
|
_ => return Err(Error::Operation),
|
|
};
|
|
|
|
create_buffer_source::<ArrayBufferU8>(cx, &unwrapped_key, handle, can_gc)
|
|
.expect("failed to create buffer source for unwrapped key.");
|
|
|
|
// 3. Return plaintext.
|
|
Ok(unwrapped_key)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#pbkdf2-operations>
|
|
#[allow(unsafe_code)]
|
|
fn import_key_pbkdf2(
|
|
&self,
|
|
format: KeyFormat,
|
|
data: &[u8],
|
|
extractable: bool,
|
|
usages: Vec<KeyUsage>,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
// Step 1. If format is not "raw", throw a NotSupportedError
|
|
if format != KeyFormat::Raw {
|
|
return Err(Error::NotSupported);
|
|
}
|
|
|
|
// Step 2. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError.
|
|
if usages
|
|
.iter()
|
|
.any(|usage| !matches!(usage, KeyUsage::DeriveKey | KeyUsage::DeriveBits)) ||
|
|
usages.is_empty()
|
|
{
|
|
return Err(Error::Syntax);
|
|
}
|
|
|
|
// Step 3. If extractable is not false, then throw a SyntaxError.
|
|
if extractable {
|
|
return Err(Error::Syntax);
|
|
}
|
|
|
|
// Step 4. Let key be a new CryptoKey representing keyData.
|
|
// Step 5. Set the [[type]] internal slot of key to "secret".
|
|
// Step 6. Let algorithm be a new KeyAlgorithm object.
|
|
// Step 7. Set the name attribute of algorithm to "PBKDF2".
|
|
// Step 8. Set the [[algorithm]] internal slot of key to algorithm.
|
|
let name = DOMString::from(ALG_PBKDF2);
|
|
let cx = GlobalScope::get_cx();
|
|
rooted!(in(*cx) let mut algorithm_object = unsafe {JS_NewObject(*cx, ptr::null()) });
|
|
assert!(!algorithm_object.is_null());
|
|
KeyAlgorithm::from_name(name.clone(), algorithm_object.handle_mut(), cx);
|
|
|
|
let key = CryptoKey::new(
|
|
&self.global(),
|
|
KeyType::Secret,
|
|
extractable,
|
|
name,
|
|
algorithm_object.handle(),
|
|
usages,
|
|
Handle::Pbkdf2(data.to_vec()),
|
|
can_gc,
|
|
);
|
|
|
|
// Step 9. Return key.
|
|
Ok(key)
|
|
}
|
|
}
|
|
|
|
pub(crate) enum AesExportedKey {
|
|
Raw(Vec<u8>),
|
|
Jwk(Box<JsonWebKey>),
|
|
}
|
|
|
|
fn data_to_jwk_params(alg: &str, size: &str, key: &[u8]) -> (DOMString, DOMString) {
|
|
let jwk_alg = match alg {
|
|
ALG_AES_CBC => DOMString::from(format!("A{}CBC", size)),
|
|
ALG_AES_CTR => DOMString::from(format!("A{}CTR", size)),
|
|
ALG_AES_KW => DOMString::from(format!("A{}KW", size)),
|
|
ALG_AES_GCM => DOMString::from(format!("A{}GCM", size)),
|
|
_ => unreachable!(),
|
|
};
|
|
let data = base64::engine::general_purpose::STANDARD_NO_PAD.encode(key);
|
|
(jwk_alg, DOMString::from(data))
|
|
}
|
|
|
|
trait AlgorithmFromName {
|
|
fn from_name(name: DOMString, out: MutableHandleObject, cx: JSContext);
|
|
}
|
|
|
|
impl AlgorithmFromName for KeyAlgorithm {
|
|
/// Fill the object referenced by `out` with an [KeyAlgorithm]
|
|
/// of the specified name and size.
|
|
#[allow(unsafe_code)]
|
|
fn from_name(name: DOMString, out: MutableHandleObject, cx: JSContext) {
|
|
let key_algorithm = Self { name };
|
|
|
|
unsafe {
|
|
key_algorithm.to_jsobject(*cx, out);
|
|
}
|
|
}
|
|
}
|
|
|
|
trait AlgorithmFromLengthAndHash {
|
|
fn from_length_and_hash(
|
|
length: u32,
|
|
hash: DigestAlgorithm,
|
|
out: MutableHandleObject,
|
|
cx: JSContext,
|
|
);
|
|
}
|
|
|
|
impl AlgorithmFromLengthAndHash for HmacKeyAlgorithm {
|
|
#[allow(unsafe_code)]
|
|
fn from_length_and_hash(
|
|
length: u32,
|
|
hash: DigestAlgorithm,
|
|
out: MutableHandleObject,
|
|
cx: JSContext,
|
|
) {
|
|
let hmac_key_algorithm = Self {
|
|
parent: KeyAlgorithm {
|
|
name: ALG_HMAC.into(),
|
|
},
|
|
length,
|
|
hash: KeyAlgorithm { name: hash.name() },
|
|
};
|
|
|
|
unsafe {
|
|
hmac_key_algorithm.to_jsobject(*cx, out);
|
|
}
|
|
}
|
|
}
|
|
|
|
trait AlgorithmFromNameAndSize {
|
|
fn from_name_and_size(name: DOMString, size: u16, out: MutableHandleObject, cx: JSContext);
|
|
}
|
|
|
|
impl AlgorithmFromNameAndSize for AesKeyAlgorithm {
|
|
/// Fill the object referenced by `out` with an [AesKeyAlgorithm]
|
|
/// of the specified name and size.
|
|
#[allow(unsafe_code)]
|
|
fn from_name_and_size(name: DOMString, size: u16, out: MutableHandleObject, cx: JSContext) {
|
|
let key_algorithm = Self {
|
|
parent: KeyAlgorithm { name },
|
|
length: size,
|
|
};
|
|
|
|
unsafe {
|
|
key_algorithm.to_jsobject(*cx, out);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl SubtleHkdfParams {
|
|
/// <https://w3c.github.io/webcrypto/#hkdf-operations>
|
|
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
|
|
// Step 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
|
|
let Some(length) = length else {
|
|
return Err(Error::Operation);
|
|
};
|
|
if length == 0 || length % 8 != 0 {
|
|
return Err(Error::Operation);
|
|
};
|
|
|
|
// Step 3. Let keyDerivationKey be the secret represented by [[handle]] internal slot of key.
|
|
let key_derivation_key = key.handle().as_bytes();
|
|
|
|
// Step 4. Let result be the result of performing the HKDF extract and then the HKDF expand step described
|
|
// in Section 2 of [RFC5869] using:
|
|
// * the hash member of normalizedAlgorithm as Hash,
|
|
// * keyDerivationKey as the input keying material, IKM,
|
|
// * the contents of the salt member of normalizedAlgorithm as salt,
|
|
// * the contents of the info member of normalizedAlgorithm as info,
|
|
// * length divided by 8 as the value of L,
|
|
let mut result = vec![0; length as usize / 8];
|
|
let algorithm = match self.hash {
|
|
DigestAlgorithm::Sha1 => hkdf::HKDF_SHA1_FOR_LEGACY_USE_ONLY,
|
|
DigestAlgorithm::Sha256 => hkdf::HKDF_SHA256,
|
|
DigestAlgorithm::Sha384 => hkdf::HKDF_SHA384,
|
|
DigestAlgorithm::Sha512 => hkdf::HKDF_SHA512,
|
|
};
|
|
let salt = hkdf::Salt::new(algorithm, &self.salt);
|
|
let info = self.info.as_slice();
|
|
let pseudo_random_key = salt.extract(key_derivation_key);
|
|
|
|
let Ok(output_key_material) =
|
|
pseudo_random_key.expand(std::slice::from_ref(&info), algorithm)
|
|
else {
|
|
// Step 5. If the key derivation operation fails, then throw an OperationError.
|
|
return Err(Error::Operation);
|
|
};
|
|
|
|
if output_key_material.fill(&mut result).is_err() {
|
|
return Err(Error::Operation);
|
|
};
|
|
|
|
// Step 6. Return the result of creating an ArrayBuffer containing result.
|
|
// NOTE: The ArrayBuffer is created by the caller
|
|
Ok(result)
|
|
}
|
|
}
|
|
|
|
impl SubtlePbkdf2Params {
|
|
/// <https://w3c.github.io/webcrypto/#pbkdf2-operations>
|
|
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
|
|
// Step 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError.
|
|
let Some(length) = length else {
|
|
return Err(Error::Operation);
|
|
};
|
|
if length == 0 || length % 8 != 0 {
|
|
return Err(Error::Operation);
|
|
};
|
|
|
|
// Step 2. If the iterations member of normalizedAlgorithm is zero, then throw an OperationError.
|
|
let Ok(iterations) = NonZero::<u32>::try_from(self.iterations) else {
|
|
return Err(Error::Operation);
|
|
};
|
|
|
|
// Step 3. Let prf be the MAC Generation function described in Section 4 of [FIPS-198-1]
|
|
// using the hash function described by the hash member of normalizedAlgorithm.
|
|
let prf = match self.hash {
|
|
DigestAlgorithm::Sha1 => pbkdf2::PBKDF2_HMAC_SHA1,
|
|
DigestAlgorithm::Sha256 => pbkdf2::PBKDF2_HMAC_SHA256,
|
|
DigestAlgorithm::Sha384 => pbkdf2::PBKDF2_HMAC_SHA384,
|
|
DigestAlgorithm::Sha512 => pbkdf2::PBKDF2_HMAC_SHA512,
|
|
};
|
|
|
|
// Step 4. Let result be the result of performing the PBKDF2 operation defined in Section 5.2 of [RFC8018] using
|
|
// prf as the pseudo-random function, PRF, the password represented by [[handle]] internal slot of key as
|
|
// the password, P, the contents of the salt attribute of normalizedAlgorithm as the salt, S, the value of
|
|
// the iterations attribute of normalizedAlgorithm as the iteration count, c, and length divided by 8 as the
|
|
// intended key length, dkLen.
|
|
let mut result = vec![0; length as usize / 8];
|
|
pbkdf2::derive(
|
|
prf,
|
|
iterations,
|
|
&self.salt,
|
|
key.handle().as_bytes(),
|
|
&mut result,
|
|
);
|
|
|
|
// Step 5. If the key derivation operation fails, then throw an OperationError.
|
|
// TODO: Investigate when key derivation can fail and how ring handles that case
|
|
// (pbkdf2::derive does not return a Result type)
|
|
|
|
// Step 6. Return result
|
|
Ok(result)
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#aes-ctr-operations>
|
|
fn get_key_length_for_aes(length: u16) -> Result<u32, Error> {
|
|
// Step 1. If the length member of normalizedDerivedKeyAlgorithm is not 128, 192 or 256,
|
|
// then throw an OperationError.
|
|
if !matches!(length, 128 | 192 | 256) {
|
|
return Err(Error::Operation);
|
|
}
|
|
|
|
// Step 2. Return the length member of normalizedDerivedKeyAlgorithm.
|
|
Ok(length as u32)
|
|
}
|
|
|
|
impl GetKeyLengthAlgorithm {
|
|
fn get_key_length(&self) -> Result<u32, Error> {
|
|
match self {
|
|
Self::Aes(length) => get_key_length_for_aes(*length),
|
|
Self::Hmac(params) => params.get_key_length(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl DigestAlgorithm {
|
|
/// <https://w3c.github.io/webcrypto/#dom-algorithm-name>
|
|
fn name(&self) -> DOMString {
|
|
match self {
|
|
Self::Sha1 => ALG_SHA1,
|
|
Self::Sha256 => ALG_SHA256,
|
|
Self::Sha384 => ALG_SHA384,
|
|
Self::Sha512 => ALG_SHA512,
|
|
}
|
|
.into()
|
|
}
|
|
|
|
fn digest(&self, data: &[u8]) -> Result<impl AsRef<[u8]>, Error> {
|
|
let algorithm = match self {
|
|
Self::Sha1 => &digest::SHA1_FOR_LEGACY_USE_ONLY,
|
|
Self::Sha256 => &digest::SHA256,
|
|
Self::Sha384 => &digest::SHA384,
|
|
Self::Sha512 => &digest::SHA512,
|
|
};
|
|
Ok(digest::digest(algorithm, data))
|
|
}
|
|
|
|
fn block_size_in_bits(&self) -> usize {
|
|
match self {
|
|
Self::Sha1 => 160,
|
|
Self::Sha256 => 256,
|
|
Self::Sha384 => 384,
|
|
Self::Sha512 => 512,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ImportKeyAlgorithm {
|
|
fn import_key(
|
|
&self,
|
|
subtle: &SubtleCrypto,
|
|
format: KeyFormat,
|
|
secret: &[u8],
|
|
extractable: bool,
|
|
key_usages: Vec<KeyUsage>,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
match self {
|
|
Self::AesCbc => {
|
|
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_CBC, can_gc)
|
|
},
|
|
Self::AesCtr => {
|
|
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_CTR, can_gc)
|
|
},
|
|
Self::AesKw => {
|
|
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_KW, can_gc)
|
|
},
|
|
Self::AesGcm => {
|
|
subtle.import_key_aes(format, secret, extractable, key_usages, ALG_AES_GCM, can_gc)
|
|
},
|
|
Self::Hmac(params) => {
|
|
subtle.import_key_hmac(params, format, secret, extractable, key_usages, can_gc)
|
|
},
|
|
Self::Pbkdf2 => {
|
|
subtle.import_key_pbkdf2(format, secret, extractable, key_usages, can_gc)
|
|
},
|
|
Self::Hkdf => subtle.import_key_hkdf(format, secret, extractable, key_usages, can_gc),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl DeriveBitsAlgorithm {
|
|
fn derive_bits(&self, key: &CryptoKey, length: Option<u32>) -> Result<Vec<u8>, Error> {
|
|
match self {
|
|
Self::Pbkdf2(pbkdf2_params) => pbkdf2_params.derive_bits(key, length),
|
|
Self::Hkdf(hkdf_params) => hkdf_params.derive_bits(key, length),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl EncryptionAlgorithm {
|
|
/// <https://w3c.github.io/webcrypto/#dom-algorithm-name>
|
|
fn name(&self) -> &str {
|
|
match self {
|
|
Self::AesCbc(params) => ¶ms.name,
|
|
Self::AesCtr(params) => ¶ms.name,
|
|
Self::AesGcm(params) => ¶ms.name,
|
|
}
|
|
}
|
|
|
|
// FIXME: This doesn't really need the "SubtleCrypto" argument
|
|
fn encrypt(
|
|
&self,
|
|
subtle: &SubtleCrypto,
|
|
key: &CryptoKey,
|
|
data: &[u8],
|
|
cx: JSContext,
|
|
result: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
match self {
|
|
Self::AesCbc(params) => subtle.encrypt_aes_cbc(params, key, data, cx, result, can_gc),
|
|
Self::AesCtr(params) => {
|
|
subtle.encrypt_decrypt_aes_ctr(params, key, data, cx, result, can_gc)
|
|
},
|
|
Self::AesGcm(params) => subtle.encrypt_aes_gcm(params, key, data, cx, result, can_gc),
|
|
}
|
|
}
|
|
|
|
// FIXME: This doesn't really need the "SubtleCrypto" argument
|
|
fn decrypt(
|
|
&self,
|
|
subtle: &SubtleCrypto,
|
|
key: &CryptoKey,
|
|
data: &[u8],
|
|
cx: JSContext,
|
|
result: MutableHandleObject,
|
|
can_gc: CanGc,
|
|
) -> Result<Vec<u8>, Error> {
|
|
match self {
|
|
Self::AesCbc(params) => subtle.decrypt_aes_cbc(params, key, data, cx, result, can_gc),
|
|
Self::AesCtr(params) => {
|
|
subtle.encrypt_decrypt_aes_ctr(params, key, data, cx, result, can_gc)
|
|
},
|
|
Self::AesGcm(params) => subtle.decrypt_aes_gcm(params, key, data, cx, result, can_gc),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl SignatureAlgorithm {
|
|
fn name(&self) -> &str {
|
|
match self {
|
|
Self::Hmac => ALG_HMAC,
|
|
}
|
|
}
|
|
|
|
fn sign(&self, cx: JSContext, key: &CryptoKey, data: &[u8]) -> Result<Vec<u8>, Error> {
|
|
match self {
|
|
Self::Hmac => sign_hmac(cx, key, data).map(|s| s.as_ref().to_vec()),
|
|
}
|
|
}
|
|
|
|
fn verify(
|
|
&self,
|
|
cx: JSContext,
|
|
key: &CryptoKey,
|
|
data: &[u8],
|
|
signature: &[u8],
|
|
) -> Result<bool, Error> {
|
|
match self {
|
|
Self::Hmac => verify_hmac(cx, key, data, signature),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl KeyGenerationAlgorithm {
|
|
// FIXME: This doesn't really need the "SubtleCrypto" argument
|
|
fn generate_key(
|
|
&self,
|
|
subtle: &SubtleCrypto,
|
|
usages: Vec<KeyUsage>,
|
|
extractable: bool,
|
|
can_gc: CanGc,
|
|
) -> Result<DomRoot<CryptoKey>, Error> {
|
|
match self {
|
|
Self::Aes(params) => subtle.generate_key_aes(usages, params, extractable, can_gc),
|
|
Self::Hmac(params) => subtle.generate_key_hmac(usages, params, extractable, can_gc),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#hmac-operations>
|
|
fn sign_hmac(cx: JSContext, key: &CryptoKey, data: &[u8]) -> Result<impl AsRef<[u8]>, Error> {
|
|
// Step 1. Let mac be the result of performing the MAC Generation operation described in Section 4 of [FIPS-198-1]
|
|
// using the key represented by [[handle]] internal slot of key, the hash function identified by the hash attribute
|
|
// of the [[algorithm]] internal slot of key and message as the input data text.
|
|
rooted!(in(*cx) let mut algorithm_slot = ObjectValue(key.Algorithm(cx).as_ptr()));
|
|
let params = value_from_js_object!(HmacKeyAlgorithm, cx, algorithm_slot);
|
|
|
|
let hash_algorithm = match params.hash.name.str() {
|
|
ALG_SHA1 => hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
|
|
ALG_SHA256 => hmac::HMAC_SHA256,
|
|
ALG_SHA384 => hmac::HMAC_SHA384,
|
|
ALG_SHA512 => hmac::HMAC_SHA512,
|
|
_ => return Err(Error::NotSupported),
|
|
};
|
|
|
|
let sign_key = hmac::Key::new(hash_algorithm, key.handle().as_bytes());
|
|
let mac = hmac::sign(&sign_key, data);
|
|
|
|
// Step 2. Return the result of creating an ArrayBuffer containing mac.
|
|
// NOTE: This is done by the caller
|
|
Ok(mac)
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#hmac-operations>
|
|
fn verify_hmac(
|
|
cx: JSContext,
|
|
key: &CryptoKey,
|
|
data: &[u8],
|
|
signature: &[u8],
|
|
) -> Result<bool, Error> {
|
|
// Step 1. Let mac be the result of performing the MAC Generation operation described in Section 4 of [FIPS-198-1]
|
|
// using the key represented by [[handle]] internal slot of key, the hash function identified by the hash attribute
|
|
// of the [[algorithm]] internal slot of key and message as the input data text.
|
|
let mac = sign_hmac(cx, key, data)?;
|
|
|
|
// Step 2. Return true if mac is equal to signature and false otherwise.
|
|
let is_valid = mac.as_ref() == signature;
|
|
Ok(is_valid)
|
|
}
|
|
|
|
impl KeyWrapAlgorithm {
|
|
/// <https://w3c.github.io/webcrypto/#dom-algorithm-name>
|
|
fn name(&self) -> &str {
|
|
match self {
|
|
Self::AesKw => ALG_AES_KW,
|
|
Self::AesCbc(key_gen_params) => &key_gen_params.name,
|
|
Self::AesCtr(key_gen_params) => &key_gen_params.name,
|
|
Self::AesGcm(_) => ALG_AES_GCM,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <https://w3c.github.io/webcrypto/#concept-parse-a-jwk>
|
|
fn parse_jwk(
|
|
bytes: &[u8],
|
|
import_alg: ImportKeyAlgorithm,
|
|
extractable: bool,
|
|
key_usages: &[KeyUsage],
|
|
) -> Result<Vec<u8>, Error> {
|
|
let value = serde_json::from_slice(bytes)
|
|
.map_err(|_| Error::Type("Failed to parse JWK string".into()))?;
|
|
let serde_json::Value::Object(obj) = value else {
|
|
return Err(Error::Data);
|
|
};
|
|
|
|
let kty = get_jwk_string(&obj, "kty")?;
|
|
let ext = get_jwk_bool(&obj, "ext")?;
|
|
if !ext && extractable {
|
|
return Err(Error::Data);
|
|
}
|
|
|
|
// If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK]
|
|
// or does not contain all of the specified usages values, then throw a DataError.
|
|
if let Some(serde_json::Value::Array(key_ops)) = obj.get("key_ops") {
|
|
if key_ops.iter().any(|op| {
|
|
let op_string = match op {
|
|
serde_json::Value::String(op_string) => op_string,
|
|
_ => return true,
|
|
};
|
|
let usage = match usage_from_str(op_string) {
|
|
Ok(usage) => usage,
|
|
Err(_) => {
|
|
return true;
|
|
},
|
|
};
|
|
!key_usages.contains(&usage)
|
|
}) {
|
|
return Err(Error::Data);
|
|
}
|
|
}
|
|
|
|
match import_alg {
|
|
ImportKeyAlgorithm::AesCbc |
|
|
ImportKeyAlgorithm::AesCtr |
|
|
ImportKeyAlgorithm::AesKw |
|
|
ImportKeyAlgorithm::AesGcm => {
|
|
if kty != "oct" {
|
|
return Err(Error::Data);
|
|
}
|
|
let k = get_jwk_string(&obj, "k")?;
|
|
let alg = get_jwk_string(&obj, "alg")?;
|
|
|
|
let data = base64::engine::general_purpose::STANDARD_NO_PAD
|
|
.decode(k.as_bytes())
|
|
.map_err(|_| Error::Data)?;
|
|
|
|
let expected_alg = match (data.len() * 8, &import_alg) {
|
|
(128, ImportKeyAlgorithm::AesCbc) => "A128CBC",
|
|
(128, ImportKeyAlgorithm::AesCtr) => "A128CTR",
|
|
(128, ImportKeyAlgorithm::AesKw) => "A128KW",
|
|
(128, ImportKeyAlgorithm::AesGcm) => "A128GCM",
|
|
(192, ImportKeyAlgorithm::AesCbc) => "A192CBC",
|
|
(192, ImportKeyAlgorithm::AesCtr) => "A192CTR",
|
|
(192, ImportKeyAlgorithm::AesKw) => "A192KW",
|
|
(192, ImportKeyAlgorithm::AesGcm) => "A192GCM",
|
|
(256, ImportKeyAlgorithm::AesCbc) => "A256CBC",
|
|
(256, ImportKeyAlgorithm::AesCtr) => "A256CTR",
|
|
(256, ImportKeyAlgorithm::AesKw) => "A256KW",
|
|
(256, ImportKeyAlgorithm::AesGcm) => "A256GCM",
|
|
_ => return Err(Error::Data),
|
|
};
|
|
|
|
if alg != expected_alg {
|
|
return Err(Error::Data);
|
|
}
|
|
|
|
if let Some(serde_json::Value::String(use_)) = obj.get("use") {
|
|
if use_ != "enc" {
|
|
return Err(Error::Data);
|
|
}
|
|
}
|
|
|
|
Ok(data)
|
|
},
|
|
ImportKeyAlgorithm::Hmac(params) => {
|
|
if kty != "oct" {
|
|
return Err(Error::Data);
|
|
}
|
|
let k = get_jwk_string(&obj, "k")?;
|
|
let alg = get_jwk_string(&obj, "alg")?;
|
|
|
|
let expected_alg = match params.hash {
|
|
DigestAlgorithm::Sha1 => "HS1",
|
|
DigestAlgorithm::Sha256 => "HS256",
|
|
DigestAlgorithm::Sha384 => "HS384",
|
|
DigestAlgorithm::Sha512 => "HS512",
|
|
};
|
|
|
|
if alg != expected_alg {
|
|
return Err(Error::Data);
|
|
}
|
|
|
|
if let Some(serde_json::Value::String(use_)) = obj.get("use") {
|
|
if use_ != "sign" {
|
|
return Err(Error::Data);
|
|
}
|
|
}
|
|
|
|
base64::engine::general_purpose::STANDARD_NO_PAD
|
|
.decode(k.as_bytes())
|
|
.map_err(|_| Error::Data)
|
|
},
|
|
_ => Err(Error::NotSupported),
|
|
}
|
|
}
|
|
|
|
fn get_jwk_string(
|
|
value: &serde_json::Map<String, serde_json::Value>,
|
|
key: &str,
|
|
) -> Result<String, Error> {
|
|
let s = value
|
|
.get(key)
|
|
.ok_or(Error::Data)?
|
|
.as_str()
|
|
.ok_or(Error::Data)?;
|
|
Ok(s.to_string())
|
|
}
|
|
|
|
fn get_jwk_bool(
|
|
value: &serde_json::Map<String, serde_json::Value>,
|
|
key: &str,
|
|
) -> Result<bool, Error> {
|
|
let b = value
|
|
.get(key)
|
|
.ok_or(Error::Data)?
|
|
.as_bool()
|
|
.ok_or(Error::Data)?;
|
|
Ok(b)
|
|
}
|
|
|
|
fn usage_from_str(op: &str) -> Result<KeyUsage, Error> {
|
|
let usage = match op {
|
|
"encrypt" => KeyUsage::Encrypt,
|
|
"decrypt" => KeyUsage::Decrypt,
|
|
"sign" => KeyUsage::Sign,
|
|
"verify" => KeyUsage::Verify,
|
|
"deriveKey" => KeyUsage::DeriveKey,
|
|
"deriveBits" => KeyUsage::DeriveBits,
|
|
"wrapKey" => KeyUsage::WrapKey,
|
|
"unwrapKey" => KeyUsage::UnwrapKey,
|
|
_ => {
|
|
return Err(Error::Data);
|
|
},
|
|
};
|
|
Ok(usage)
|
|
}
|